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Abstract

In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer
system varies with respect to the state of an underlying continuous-time Markov chain.
We present a novel algorithmic approach to solve numerically for the steady-state solution
of such queues. Using this approach, both infinite- and finite-buffer cases are studied.
We show that the solution of the infinite-buffer case is reduced to the solution of a
generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix
pencil. Moreover, this SDC problem does not require the individual computation of
any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-
exponential representation for the steady-state queue-length distribution is obtained. The
finite-buffer case, on the other hand, requires a similar but different decomposition, the
so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-
exponential representation for the steady-state queue-length distribution. The proposed
approach for the finite-buffer case is shown not to have the numerical stability problems
reported in the literature.
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1. Introduction

Queueing models in which some continuous flow, called the fluid, takes on the role of the
traditional ‘customer’ have attracted a lot of attention in the computer networks performance
research community [2], [12], [17]. In infinite- or finite-buffer Markov fluid queues, the
queue-length cumulative distribution function (CDF) in the steady state obeys an ordinary
differential-algebraic equation [2], [21] in which the boundary conditions are not known a
priori. Traditionally, the eigenvalues and eigenvectors of the system are first computed, leading
to a spectral expansion for the CDF. Then the coefficients of this expansion are computed by
solving a linear equation using the constraints associated with the boundaries of the system.
Anick et al. [2] studied the infinite-buffer case in which the arrival rate process is a superposition
of a finite number of independent homogeneous continuous fluid sources. In their model, each
source is governed by a two-state Markov chain and the service capacity is held constant. In [2],
closed-form expressions are available for the eigenvalues and eigenvectors and the authors also
provided useful asymptotic approximations for the survivor function. Kosten showed in [12]
how to extend the results of [2] to the case of a superposition of a number of different groups,
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each group comprised of a superposition of identical Markov fluid sources. Mitra [14] studied
the case when the service rate is also modulated by a continuous-time Markov chain. These
stochastic fluid flow models have since been extensively used for the performance analysis of
packet voice and video multiplexing with or without background data traffic (see [17] for a
collection of references). For the finite-buffer Markov fluid queues, Tucker [21] extended the
results of [2] to the finite-buffer case in the context of performance analysis of a finite-capacity
packet voice multiplexing system. However, the linear equations to solve for the coefficients
of the spectral expansion are known to be ill conditioned, and numerical instability associated
with large-scale finite queues are reported in [9]. Among the alternative techniques for solving
Markov fluid queues, we note the probabilistic analysis given byAsmussen [3] using an iterative
technique and the Wiener–Hopf factorization method of Rogers [16].

In this paper, we seek a numerically efficient and stable method for solving large-scale
infinite- and finite-buffer Markov fluid queues. However, we do not impose a special structure
on the underlying continuous-time Markov chain, i.e. the eigenvalues and eigenvectors cannot
therefore be written in closed form. On the other hand, finding the eigenvalues and eigenvectors
(in case a closed-form expression does not exist) of a nonsymmetric matrix is generally known to
be ill conditioned and methods that rely on such computations cannot scale to large-scale queues.

In the infinite-buffer case, we propose an alternative method that relies on the solution of
an associated generalized spectral divide-and-conquer (SDC) problem [5] without any need for
computing eigenvalues and eigenvectors. Through the solution of the SDC, it is shown in the
current paper that q(·), the queue-length survivor function, takes the matrix-exponential form

q(x) = f eGxh, x ≥ 0, (1)

in the infinite-buffer case for a row vector f , a column vector h, and a stable square matrix G.
Using this expression, we can easily calculate the associated moments using simple matrix–
vector operations. The finite-buffer case, on the other hand, requires a similar but different
decomposition, the so-called additive decomposition (AD) [11]. AD decomposes a transfer
function into two subsystems, one being the forward (or stable) subsystem, and the other being
the backward (antistable) subsystem. Using AD, the finite-buffer case with buffer size B leads
to a modified matrix-exponential representation for the queue-length survivor function:

q(x) = a + f1eG1xh1 + f2e−G2(B−x)h2, 0 ≤ x < B, (2)

for a scalar a, row vectors f1 and f2, column vectors h1 and h2, and two stable matrices G1 and
−G2, the sizes of which are to be determined within the solution procedure. The first term in this
expression is the constant term, the second and third terms are associated with the forward and
backward subsystems of the finite fluid queue. The intent of this paper is to provide a numerically
efficient and stable method for computing the factors of the representations (1) and (2).

The remainder of the paper is organized as follows. Section 2 is devoted to the notation and
the preliminaries used in this paper. Section 3 addresses the Markov fluid queue model and
summarizes the existing results. We present our solution for the infinite- and finite-buffer cases
in Sections 4 and 5 respectively. Numerical results and conclusions are presented in Sections 6
and 7 respectively.

2. Notation

We use the following notation in this paper. We denote by e and I , respectively, a column
vector of ones and an identity matrix of suitable sizes. When the size of the matrix is to be
emphasized, we use the notation Im to denote an m × m identity matrix. By rank(A), R(A),
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and N (A) we denote the rank, range space, and null space of a real-valued matrix A respectively.
As far as the current paper is concerned, it is important to find orthonormal basis vectors for the
range space of a rank deficient square matrix A of size n. A rank-revealing QR decomposition
[6] of A is of the form A� = QR, where � is a permutation matrix, R is upper triangular, and
Q is orthonormal. The permutation matrix is chosen so that the absolute values of the diagonal
elements of R are decreasing. In case n1 = rank(A) is known a priori, the first n1 columns of Q

form an orthonormal basis for R(A). Sometimes it is also important to find orthonormal basis
vectors for the null space of the matrix A. Then a rank revealing QR decomposition of A� is of
the form A�� = QR in which the last n2 = n − n1 columns of Q form an orthonormal basis
for N (A) [19]. We note that matrix algorithms related to finding orthonormal basis vectors for
the range or null spaces of a matrix are readily available in linear algebra software packages
like MATLAB® and LAPACK.

If a = [a1, a2, . . . , aM ] is a vector of size M and 1 ≤ n ≤ m ≤ M , then a(n : m) denotes
the subvector [an, an+1, . . . , am]. We denote by C the set of complex numbers and by Re(z)
the real part of a complex number z. By C

−, C
+, and C

0 we denote the open left half, open
right half, and the imaginary axis respectively of the complex plane. We use the notation C

+0 to
denote C

+ ∪C
0. Given a matrix pair (E, A), where E and A are square real n×n matrices, the

generalized nonsymmetric eigenvalue problem is to find the eigenvalues λ and corresponding
eigenvectors φr such that Aφr = λEφr and φr �= 0. The vector φr is then called a right
eigenvector. A row vector φl is a left eigenvector of the ordered pair (E, A) if φlA = λφlE and
φl �= 0. Equivalent notation used to refer to the generalized eigenproblem for the pair (E, A) is
through the pencil λE −A, where λ is an indeterminate. So we can also refer to the generalized
eigenvalues and eigenvectors of the pencil λE − A. The set of all generalized eigenvalues of
the ordered pair (E, A), or the pencil λE − A, is denoted by λ(E, A). When λ(I, A) ⊂ C

−, A

is called a stable matrix and A is called antistable if λ(I, A) ⊂ C
+.

The following is based on [11]. Any subspace X satisfying

Y = EX + AX and dim Y = dim X (3)

is called a deflating subspace of the pencil λE − A. The name stems from the decomposition

Q�(λE − A)Z =
[
λE11 − A11 λE12 − A12

0 λE22 − A22

]
, (4)

which is obtained from (3) by choosing orthonormal matrices Q and Z such that the first n1 (the
size of E11 and of A11) columns of Z form a basis for the subspace X and the first n1 columns
of Q form a basis for Y. For obvious reasons, X and Y are sometimes called the right and left
deflating subspaces respectively. Given real matrices E and A and a region D of the complex
plane, finding orthonormal matrices Q and Z such that (4) holds with λ(E11, A11) ⊂ D and
λ(E22, A22) ∩ D = ∅ is called the generalized spectral divide-and-conquer (SDC) problem
[5] (when E = I , it reduces to the ordinary SDC problem). In this case, the first n1 columns
of Z and Q are known to span, respectively, the right and left deflating subspaces of the matrix
pencil λE − A associated with the region D . There is also a unique deflating subspace Xc
of the pencil λE − A associated with the region C \ D . In [7], it was shown that X and Xc
are complementary, i.e. they are linearly independent and add up to the whole space. The
subspaces Y and Yc are also complementary, where Y = EX + AX and Yc = EXc + AXc.
Furthermore, there exists a decomposition, the so-called additive decomposition (AD) [11],

U−1(λE − A)V =
[
λE11 − A11 0

0 λE22 − A22

]
,
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where V and U are no longer orthonormal, but their first n1 columns span X and Y respectively,
and their last n2 columns form bases for Xc and Yc respectively.

Of particular interest to the current paper is the case when D is C
+ or C

−. There are several
techniques proposed in the literature for the solution of the associated generalized SDC problem.
Among these, we list the generalized matrix-sign-function iterations [10], the generalized Schur-
decomposition method [8], and the inverse-free SDC method [5]. Given that the matrix pencil
λE −A has no eigenvalues on the imaginary axis, we now outline the generalized matrix-sign-
function-based algorithm of [10] for finding the right deflating subspaces of the pencil λE − A

associated with the regions C
− and C

+. The generalized matrix-sign-function iteration for the
matrix pencil λE − A is given by

Z0 = A, Zk+1 = 1
2 (Zk + EZ−1

k E) (5)

with the stopping criterion
‖Zk+1 − Zk‖1 < ε‖Zk+1‖1

(see [10]). When E is nonsingular (as is the case for the current paper), this iteration converges
with quadratic rate to Z∞. Furthermore, N (E −Z∞) and N (E +Z∞) give the right deflating
subspaces of the matrix pencil λE − A associated with the regions C

+ and C
− respectively

[19]. Orthonormal basis vectors for the right and left deflating subspaces associated with
either of the two regions can then be obtained using rank-revealing QR decompositions as
described above and using the definition (3). We note that the SDC problem requires one
generalized matrix-sign iteration plus two rank-revealing QR decompositions whereas AD
requires two additional rank-revealing QR decompositions. Finally, the generalized Newton
iteration requires the computation of the inverse of a matrix explicitly, leading to numerical
instability for ill-conditioned matrices [4]. Inverse-free methods are the preferred methods if
such numerical instability is detected, at the expense of more storage and arithmetic [5]. A
comparison of such methods is beyond the scope of the current paper and we will use the
approach outlined above with ε = 10−7 in this paper for our numerical experiments.

3. Model

In this section, we will describe the general fluid-queue model based on [13] where fluid
enters and leaves a single buffer system. The input and output rates of the fluid depend on
an external environment which is described by a continuous-time Markov chain (CTMC). Let
S(t), t ≥ 0, be the governing irreducible CTMC on the state space S = {1, 2, . . . , M} and with
generator A = [Aij ]. Let X(t) denote the amount of fluid in the buffer at time t and let the
drift function d(S(·)) denote the net rate of change to the buffer (arrival rate minus departure
rate). Note that the drift function in this model only depends on the state of the underlying
CTMC, so the drift function can be written as d(·), where d(s) is called the drift in state s ∈ S.
Without any loss of generality, we will assume throughout this paper that d(s) �= 0 for all s

since otherwise the associated algebraic equations can appropriately be removed.
When the buffer capacity is infinite, the dynamics of the buffer-content process {X(t), t ≥ 0}

are given by
dX(t)

dt
=

{
d(s) if X(t) > 0 and S(t) = s,

d(s)+ if X(t) = 0 and S(t) = s,

where x+ = max(x, 0). The relationship at the boundary X(t) = 0 ensures that the process X

stays nonnegative for all t .
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When the buffer capacity B is finite, the dynamics of the queue are governed by the following
relationship:

dX(t)

dt
=

⎧⎪⎨
⎪⎩

d(s)+ if X(t) = 0 and S(t) = s,

d(s) if 0 < X(t) < B and S(t) = s,

d(s)− if X(t) = B and S(t) = s,

where x− = min(0, x). The relationship at the boundary X(t) = B ensures that the buffer
does not exceed the buffer capacity B.

We are interested in finding the steady-state queue-length probabilities in both the infinite-
and finite-buffer cases. We first define F(t, s, x) := Pr{S(t) = s, X(t) ≤ x}. Since the
modulating Markov process is finite and irreducible, its equilibrium probabilities, πs :=
limt→∞ Pr{S(t) = s}, exist. We also define the invariant row vector π = [π1, π2, . . . , πM ],
which is the unique solution to πA = 0, πe = 1. The mean drift rate d of the buffer is expressed
as d := ∑

s∈S πsd(s). A necessary and sufficient condition for the existence of equilibrium
probabilities for the joint process (S, X) in the infinite-buffer case is d < 0. We note that no
such condition is necessary for the existence of equilibrium probabilities in the finite-buffer
case. Assuming the existence of the limiting probabilities F(s, x) := limt→∞ F(t, s, x),
we define the row vector F(x) := [F(1, x), F (2, x), . . . , F (M, x)] and the nonsingular drift
matrix E := diag{d(1), d(2), . . . , d(M)}. Once F(x) is known, we can easily compute the
queue-length survivor function (i.e. the probability of the queue length exceeding a certain
value x), q(x) := limt→∞ Pr{X(t) > x} = 1 − F(x)e.

We are now ready to state the following well-known result from [21] and [13].

Theorem 1. In the infinite-buffer case, F(x) satisfies

dF(x)

dx
E = F(x)A, x ≥ 0, (6)

with the boundary conditions F(s, 0) = 0 if d(s) > 0. When the buffer capacity is finite,
the differential equation (6) is valid when 0 ≤ x < B and we use the following additional
boundary condition: F(s, B−) = F(s, B) = πs if d(s) < 0. The probability Pfull(s, B) that
the buffer is full in state s when d(s) > 0 is then given using the discontinuity of F(s, x) at B

as Pfull(s, B) = πs − F(s, B−).

4. Infinite-buffer case

We first define S− and S+ to be the set of states such that d(s) < 0 and d(s) > 0 respectively.
Also let M− and M+ be the cardinality of the corresponding sets. It is well known that (see [2]),
when the stability condition d < 0 is satisfied, the generalized matrix-differential equation (6)
has M = M+ + M− generalized eigenvalues, λ1, λ2, . . . , λM , one of them, λM++1, being
at the origin, M+ of them, λ1, . . . , λM+ , having negative real parts, and M− − 1 of them,
λM++2, . . . , λM , having positive real parts.

The boundary conditions can easily be formed as follows.

Boundary condition 1. The limiting probability F(s, x) is bounded for all x and F(s, x) → πs
as x → ∞.

Boundary condition 2. For s ∈ S+, the queue length is always increasing, so the queue length
cannot be zero. Therefore, F(s, 0) = 0 for s ∈ S+.
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In the traditional approach outlined in [13], φi = [φi1, φi2, . . . , φiM ] is defined as the left
generalized eigenvector corresponding to the generalized eigenvalue λi of the matrix pair (E, A)

such that the pair (λi, φi) satisfies φi(λiE − A) = 0. Assume that the λi are distinct and they
are numbered according to ascending real parts:

Re(λ1) ≤ · · · ≤ Re(λM+) < Re(λM++1) = 0 < Re(λM++2) ≤ · · · ≤ Re(λM)

and normalize φM++1 = π . The solution F(·) to (6) is given by the spectral representation

F(x) =
M∑
i=1

aie
λixφi, (7)

where the ai are unknown scalar coefficients to be determined from Boundary conditions 1
and 2. In particular, the coefficients satisfy the following condition: ai = 0 if Re(λi) > 0,
aM++1 = 1 (Boundary condition 1) and

∑M++1
i=1 aiφij should be zero if j ∈ S+ (Boundary

condition 2).
In the following, we propose an alternative algorithmic method. We first define

W(s, x) := F(s, x) − πs for s = 1, . . . , M

and
W(x) := [W(1, x), W(2, x), . . . , W(M, x)],

so that W(·) satisfies the same generalized matrix-differential equation as in (6):

dW(x)

dx
E = W(x)A.

For the matrices E and A, we can find the decomposition (4) using orthonormal matrices Q and
Z such thatλ(E11, A11) ⊂ C

+0 andλ(E22, A22) ⊂ C
−. Such a decomposition is possible using

the traditional spectral decomposition techniques including the generalized Newton iterations
(see Appendix A for the numerical algorithm). We also note that the dimensions of the matrices
E11 and A11, and of E22 and A22 are known a priori and they are M− × M− and M+ × M+
respectively.

Given the decomposition (4), we define [u(x), v(x)] := W(x)Q, where u(x) is a 1 × M−
row vector and v(x) a 1 × M+ row vector, or, equivalently,

W(x) = u(x)L1 + v(x)L2, where Q� =
[
L1
L2

]
. (8)

Then it is not difficult to show by direct substitution that

du(x)

dx
E11 = u(x)A11.

However, since λ(E11, A11) ⊂ C
+0, u(0) should be the zero vector since otherwise Boundary

condition 1 would not be satisfied. Therefore, u(x) = 0 for all x and v(x) satisfies a similar
differential equation,

dv(x)

dx
E22 = v(x)A22,

whose solution is
v(x) = v(0)eGx, G = A22E

−1
22 . (9)

Invertibility of E11 and E22 results from the nonsingularity of E. From (9) and (8), we conclude
that

W(x) = v(x)L2 = v(0)eGxL2,
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which, upon computation of v(0), will give the desired solution. In order to find v(0), we
make use of Boundary condition 2, which indicates that W(s, 0) = −πs for s ∈ S+. Let
so

1 , so
2 , . . . , so

M+ be the overload states of the underlying CTMC. Then we construct an M ×M+
matrix T whose j th column consists of all zeros except for an entry 1 at the so

j th position. Then
Boundary condition 2 implies that −πT = v(0)L2T . Solving for v(0) from above, we can
write the queue-length survivor function q(·) in a simple matrix-exponential form,

q(x) = −v(0)eGxL2e,

where −v(0) corresponds to f in (1) and L2e corresponds to h.

5. Finite-buffer case

In the finite-buffer case, we still have the same generalized linear matrix-differential equa-
tion (6) which is only valid when 0 ≤ x < B. In this case, the condition d < 0 is not required
for the existence of steady-state probabilities. However, the number of generalized eigenvalues
of the pair (E, A) in each half of the complex plane changes with respect to the sign of the
average drift d . As noted before, when d < 0, we have M+ +M− generalized eigenvalues, one
of them being at the origin, M+ of them having negative real parts, and M− − 1 of them having
positive real parts. However, when d > 0, we have one generalized eigenvalue at the origin,
M+ − 1 with negative real parts, and M− with negative real parts. This can be shown easily
by checking the generalized eigenvalues of the pair (−E, A). In this paper, we will not study
the d = 0 case. Therefore, the number of generalized eigenvalues of the matrix pair (E, A)

with negative real parts, say n, and with positive real parts, say p, are known a priori by simply
checking the sign of the mean drift of the fluid queue. It is also noted that the system size is
M = n + p + 1.

The boundary conditions for the finite-buffer problem are given as follows [13].

Boundary condition 1′. For s ∈ S−, F(s, B−) = πs.

Boundary condition 2′. For s ∈ S+, F(s, 0) = 0.

The solution F(·) to (6) is given by the spectral representation (7), where the ai are unknown
scalar coefficients to be determined from Boundary conditions 1′ and 2′. In particular, the
coefficients ai satisfy the following conditions:

M∑
i=1

aiφij = 0, j ∈ S+,

M∑
i=1

aiφij eλiB = πj , j ∈ S−.

The above set of linear equations are known to be ill conditioned due to the coexistence of both
exponentially dying and growing terms (with respect to the buffer size B) in the linear equation.
Numerical instability of the above linear equations are reported and numerical methods are
proposed to overcome this instability in [15] and [9].

We present our alternative approach here that avoids the individual computation of the
generalized eigenvalues and eigenvectors and which is also numerically stable. This approach
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is based on the following additive decomposition using matrices U and V :

U−1EV =
⎡
⎣b 0 0

0 E11 0
0 0 E22

⎤
⎦ , U−1AV =

⎡
⎣0 0 0

0 A11 0
0 0 A22

⎤
⎦ , (10)

where b is a nonzero number, λ(E11, A11) ⊂ C
− and λ(E22, A22) ⊂ C

+. With (10), the
differential system (6) is decomposed into three subsystems. These subsystems are associated
with the matrix pairs (b, 0), (E11, A11), and (E22, A22), and are referred to as the constant,
stable, and antistable subsystems respectively. Such a decomposition is possible using the
generalized Newton iterations (see Appendix B for the numerical algorithm). We also note
that the dimensions of the matrices E11 and E22 are n × n and p × p respectively. Given the
decomposition (10), we define [t (x), u(x), v(x)] := F(x)U , with t (x) a scalar, u(x) a 1 × n

row vector and v(x) a 1 × p row vector, or, equivalently,

F(x) = t (x)L1 + u(x)L2 + v(x)L3, where U−1 =
⎡
⎣L1

L2
L3

⎤
⎦ .

It is then easy to show that
dt (x)

dx
= 0,

which yields that t (x) = c (a constant). It can also be shown by direct substitution that

du(x)

dx
E11 = u(x)A11, 0 ≤ x < B.

Then u(x), 0 ≤ x < B, can be written as

u(x) = u(0)eG1x, G1 = A11E
−1
11 ,

for a stable matrix G1. This subsystem is called the stable subsystem since G1 is stable, but is
also referred to as a forward subsystem since the solution of the differential equation is written
in terms of its initial condition.

Similarly, we can write v(x) in two mathematically equivalent forms, one being dependent
on v(0), the other dependent on v(B):

v(x) = v(0)eG2x, G2 = A22E
−1
22 , 0 ≤ x < B,

or
v(x) = v(B)e−G2(B−x), 0 ≤ x < B.

We note that −G2 is a stable matrix, i.e. all eigenvalues of −G2 have negative real parts, and
e−G2x → 0 as x → ∞. We can then write F(x), 0 ≤ x < B, as

F(x) = t (x)L1 + u(x)L2 + v(x)L3

= cL1 + u(0)eG1xL2 + v(0)eG2xL3 (11)

= cL1 + u(0)eG1xL2 + v(B)e−G2(B−x)L3. (12)

We call this third subsystem the antistable subsystem since G2 is antistable but, since in (12) the
solution of the differential equation can be written in terms of its final condition, we also refer
it to as the backward subsystem. The identity (12) dictates the form of the expression for F(x);
however, the coefficients in this expression, namely c, u(0), and v(B) (or v(0) in (11)), should
first be obtained. We will now use Boundary conditions 1′ and 2′ to find these coefficients.
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Similar to the construction of the matrix T , we construct an M × M− matrix N such that its
j th column consists of all zeros except for an entry 1 at the su

j th position, where su
1 , su

2 , . . . , su
M−

are the underload states of the underlying CTMC. With this definition of the matrices T and
N , Boundary condition 2′ implies that

0 = cL̄1 + u(0)L̄2 + v(0)L̄3,

= cL̄1 + u(0)L̄2 + v(B)e−G2BL̄3, (13)

where L̄i = LiT for i = 1, 2, 3. On the other hand, Boundary condition 1′ leads to the
following linear equations:

πN = cL̃1 + u(0)eG1BL̃2 + v(0)eG2BL̃3,

= cL̃1 + u(0)eG1BL̃2 + v(B)L̃3, (14)

where L̃i = LiN for i = 1, 2, 3. When (13) and (14) are combined, we have the following
two equivalent linear systems:

[0 πN ] = [c u(0) v(0)]
⎡
⎣L̄1 L̃1

L̄2 eG1BL̃2

L̄3 eG2BL̃3

⎤
⎦ (15)

and

[0 πN ] = [c u(0) v(B)]
⎡
⎣ L̄1 L̃1

L̄2 eG1BL̃2

e−G2BL̄3 L̃3

⎤
⎦ (16)

The system in (16) is better conditioned than the system in (15) since it does not have exponen-
tially growing terms due to the stability of G1 and −G2. Therefore, we propose to solve for c,
u(0) and v(B) using the linear system (16) as opposed to (15). We can then write the survivor
function q(·) in the following modified matrix exponential form:

q(x) = 1 − cL1e + (−u(0)eG1xL2e) + (−v(B)e−G2(B−x)L3e), 0 ≤ x < B,

where 1 − cL1e corresponds to a in (2), −u(0) to f1, L2e to h1, −v(B) to f2, and L3e to h2.

6. Numerical results

In the first example, numerical stability of the proposed algorithm is investigated. In this
example, we study the case of K statistically identical traffic sources that are multiplexed into
a single buffer. Each source is modelled as a three-state Markov fluid source with one off state
and two on states. We note that the aggregation of K such sources produces a state space of
dimension (K + 1)(K + 2)/2. In the two on states, the rate of each source is 1. The on time
is assumed to have a hyperexponential distribution with mean Ton and coefficient of variation
con > 1 and with balanced means as described in [20]. The marginal probability of the source
being in the on state, or the activity factor of each source, is denoted by ρs. The drain rate of
the fluid queue is determined so as to achieve a desired overall use of ρ. For the infinite-buffer
case, we measure the numerical stability of the algorithm by monitoring the value εinf defined
as

εinf := ‖[F(0)T , F ′(0)E − F(0)A]‖1,

where the first term, F(0)T , is indicative of how well the boundary condition at zero is satisfied
whereas the second term is a measure of how well the differential equation is satisfied at zero.
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Table 1: Values of εinf and of εfin using the FB and FO schemes for varying use and buffer sizes.

Use, ρ

B 0.9 0.9999 1.0001 1.1

εinf 6.0 × 10−16 7.4 × 10−14 x x
εfin (FB) 100 6.2 × 10−16 5.2 × 10−12 3.6 × 10−12 1.0 × 10−15

εfin (FO) 100 7.9 × 10−16 — 3.3 × 10−12 5.6 × 10−16

εfin (FB) 1 000 8.5 × 10−16 4.0 × 10−12 2.3 × 10−12 6.1 × 10−16

εfin (FO) 1 000 1.2 × 10−9 — 1.9 × 10−11 6.5 × 10−12

εfin (FB) 10 000 2.9 × 10−16 1.4 × 10−12 8.7 × 10−13 2.5 × 10−16

εfin (FO) 10 000 — — — —

For the finite-buffer case, we monitor a similar quantity, εfin, defined by

εfin := ‖[F(0)T , F ′(0)E − F(0)A, F (B−)N − πN, F ′(B−)E − F(B−)A]‖1,

to take into consideration whether the boundary conditions as well as the differential equations
are satisfied at the two boundaries. In this paper, we have proposed a scheme which is based on
a forward–backward decomposition and uses v(B) as the unknown along with the equations
(12) and (16). We call this the FB scheme. The second scheme, which is to be compared
with the FB scheme, uses the forward equations only through (11) and (15). We call this the
FO scheme (forward only). In the FO scheme, v(0) is used as the unknown, similar to the
work reported in [21]. We fix K = 10, Ton = 1000, con = √

2, and ρs = 0.4, and vary the
parameters B and ρ in this numerical example. We use the generalized matrix-sign-function
iterations as described in Appendices A and B for the decompositions (4) and (10). We report
our results on the performance metrics εinf and εfin in Table 1. We observe that εinf is close
to the machine zero u (that is u ≈ 2.2 × 10−16) but we observe deteriorating stability as use
gets closer to 1. However, this numerical stability problem is not specific to the Markov fluid
model but is observed in more general queueing problems [1]. In such numerically challenging
cases, we suggest the use of more stable decomposition techniques of linear algebra; see [5]
for an extensive discussion of such techniques. It is numerically shown in Table 1 that εfin does
not change with respect to the buffer size B when using the FB scheme. However, εfin grows
without bound with increasing buffer sizes for all values of ρ tried using the FO scheme. We use
‘—’ to denote those cases to show that an acceptable solution cannot be obtained because the
associated problem is very ill conditioned. These cases correspond to either probability density
functions with negative values or εfin being too high to have any reliance on the result obtained.
The notation ‘x’is used to show that, for those values of ρ > 1, the corresponding infinite-buffer
system is unstable and therefore does not have a stationary solution. In conclusion, rewriting the
linear equation using the unknown v(B) as in (16) eliminates the inherent numerical stability
problem of finite Markov fluid queues reported in the literature [15], [9].

In Table 2, we study the numerical stability properties of the FB scheme when the number
of the three state sources is increased. We fix ρ = 0.9, Ton = 2, con = √

2, and ρs = 0.4, and
vary the parameter K , or, equivalently, vary the state space dimension M . The results clearly
demonstrate that the proposed FB scheme is robust in terms of numerical stability with respect
to the dimension of the state space.

It is generally believed that the asymptotic behaviour of the infinite-buffer system can be used
to approximate the corresponding finite-buffer system. However, in some finite-buffer scenarios
studied, the authors observed that the queue-length PDF may not be dominated by the tail
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Table 2: Values of εfin using the FB scheme with respect to increasing number of users.

K M εfin

25 351 6.3 × 10−14

30 496 1.1 × 10−13

35 666 1.6 × 10−13

40 861 1.6 × 10−13
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Figure 1: Queue-length PDF for varying con.

behaviour of the associated infinite-buffer system but instead it is the modes of G2 that determine
the PDF behaviour especially in the region close to x = B. As an example, we plot in Figure 1
the queue-length PDF f (·) for different values of con in the scenario ρ = 0.7, Ton = 2, ρs = 0.4,
and B = 100. For convenience, the probability masses are not plotted at the two boundaries in
Figure 1. This example clearly demonstrates that, for larger values of con, the behaviour of the
PDF is dominated by the stable and the antistable subsystems for small and large values of x

respectively. For values of x distant from the boundaries, it is the constant term that dominates.

7. Conclusions

In this paper, we present a novel method for solving for the steady-state solution of infinite-
or finite-buffer Markov fluid queues. This method is based on the spectral decomposition of
a matrix pair (E, A) and can be carried out using the powerful techniques of numerical linear
algebra including generalized Newton iteration. With this method in place, we show that the
finite-buffer solution does not have the numerical stability problems reported in the literature.
In cases when numerical instability is encountered using the approach in this paper, due to
either the use ρ being close to 1 or the drift matrix E being very close to singularity, we suggest
the use of the more stable (but slower) techniques of linear algebra [5]. We also studied several
numerical examples demonstrating that finite-buffer systems have their peculiar characteristics
and in some scenarios they cannot be approximated well by their infinite-buffer counterparts.
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Appendix A. Generalized Newton iteration for (4)

Given the pair of matrices E and A in (6), our goal is to find orthonormal matrices Q and Z

such that the decomposition (4) holds, where λ(E11, A11) ⊂ C
+0 and λ(E22, A22) ⊂ C

−. We
define the rank-one update Ā := A + EeπE/πEe of the matrix A. With this definition, the
generalized eigenstructure of the matrix pair (E, Ā) is the same as that of the pair (E, A) except
for one generalized eigenvalue at 1 which is obtained by moving the generalized eigenvalue of
(E, A) at the origin to the right by one unit. Moreover, Ā is nonsingular. We note that, when the
matrices E and Ā are nonsingular, as is the case in this paper, the generalized Newton iteration
given in (5) applied to the matrix pencil λE − Ā converges to Z∞. Following Section 2, we let
(E − Z∞)�� = [Z1, Z2]R be a rank-revealing QR factorization of (E − Z∞)�, where the
orthonormal matrix Z2 has M− columns. With the additional rank-revealing QR factorization
[ĀZ2, EZ2]� = QR, and defining Z = [Z2, Z1], we obtain the orthonormal matrices Q and
Z such that (4) holds with the desired spectra of the two subblocks.

Appendix B. Generalized Newton iteration for (10)

We propose finding the matrices Y and X so that

Y−1EX =
[
b 0
0 E2

]
, Y−1AX =

[
0 0
0 A2

]
(17)

as the first step towards the decomposition (10). Then, following [18], we define an orthogonal
matrix Z such that Ze1 = e, where e1 is a column vector whose first element is 1 and other
entries all zero. Similarly, the orthogonal matrix Q is defined through Qe1 = Ee =: ē. The
orthonormal matrices Z and Q can easily be obtained via the QR decomposition of the matrices[

1 0
e IM−1

]
and

[
ē(1) 0

ē(2 : M) IM−1

]

respectively, where ē(1) is the first entry of ē. It is then well known (see [18]) that

Q�EZ =
[
E11 E12

0 E22

]
, Q�AZ =

[
0 A12
0 A22

]
,

where the square matrices E22 and A22 are both of dimension (M − 1) × (M − 1). Solving
for X1 in X1A22 = A12 and solving for Y1 in −E11Y1 = E12 − X1E22, we define the matrices
X and Y as follows:

X = Z

[
1 Y1
0 I

]
and Y = Q

[
1 X1
0 I

]
.

This choice of the matrices X and Y can be shown by direct substitution to satisfy the decom-
position in (17).

In the second step, we use the generalized Newton iteration applied to the matrix pencil
λE2 − A2 to find Z∞. We recall that the pair (E2, A2) has n generalized eigenvalues with
negative real part and p with positive real part. Following Section 2, we use the rank-
revealing QR decomposition (E2 + Z∞)�� = [Z1, Z2]R of (E2 + Z∞)� with Z2 having
n columns. We then let [A2Z2, E2Z2]� = [Q1, Q2]R be a rank-revealing QR factorization
of [A2Z2, E2Z2] with Q1 having n columns. As described in Section 2, the orthonormal
matrices Z2 and Q1 span, respectively, the right and left deflating subspaces of the matrix
pencil λE2 − A2 associated with the region C

−. Similarly, we use the rank-revealing QR

decomposition (E2 − Z∞)�� = [Z̄1, Z̄2]R of (E2 − Z∞)� with Z̄2 having p columns. We
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then let [A2Z̄2, E2Z̄2]� = [Q̄1, Q̄2]R be a rank-revealing QR factorization of [A2Z̄2, E2Z̄2]
with Q̄1 having p columns. As described in Section 2, the orthonormal matrices Z̄2 and Q̄1
span, respectively, the right and left deflating subspaces of the matrix pencil λE2−A2 associated
with the region C

+. It is not then difficult to show by referring to Section 2 that the choice of
the matrices

U := Y

[
1 0
0 [Q1, Q̄1]

]
and V := X

[
1 0
0 [Z2, Z̄2]

]
leads to the desired decomposition in (10).
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