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We investigate the generation of amplitude-squeezed states with degenerate optical parametric amplifiers that
are pumped by focused Gaussian beams. We present a model that facilitates the calculation of the squeezing
level for an experimentally realistic configuration in which there is a Gaussian input signal beam that has the
same confocal parameter and waist location as the Gaussian pump beam, with no restriction on the interaction
length-to-confocal parameter ratio. We show that the 3-dB squeezing limit that was thought to be imposed by
the Gaussian pump profile can be exceeded in the (previously uninvestigated) tight-focusing regime. We find
the maximum possible amplitude squeezing in this regime to be 4.65 dB. However, it is possible to increase
the squeezing level further by spatially filtering the tails of the output signal beam, resulting in squeezing
levels in excess of 10 dB. © 2001 Optical Society of America
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1. INTRODUCTION
A light field that exhibits a sub-Poissonian photon-
number distribution, in which the photon number’s vari-
ance is less than its mean, is said to be in an amplitude-
squeezed state.1 As a result of their reduced quantum
noise compared with that of coherent states, these light
states are attractive for a multitude of applications. So
far a variety of methods have been used to generate
amplitude-squeezed light.2–30 One commonly used
method is phase-sensitive deamplification of a coherent-
state light beam by use of a degenerate optical parametric
amplifier (DOPA).25–30 In this paper we analyze the gen-
eration of amplitude-squeezed light with Gaussian-beam
DOPAs, concentrating on the previously uninvestigated
tight-focusing regime.

One of the earliest experiments on amplitude-squeezed
light entails the demonstration of the sub-Poissonian na-
ture of resonance fluorescence.2 After this, the genera-
tion of ultraviolet sub-Poissonian light from Hg vapor by
inelastic collisions with a space-charge-limited electron
beam was reported.3 These early experiments were fol-
lowed by many others that employed a variety of
methods.4–30 One important method for generating
amplitude-squeezed light is based on semiconductor la-
sers; the sub-Poissonian characteristics of the electrical
driving source are passed on to the generated laser beam
by virtue of the high-gain medium.31 In an early experi-
ment in which this concept was used, a 6-dB reduction in
amplitude noise from the quantum limit was observed at
the output of a semiconductor laser that was stabilized by
negative feedback4; however, this field could not be ex-
tracted from the feedback loop. Open-loop
experiments5–15 soon followed. However, achieving high
levels of squeezing in these experiments required cooling
the setup to cryogenic temperatures.5–10 The maximum
amplitude squeezing observed in any room-temperature
0740-3224/2001/060846-09$15.00 ©
semiconductor laser experiment is less than 2 dB.11–15

The highest amplitude squeezing reported to date, how-
ever, was generated with a semiconductor laser that was
cooled to 66 K; there, 8.3 dB of squeezing was measured,
with a detection efficiency of 89%.10

Another process that is utilized for generating
amplitude-squeezed light is nondegenerate optical para-
metric downconversion, in which photons are created in
pairs. In an experiment based on spontaneous paramet-
ric downconversion, 1.07-dB amplitude squeezing in one
of the downconverted beams was achieved with negative
feedback from the other downconverted beam to the
pump.17 However, the resultant output beam had very
low power (;60 pW). In another experiment, amplitude-
squeezed light was obtained by use of the intensity corre-
lations between the signal and idler beams of an optical
parametric oscillator; the intensity fluctuations on the
signal beam were reduced by a feed-forward correction
mechanism that monitors the intensity of the idler beam,
resulting in a 6-mW output beam with a squeezing level
of 1.2 dB.18 However, the feed-forward mechanism, and
hence the squeezing, was narrow band. Kim and
Kumar32 proposed a similar configuration that uses the
intensity correlated twin beams from a nondegenerate op-
tical parametric amplifier. That analysis showed that
amplitude squeezing in such a case is limited only by the
pumping strength.

Second-harmonic generation is also a common method
of generating amplitude-squeezed light. Amplitude
squeezing of the fundamental19,20 and the
second-harmonic21 modes has been demonstrated in dou-
bly resonant frequency doublers. In the research re-
ported in Ref. 20, 3-dB squeezing of the 3.2-mW funda-
mental beam was achieved by use of a monolithic
magnesium oxide–doped lithium niobate (MgO:LiNbO3)
doubly resonant cavity that was pumped by a Nd:YAG la-
2001 Optical Society of America
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ser. The same configuration resulted in a 100-mW
second-harmonic beam with 2.2 dB of amplitude
squeezing.21 However, both experiments required active
frequency stabilization, which introduced considerable
experimental complexity. A singly resonant frequency
doubler was reported to generate 1.55 dB of squeezing in
the second-harmonic mode in a monolithic MgO:LiNbO3
cavity that was pumped by a Nd:YAG laser.22 In another
experiment, a singly resonant potassium niobate
(KNbO3) doubler that was pumped by a Ti:sapphire laser
resulted in 2.4-dB amplitude squeezing in the second-
harmonic beam.23 Traveling-wave second-harmonic gen-
eration has also been used for generating amplitude-
squeezed light. In one experiment, both the fundamental
and the second-harmonic beams were squeezed, by 0.8
and 0.35 dB, respectively, during second-harmonic gen-
eration in a LiNbO3 waveguide.24

DOPAs play an important role in the generation of
amplitude-squeezed light.25–30 A DOPA is a phase-
sensitive light amplifier, whose gain depends on the opti-
cal phase difference between the pump and the input sig-
nal fields. When the input signal is in a coherent state
with a sufficiently large number of photons, the deampli-
fied output signal is in an amplitude-squeezed state. De-
generacy between the signal and idler photons necessi-
tates that the pump frequency be exactly twice the signal
frequency. In practice this is achieved by use of the sec-
ond harmonic of a laser as the pump beam and of the fun-
damental beam as the signal input.25–27 Alternatively,
the pump beam can be generated in the DOPA crystal si-
multaneously with parametric amplification, provided
that the crystal is type II phase matched.28,33 An experi-
ment in which a DOPA was placed inside a standing-wave
cavity that is resonant for the signal field was reported to
achieve 4.3-dB amplitude squeezing.29

Single-pass traveling-wave DOPAs seem to be advanta-
geous for generating amplitude-squeezed light because of
their relative simplicity, room-temperature operation,
and broadband quantum noise reduction. However, am-
plitude squeezing greater than 0.7 dB had not been
achieved with a single-pass DOPA because of phase dis-
tortions in the signal beam owing to the nonuniform in-
tensity profile of the pump beam, an effect known as gain-
induced diffraction (GID).27

In this paper we present an accurate and detailed
analysis of generation of amplitude-squeezed light with
single-pass Gaussian-beam DOPAs. In a typical experi-
ment, the Gaussian-beam nature of the pump and the sig-
nal fields together with GID effects result in variations in
the degree of amplitude squeezing in the transverse
plane. A previous model brought out the importance of
these effects and concluded that amplitude squeezing
with a Gaussian-beam DOPA is limited to 3 dB.27 Ac-
cording to that model, amplitude squeezing is maximized
in the limit when the length of the DOPA crystal is infini-
tesimally small (diffraction effects are nonexistent) and
the pump power is infinitely large. This 3-dB limit is fur-
ther reduced in realistic cases when the DOPA crystal has
finite length and the pump beam has finite power. How-
ever, that model is valid only in the weak-focusing regime
and cannot be used to calculate squeezing levels when the
length of the DOPA crystal is comparable with the confo-
cal parameter of the pump beam. In addition, this model
contains an incorrect assumption that the maximum am-
plitude squeezing occurs at a pump–signal phase differ-
ence of 2p/2, the value predicted by plane-wave theory.
Using our model, we show that squeezing levels greater
than 3 dB can be obtained in the tight-focusing regime
with relatively low pump power. Furthermore, the
pump–signal phase difference that maximizes squeezing
is significantly different from 2p/2.

The Gaussian-beam DOPA model presented in this pa-
per facilitates accurate calculation of amplitude squeez-
ing for all pump–signal phase differences and in all focus-
ing regimes, provided that the parametric interaction can
be considered to be perfectly phase-matched. This analy-
sis is based on our previous study that is described in de-
tail in Ref. 34. In Section 2 we outline our formulation
for calculating amplitude squeezing in a Gaussian-beam
DOPA and in Section 3 present our main results. In Sec-
tion 4 we investigate ways in which amplitude squeezing
may be increased by use of linear spatial filtering at the
output of the DOPA.

2. AMPLITUDE SQUEEZING WITH A DOPA
In this section we first summarize the plane-wave theory
of generation of amplitude-squeezed light with DOPAs
and then present the Gaussian-beam formulation. In
this analysis we assume that there is perfect phase
matching, no walk-off between the pump and the signal
beams, and no pump depletion. We note that it is pos-
sible to satisfy these assumptions in a carefully designed
experiment.

A. Plane-Wave Theory
In the plane-wave theory of DOPAs, the amplitude As of a
monochromatic signal field,

Es~z, t ! 5 1/2 As~z !exp@i~vt 2 ksz !# 1 c.c., (1)

is governed by

dAs~z !

dz
5 2ikApAs* ~z ! (2)

under the slowly varying envelope approximation, where
c.c. denotes the complex conjugate of the first term, Ap
5 uApuexp(ifp) is the field amplitude of the pump at an
optical frequency 2v, k 5 vde /nsc is the nonlinear cou-
pling constant, de is the effective nonlinear coefficient,
and ns is the refractive index. Because the interaction is
phase matched, kp 5 2ks , and, because the pump is as-
sumed to be undepleted, Ap is not a function of z. The
solution of Eq. (2) for a crystal of length l that is centered
at z 5 0 is35

As~l/2! 5 mAs~2l/2! 2 iexp~ifp!nAs* ~2l/2!, (3)

where

m 5 cosh~kluApu!, (4)

n 5 sinh~kluApu!. (5)

The gain of the DOPA is
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g~u! 5
uAs~l/2!u2

uAs~2l/2!u2 5 um 2 i exp~iu!nu2, (6)

where As(2l/2) 5 uAs(2l/2)uexp(ifs) and u 5 fp 2 2fs
is the phase difference between the pump and the signal
fields at the input.

Quantizing Eq. (3) results in35

b̂ 5 mâ 2 i exp~ifp!nâ†, (7)

where â and b̂ are the annihilation operators associated
with the signal field at the input and at the output, re-
spectively. In an experimental configuration the input
field is typically in a coherent state ua&, where âua&
5 aua& and a 5 KuAs(2l/2)uexp(ifs), where K is a real
normalization constant. The Fano factor at the output is

F 5
^Dn̂2&

^n̂&
, (8)

where n̂ 5 b̂†b̂ is the number operator associated with
the output signal. Using Eq. (7), we find the average
photon number and the variance at the output to be

^n̂& 5 um 2 i exp~iu!nu2uau2 1 unu2, (9)

^Dn̂2& 5 $um 2 i exp~iu!nu4

1 4 Im2@2i exp~iu!mn#%uau2

1 2umu2unu2, (10)

respectively. When the average photon number of the
signal is sufficiently large, we have uau2 @ umu2unu2, and
Eqs. (9) and (10) are simplified to yield a Fano factor of

F~u! 5 um 2 i exp~iu!nu2 1
4 Im2@2i exp~iu!mn#

um 2 i exp~iu!nu2

5 g~u! 1
4 Im2@2i exp~iu!mn#

g~u !
. (11)

The output field is in an amplitude-squeezed state when-
ever F(u ) , 1. Maximum amplitude squeezing occurs at
u 5 2p/2, where F(u ) assumes its smallest value of (m
2 n)2. In this case the uncertainty in the photon num-
ber becomes less by a factor of S 5 1/min$F(u )% than that
of a coherent state that has the same number of average
photons. Note that the maximum classic deamplification
(1 over gain) has the same value as the maximum ampli-
tude squeezing; i.e.,

S 5 1/min$F~u !% 5 1/min$g~u !% 5 exp~2kluApu!. (12)

Equation (12) shows that amplitude squeezing increases
without bound as the pump intensity increases.

B. Gaussian-Beam Theories
In this subsection we formulate a method for calculating
the Fano factor at the output of a traveling-wave
Gaussian-beam DOPA. This formulation facilitates the
calculation of the Fano factor for a coherent Gaussian in-
put signal beam that has the same confocal parameter as
the pump. We consider a geometry in which the waists
of the pump and the signal beams are located at the cen-
ter of the nonlinear crystal, as is typical of most experi-
mental configurations.
Because both the pump and the signal beams at the in-
put have cylindrical symmetry, we express all fields as 1z
propagating waves with transverse amplitude profiles
that depend only on the radial distance r 5 Ax2 1 y2 and
on the propagation distance z. We consider a signal field
described by

Es~r, t ! 5 1/2 As~r, z !exp@i~vt 2 ksz !# 1 c.c. (13)

Under the slowly varying envelope approximation, the
evolution of the classic signal amplitude is described by27

]As~r, z !

]z
2

1

2iks
¹'

2As~r, z ! 5 2ikAp~r, z !As* ~r, z !,

(14)

where Ap(r, z) is the complex amplitude of the pump field
and ¹'

2 5 ]2/]r2 1 (1/r)]/]r is the transverse Laplacian
in cylindrical coordinates. In the case of a Gaussian
pump beam, the pump field amplitude can be written as

Ap~r, z ! 5
Ap0

1 2 2iz/z0
expS 2r2/W0

2

1 2 2iz/z0
D , (15)

where W0 is the radius of the beam waist located at z
5 0, z0 5 kpW0

2 is the confocal parameter (twice the
Rayleigh range), kp 5 2ks is the pump wave number, and
Ap0 5 uAp0u exp(ifp) is a complex constant whose ampli-
tude is related to pump power Pp through uAp0u
5 A8vPp /pz0c2e0.

The signal field, As(r, z), is a Gaussian beam at the in-
put plane, whose waist location and confocal parameter
would be identical to those of the pump beam in the ab-
sence of any nonlinear interaction. This field can be
written as

As~r, z ! 5
As0~r, z !

1 2 2iz/z0
expS 2r2/2W0

2

1 2 2iz/z0
D , (16)

where As0(r, z) is a function that represents the devia-
tions of the signal field from an ideal Gaussian beam. In
the absence of any nonlinear interaction, diffraction of the
signal mode is due to propagation only, and As0 is just a
complex constant.

The transformations z 5 jz0 and r 5 rW0 can be used
to normalize Eq. (14) as

]As~r, j!

]j
1 i¹'

2As~r, j!

5 2ig exp~ifp!up~r, j!As* ~r, j!, (17)

where fp is the phase of the pump beam, g 5 kz0uAp0u is
a constant, and

up~r, j! 5
1

1 2 2ij
expS 2r2

1 2 2ij D . (18)

Equation (17) has to be solved with the initial condition
As(r, j 5 2j0), where j0 5 l/2z0 . As the signal field is
purely Gaussian at the input plane, As0 has no radial de-
pendence there and As0(r,2j0) 5 uAs0(2j0)uexp(ifs). By
substituting Eq. (16) into Eq. (17) it is possible to obtain
an equation that governs the evolution of As0(r, z). The
solution of this equation may be written in the form27
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As0~r, j0! 5 m~r !As0~2j0! 1 i exp~ifp!n~r !As0* ~2j0!.

(19)

The radial dependences of m and n are a consequence of
the Gaussian profile of the pump beam.

Quantizing Eq. (19) results in

b̂~r ! 5 m~r !â 2 i exp~ifp!n~r !â†, (20)

provided that the input signal has perfect spatial coher-
ence. The input signal is in a coherent state ua&, where
a 5 K8As0(r, 2j0)G0(r, 2j0), with

G0~r, j! 5
1

1 2 2ij
expS 2r2/2

1 2 2ij D , (21)

where K8 is a real normalization constant. Once m(r)
and n(r) are calculated from the classic equation, the out-
put annihilation operator is known, and we can calculate
the Fano factor at the output by evaluating

A. No Diffraction Limit
The no-diffraction limit, at which l/z0 → 0, provides an
approximate but simple solution and illustrates some of
the limitations on squeezing imposed by the Gaussian
pump profile. In this case the diffraction (transverse La-
placian) term in Eq. (17) vanishes, and m(r) and n(r) are
found as36

m~r ! 5 cosh@F exp~2r2!#, (23)

n~r ! 5 sinh@F exp~2r2!#, (24)

where F 5 gl/z0 5 kluAp0u. Inserting m(r) and n(r)
into Eq. (22) yields the maximum amplitude squeezing27:

S 5 1/min$F~u!% 5
2@1 2 exp~22F!#

1 2 exp~24F!
. (25)

This maximum squeezing occurs at u 5 2p/2, as in the
plane-wave theory. As the pump power increases, the
squeezing level increases monotonically; in the limit as
the pump power goes to infinity (F → `), the squeezing
level asymptotically reaches 3 dB. The transverse gain
variation that results from the Gaussian pump profile re-
sults in higher squeezing at the center and lower squeez-
ing at the tails of the beam. Integration over the trans-
verse plane results in the 3-dB limit on the maximum
obtainable amplitude squeezing.

B. Weak-Focusing Limit
The weak-focusing limit where l/z0 ! 1 was analyzed by
Li et al.27 In this analysis, an approximate solution for
As(r, z) was obtained by use of a perturbative method in

F 5

E $um~r ! 2 i exp~iu!n~r !u4 1 4 Im2@2i exp~iu!m* ~r !n

E um~r ! 2 i exp~iu!n~r !u2uG0~r, j0!u2r
terms of powers of l/z0 . The results of this analysis were
instrumental in bringing out the importance of GID ef-
fects, where the nonuniform gain distribution that is due
to the transverse Gaussian pump profile results in a dis-
tortion of the signal phase fronts. As a result, it becomes
impossible to maintain the same phase difference be-
tween the pump and the signal fields along the whole
transverse plane. Consequently, different portions of the
signal beam experience different levels of amplitude
squeezing or amplitude desqueezing, depending on the
exact local phase difference. The overall effect, inte-
grated over both the axial and the transverse dimensions,
results in a net amount of squeezing that is always less
than 3 dB.27 However, the solutions in this formulation
are found only to the second order in l/z0 , and hence the
validity of this model is limited to l/z0 ! 1. Further-
more, for this model there is an important misconception
that the maximum amplitude squeezing occurs when
u 5 2p/2, the plane-wave theoretical value.

C. General Solution
Our model presented in this paper allows us to calculate
the squeezing level for arbitrary values of l/z0 and u.
The results of our model show that it is possible to break
the 3-dB limit in the tight-focusing regime by a careful
choice of the initial phase difference and pump power. In
our approach we solve Eq. (17) by numerical techniques.34

Here the signal mode is expressed as the sum of an infi-
nite number of Laguerre–Gaussian beams in cylindrical
coordinates (r, w, j). As the configuration at hand has
cylindrical symmetry, only the cylindrically symmetric
modes are taken into account. When this is done, the
partial differential equation that describes the evolution
of the signal field can be written as an ordinary differen-
tial equation in matrix form.34 This new form of the
equation is useful not only because it is more suitable for
numerical techniques but also because it provides better
physical insight into the processes involved. Using this
model, we determine the maximum possible amplitude
squeezing that can be generated with a Gaussian-beam-
pumped DOPA.

First we write the complex amplitude of the signal field
as

As~r, j! 5 (
n50

`

An~j!Gn~r, j!, (26)

where An is the complex amplitude of the nth cylindri-
cally symmetric Laguerre–Gaussian mode:

Gn~r, j! 5 LnS r2

1 1 4j2D 1

1 2 i2j

3 expS 2r2/2

1 2 i2j
D exp~i2n tan21 2j!,

(27)

%uG0~r, j0!u2rdr
. (22)
~r !#

dr
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where Ln is the nth-order Laguerre polynomial. Using
this mode expansion, we represent As as a vector A whose
elements are the coefficients An of this expansion. The
solution of Eq. (17) can now be written in matrix form as34

A~j0! 5 MA~2j0! 2 i exp~ifp!NA* ~2j0!, (28)

where M(g, j0) and N(g, j0) are state transition matrices
that relate the output to the input signal field. The ele-
ments of M and N are calculated numerically by finite-
difference techniques; the details of these calculations can
be found in Ref. 34.

For the case at hand, the input signal consists of the
fundamental mode only; i.e., As(r, 2j0) 5 A0(2j0)
3 G0(r, 2j0). With this equation, Eq. (26) becomes

As~r, j0! 5 G0~r, j0!(
n50

`

LnS r2

1 1 4j0
2D

3 exp~i2n tan21 2j0!Mn0A0~2j0!

1 G0~r, j0!(
n50

`

LnS r2

1 1 4j0
2D

3 exp~i2n tan21 2j0!Nn0A0* ~2j0!. (29)

Once M and N are calculated as detailed in Ref. 34, Eqs.
(16) and (19) are compared with Eq. (29) to yield m(r) and
n(r) as

m~r ! 5 (
n50

`

LnS r2

1 1 4j0
2D exp~i2n tan21 2j0!Mn0 , (30)

n~r ! 5 (
n50

`

LnS r2

1 1 4j0
2D exp~i2n tan21 2j0!Nn0 . (31)

We use these equations in turn to calculate the Fano fac-
tor at the output from Eq. (22).

D. Error Analysis
Determining the Fano factor involves two separate nu-
merical calculations: First the elements of the matrices
M and N are found, and then the integrals in Eq. (22) are
evaluated. It is important to examine various sources of
numerical error in these calculations.

The first source of error stems from the finite step size
in the variable j when finite differencing is used to calcu-
late the elements of M and N. This error is analyzed in
detail in Ref. 34. For our calculations we chose the step
size such that the errors in the amplitudes of the ele-
ments of M and N were less than 5 3 1024.

The second source of error comes from truncating the
infinite summation of Eq. (26) and the matrices M and N.
Inasmuch as the input signal consists of the fundamental
mode only, considering a finite number of higher-order
modes at the output is sufficient to represent the signal
with negligible error. In our calculations we truncate the
modal expansion of Eq. (26) at 20 modes, and the matrices
M and N at 20 3 20 size. It turns out that this truncated
equation is sufficient to represent the signal field at the
output with an error that is a few orders of magnitude
less than that which is due to the finite step size.34

The third source of error is due to truncating the sum-
mations in Eqs. (30) and (31) at 20 terms. As a conse-
quence, the functions m(r) and n(r) are accurately known
only for a limited radial range 0 , r , rmax . We can de-
termine the value of rmax by examining the signal mode
amplitudes at the output. We found that the exact value
of rmax depends on various DOPA parameters; however, it
is always greater than 5A1 1 4j0

2. Compared with the
other sources of error, this one is relatively small because
the fraction of the signal power that lies outside the
r 5 rmax circle is orders of magnitude less than the error
induced by the finite step size.

The last source of error is due to the integrations in Eq.
(22). These integrals are calculated numerically from
trapezoidal integration. However, as the values of the
function inside the integral is known for all values of r,
the finite step size in r may be chosen small enough that
the error that is due to the finite step size is a few orders
of magnitude less than the other errors.

In our calculations, the collective effect of all four
sources of error results in an error in the Fano factor that
is less than 0.3% (0.013 dB).

3. RESULTS AND DISCUSSION
The formulation outlined in Section 2 allows us to calcu-
late the Fano factor for arbitrary values of u, g, and l/z0 .
That the constant,

g 5 kz0uAp0u 5
2de

nc2 S 2v3z0Pp

pe0
D 1/2

, (32)

is proportional to the effective nonlinear coefficient de ,
and the square root of the pump power Pp
5 pz0c2e0uAp0u2/8v, is a measure of how strongly the
DOPA is pumped.34 The ratio l/z0 is a measure of how
tightly the pump beam is focused onto the crystal.

As an example of the results of our formulation, Fig. 1
shows a contour plot of the Fano factor as a function of g
and u while l/z0 is kept constant at a value of 1.5. The
minimum Fano factor of 24.61 dB is marked by a cross in
the figure. Note that the phase difference u 5 um at
which the minimum Fano factor (maximum amplitude
squeezing) occurs is significantly different from 2p/2. At
any fixed value of u, however, there is an optimal value of
g that minimizes the Fano factor. Increasing g further
from this optimal value increases the Fano factor (de-
creases squeezing) as a result of increased GID effects.

From an experimental point of view, it is more relevant
to investigate the nonlinear drive, defined as

D 5 S 8v

pc2e0
D ~k2lPp! 5 S l

z0
D g2, (33)

than g.34 In a typical experimental setting, the maxi-
mum available D is limited by laser power Pp , crystal
length l, and effective nonlinear coefficient de . It is usu-
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ally possible to adjust the value of z0 , and hence that of
l/z0 , by changing the focused spot size of the pump and
the signal beams.

Another important quantity in our calculations is the
sensitivity of the Fano factor to fluctuations in the phase

Fig. 1. Contour plot of the Fano factor as a function of u and g
for l/z0 5 1.5. The minimum Fano factor of 24.61 dB is marked
3.

Fig. 2. (a) Maximum squeezing Smax 5 1/min$F(u, g)%, (b) re-
quired nonlinear drive D, (c) optimal phase difference um , and
(d) normalized 10% (0.41-dB) phase width d, all as functions of
l/z0 .
difference u about its optimal point at um . In an experi-
ment, the phase difference between the pump and the sig-
nal fluctuated in time by a certain amount, even when ac-
tive stabilization was employed, resulting in a
degradation of the maximum observed amplitude
squeezing.25,27 We define the normalized 10% (0.41 dB)
phase width of the Fano factor as d 5 Du/2p, where Du is
the full width at 1.1 3 min$F(u)%. In an experiment, if
the phase fluctuations became larger than d, the maxi-
mum squeezing that could be achieved began to deviate
significantly from 1/min$F%. Therefore it is desirable to
operate at a large value of d.

To determine the maximum possible amplitude squeez-
ing for a given value of l/z0 we compute the u and g values
that minimize the Fano factor by using numerical optimi-
zation algorithms. Figure 2 shows the maximum pos-
sible squeezing @S 5 1/min$F(u, g)%# as a function of l/z0 .
The optimal u and D values that maximize squeezing at
each l/z0 value are also included in the figure. Note that,
for each l/z0 value, D and g are related through Eq. (33).
The normalized phase width d is also included in the
figure.

In the weak-focusing regime where l/z0 ! 1, the
squeezing level is close to 3 dB and the phase difference
that maximizes squeezing level um is close to 2p/2.
These values are as expected because GID effects are
small in this regime. Note that the normalized phase
width d is relatively narrow (less than 1022 for l/z0
, 0.03) and that the nonlinear drive D required for
maximum squeezing is quite high. In this region, de-
creasing l/z0 to obtain better squeezing is useless because
the required nonlinear drive increases exponentially,
whereas the maximum possible squeezing approaches 3
dB asymptotically.

As l/z0 is increased from zero, the maximum possible
squeezing decreases to l/z0 5 0.25, whereas um deviates
from 2p/2 and the required D decreases. However, for
l/z0 . 0.25, squeezing begins to increase while the re-
quired D levels off at ;1 dB. Even though d begins to de-
crease from its maximum value near l/z0 5 0.3, it never-
theless stays relatively high. In the range 0.9 , l/z0
, 4.0, the 3-dB limit is clearly surpassed. In this re-
gime, um is significantly different from 2p/2, and d stays
greater than ;1022. The highest squeezing is 4.65 dB
and occurs at l/z0 5 1.6, where the optimal D value is 4
dB, and d 5 1.6 3 1022.

It is clear that working in the 1.2 , l/z0 , 2.1 focusing
range is much more advantageous than working in the
weak-focusing regime. In this tight-focusing regime it is
possible to obtain amplitude-squeezing levels in excess of
4 dB with much lower nonlinear drive and better phase
stability.

4. HIGHER SQUEEZING WITH LINEAR
SPATIAL FILTERING
The amplitude-squeezed output signal beam exhibits a
radial dependence of the squeezing level on the trans-
verse plane, as indicated by Eqs. (20), (30), and (31).
Therefore it is possible to obtain higher levels of net
squeezing through linear spatial filtering of this beam,
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which we can do simply by placing a pinhole that is cen-
tered on the signal beam at the output of the DOPA. The
pinhole transmits the higher-squeezed central portion of
the signal beam and blocks the lower-squeezed tails. The
net effect, integrated over the transverse plane, is an en-
hancement of overall squeezing.

It seems counterintuitive to enhance squeezing by in-
troducing some kind of linear loss. In general, at any
transverse point on the output signal beam the squeezing
level is related to all the annihilation operators that cor-
respond to all the points along the transverse plane at the
input. However, the perfect spatial coherence of the in-
put signal beam allows us to represent the input as a
single annihilation operator multiplied by a Gaussian
profile. Consequently it is possible to define amplitude
squeezing point by point along the transverse plane at the
output.

It is convenient to represent the radius of the filtering
pinhole in terms of the radius of the pump beam at the
output of the DOPA. For a pinhole of physical radius
rph , the normalized pinhole radius is defined as Rph

5 rph /Wp , where Wp 5 W0A1 1 4j0
2 is the physical ra-

dius of the pump beam at the output plane. When we de-
fine a new variable, R 5 r/A1 1 4j0

2, Eqs. (30) and (31)
become

m~R ! 5 (
n50

`

Ln~R2!exp~i2n tan21 2j0!Mn0 , (34)

n~R ! 5 (
n50

`

Ln~R2!exp~i2n tan21 2j0!Nn0 ,

(35)

and we can rewrite Eq. (22) as

It is now straightforward to calculate the Fano factor
of the filtered beam by limiting the boundaries of the
integrals in Eq. (36) to the normalized pinhole radius
Rph .

Figure 3 shows our results for two values, Rph 5 1 and
Rph 5 2, of the normalized pinhole radius. In these cal-
culations the Fano factor is optimized in g and u after the
integration boundaries are limited to Rph . Note that a
dramatic improvement in squeezing is achieved as the
pinhole radius is decreased. For the wider pinhole (Rph
5 2), which transmits 96% of the total signal beam
power, the maximum squeezing is 7.45 dB at l/z0
5 1.54. It is surprising that only a 4% power loss re-
sults in 2.8-dB-higher squeezing. The narrower pinhole
(Rph 5 1), on the other hand, transmits 47% of the signal
power and results in a maximum squeezing of 12.4 dB at
l/z0 5 1.86. Clearly, the reduced output power is not a
big penalty to pay for the increase in squeezing. Simi-

F 5

E $um~R ! 2 i exp~iu!n~R !u4 1 4 Im2@2i exp~iu!m* ~R

E um~R ! 2 i exp~iu!n~R !u2exp~2R2!
larly, the increase in the required nonlinear drive is
within acceptable limits.

The actual price paid for increasing the squeezing level
by spatial filtering is the increased phase sensitivity
shown in Fig. 3. For this reason it is not possible to de-
crease the pinhole radius indefinitely to increase squeez-
ing. However, the phase width of the wider pinhole in
Fig. 3 is still acceptably large at d 5 3.8 3 1023. It may
be possible to find an optimal pinhole radius for a given
phase jitter in an experimental setting.

In the weak-focusing regime, the required nonlinear
drive and the optimal phase difference are not much in-
fluenced by changes in the pinhole radius, whereas
squeezing increases dramatically with increased pinhole
radius. Therefore spatial filtering is useful in this re-
gime as well.

In the no-diffraction limit (l/z0 → 0) and from Eqs.
(22)–(24), the Fano factor is found to be

Fig. 3. (a) Maximum squeezing Smax 5 1/min$F(u, g)%, (b) re-
quired nonlinear drive D, (c) optimal phase difference um , and
(d) normalized 10% (0.41-dB) phase width d, all as functions of
l/z0 for normalized pinhole radius Rph 5 2 (thicker curves) and
Rph 5 1 (thinner curves).

!#%exp~2R2!RdR
. (36)
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F 5
exp@24F exp~2Rph

2!# 2 exp~24F!

2$exp@22F exp~2Rph
2!# 2 exp~22F!%

. (37)

Equation (37) reveals that the 3-dB limit for the case
with no pinhole (Rph → `) disappears when a pinhole is
used.

5. CONCLUSIONS
In conclusion, we have shown that amplitude squeezing
in excess of 4 dB can be generated in a practical experi-
ment based on a Gaussian-beam-pumped degenerate op-
tical parameter amplifier. In such an experiment it is
critical to adjust the focused spot size of the pump beam
such that the crystal length–to–confocal parameter ratio
is close to 1.6. It is also crucial to adjust the pump power
to reach the maximum possible squeezing level. The
maximum required pump power and crystal length, how-
ever, are much lower than they would have to be in a com-
parable weak-focusing setup. Furthermore, working in
the tight-focusing regime requires much less phase stabil-
ity between the pump and the input signal beams. Aside
from these differences, the DOPA crystal should prefer-
ably be noncritically phase matched and have a large ac-
ceptance angle. When these requirements are satisfied,
a Gaussian-beam DOPA is an attractive device for gener-
ating high-power broadband amplitude-squeezed light at
room temperature. When the DOPA is combined with
linear spatial filtering with a simple pinhole at the out-
put, relatively high levels of amplitude squeezing are pos-
sible.

O. Aytür’s e-mail address is aytur@ee.bilkent.edu.tr.
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