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Abstract—This paper presents a theoretical analysis of self-
doubling optical parametric oscillators (OPO’s) where a single
nonlinear crystal is used for both parametric generation and
frequency doubling. In these devices, the parametric generation
and frequency-doubling processes are both phase matched for
the same direction of propagation inside the crystal. Differ-
ent polarization geometries for which this simultaneous phase-
matching condition can potentially be satisfied are identified and
categorized. Plane-wave coupled-mode equations are presented
for each of these categories. Numerical solutions of these coupled-
mode equations and calculation of the single-pass saturated signal
gain are outlined. Intracavity signal photon flux calculations
based on these numerical solutions are presented. The dependence
of performance measures such as the photon conversion efficiency
on various design parameters are investigated.

Index Terms—Nonlinear frequency conversion, optical para-
metric oscillators, parametric devices, second-harmonic genera-
tion.

I. INTRODUCTION

OPTICAL parametric oscillators (OPO’s) are widely used
for tunable wavelength conversion of lasers to previously

unavailable wavelength ranges [1]–[3]. By itself, an OPO
can only provide downconversion to longer wavelengths.
Upconversion to shorter wavelengths is achieved with the use
of a second nonlinear element for frequency doubling [4] or
sum-frequency generation [5]. This second nonlinear crystal
is usually internal to the OPO cavity to take advantage of
the high intracavity field intensities. The plane-wave theory of
these two-crystal intracavity upconversion OPO’s have been
studied extensively [6]–[8]. Recently, a self-doubling OPO
that employs asingle nonlinear crystal for both parametric
generation and frequency doubling has been reported [9]. This
new device provides a highly efficient scheme for frequency
upconversion of lasers. In this paper, we present a plane-wave
theory of the self-doubling OPO.

II. SECOND-ORDER NONLINEAR INTERACTIONS

A second-order nonlinearity results in the coupled
interaction of three fields whose frequencies are related by

[10]. For collinear monochromatic plane waves

(1)

with complex field amplitudes the coupled-mode equa-
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tions that describe this interaction (under the slowly varying
envelope approximation) are [11]

(2)

(3)

(4)

where is the effective nonlinear coefficient, are the
refractive indices, and is the wavevector
mismatch. The initial conditions at the input facet of the
nonlinear crystal determine whether the interaction results
in second-harmonic, sum-frequency, difference-frequency, or
parametric generation.

The phase (wavevector) mismatch plays an important
role in all of these interactions. When is different from
zero, momentum conservation is violated and the interactions
become very weak [10]. The phase-matching condition,

has to be satisfied for efficient conversion of energy from
one frequency to the other. Phase matching is mostly achieved
by utilizing the natural birefringence of nonlinear crystals [12],
[13].

A pump field at and a signal field at at the input result
in an optical parametric amplifier (OPA), where the signal gets
amplified and, in the process, an idler field at is generated
[11]. The parametric gain experienced by the signal field is
subject to saturation as the pump and signal fields become
comparable in intensity. A singly resonant OPO is constructed
by placing the OPA inside a cavity that is resonant at the signal
frequency. Oscillation starts if the unsaturated gain is higher
than all cavity losses combined. The intracavity signal intensity
assumes such a value that the saturated gain compensates for
the cavity losses exactly. A partially reflecting mirror is usually
employed for coupling the signal out of the cavity. The idler
leaves the cavity through a dichroic beamsplitter that is highly
transmitting at the idler frequency.

In an OPA, the lack of an idler field at the input of the crystal
results in field solutions whose intensities are independent of
the relative phase of the pump and the signal. This results
in the well-known robust behavior of singly resonant OPO’s,
where the generated idler adjusts its phase to compensate for
the phase fluctuations in the input pump and signal beams.
Utilizing this freedom in the choice of initial phases, it is
possible to convert the three coupled-mode equations for the
complex field amplitudes to three real equations.
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It is convenient to define normalized and real field am-
plitudes such that represent the photon flux
densities at each frequency . In doing this, we choose the
phases of such that the required phase relation for the OPA
is satisfied and define the real and normalized amplitudes
through

and

The coupled-mode equations for the normalized field ampli-
tudes (under phase-matched conditions) can be written in the
form

(5)

(6)

(7)

where the coupling constant is defined as

(8)

In the case of second-harmonic generation (SHG), one has
the fundamental field at and the second-
harmonic field at . Depending on the type of phase
matching that is utilized, and may or may not be
distinguishable from each other. In type-I phase matching,
the two fields are degenerate in every aspect and are indis-
tinguishable. This degeneracy reduces the number of coupled
mode equations to two [10]:

(9)

(10)

with the coupling constant

(11)

where is the fundamental at is the second-harmonic
at and . As in the OPA case, the lack of a
second-harmonic field at the input allows us to write the
coupled-mode equations for real field amplitudes, where

and In type-II
phase matching, and have orthogonal polarizations and,
thus, are nondegenerate in polarization. The coupled-mode
equations for this case are

(12)

(13)

(14)

Fig. 1. Polarization diagrams for all possible self-doubling geometries. The
fast axis is horizontal and the slow axis is vertical. Polarizations for the pump
(p), signal (s), idler (i), polarization rotated signal (rs), and frequency-doubled
signal (ds) are shown. Intracavity polarization rotation is indicated with an
arc where required.

TABLE I
POTENTIAL PHASE-MATCHING GEOMETRIES FOR THESELF-DOUBLING OPO

Normal dispersion is assumed. The fast and
slow axes are denoted byf and s, respec-
tively.

where and are the orthogonally polarized components
of the fundamental at and is the second-harmonic at

. Ordinarily, maximum conversion to the second-harmonic
takes place if the two orthogonal polarizations have the same
photon flux density. Therefore, the usual practice is to orient a
linearly polarized fundamental field at a 45angle to the two
eigen-polarization directions.

III. T HE SELF-DOUBLING OPO

The self-doubling OPO is based on the premise that both
parametric generation and frequency doubling can be phase
matched for the same direction of propagation inside the
nonlinear crystal. This may happen in a number of different
polarization geometries, depending on the types of OPO and
SHG phase matching. Some of these geometries require an
intracavity polarization rotation for the signal field while others
do not.

Table I and Fig. 1 together summarize all polarization
geometries that can potentially be phase matched for a self-
doubling OPO. We follow the convention that the fields are
labeled according to [13]. The field at is
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the OPO pump, since this is the highest frequency OPO field.
The assignment of the “signal” label to or is somewhat
arbitrary. In this paper, the resonant field in the OPO cavity,
which also constitutes the fundamental field for the SHG
process, is called the “signal.” For frequency upconversion
with the self-doubling OPO, the signal field has to be at
so that can be satisfied.

For materials exhibiting normal dispersion, the highest
frequency fields of both interactions and have to be
polarized along the fast axis of the crystal. In a type-I OPO,
both the signal and the idler are polarized along the slow axis,
whereas in a type-II (III) OPO, the signal is along the slow
(fast) axis and the idler is along the fast (slow) axis. Type-I
SHG has the fundamental along the slow axis, whereas type-II
SHG has a fundamental component along both the fast and the
slow axes. There is no type-III interaction for SHG since this
process is degenerate in frequency.

There are six possible cases corresponding to different
combinations of phase-matching types for the OPO and SHG,
as shown in Table I and Fig. 1. For each case, the respective
coupling constants and that govern the parametric
and second-harmonic processes depend on the phase-matched
frequencies, the refractive indices, and the effective nonlinear
coefficients. The ratio of the two coupling constants

is an important quantity that may assume a range of
values depending on these parameters. Here, the relative mag-
nitudes of the frequencies and effective nonlinear coefficients
are of particular importance. If the OPO and SHG processes
are of the same phase-matching type (cases 1, 5, and 6), the
effective nonlinear coefficients differ only due to dispersion
[13]. However, for different phase-matching types (cases 2–4)
the effective nonlinear coefficients may be dramatically dif-
ferent from each other, since they have different functional
dependences on the elements of the second-order nonlinear
tensor.

In cases 1 and 2, the polarization of the OPO signal is
the same as that of the SHG fundamental. As a result, the
signal field is common to the OPO and SHG processes, which
become coupled to each other through the signal field. The set
of coupled mode equations that describe this interaction are

(15)

(16)

(17)

(18)

where and are the coupling constants for the parametric
generation and second-harmonic generation processes, respec-
tively. We arrive at these equations by combining the OPO
equations [(5)–(7)] with the type-I SHG equations [(9)–(10)].
The signal and the fundamental are the same field mode;
the rate of change of this mode is the sum of the rates of
change of the signal and the fundamental fields separately. The
same result can be obtained by considering the total nonlinear
polarization field at and rederiving the coupled-mode

equations. Note that the only difference between cases 1
and 2, other than possibly having differentvalues, is the
polarization direction of the idler, which is irrelevant to the
self-doubling process. Therefore, the same set of coupled mode
equations govern both cases. We designate this self-doubling
OPO process as class A.

In case 3, the polarization of the OPO signal is orthogonal
to that of the SHG fundamental. However, an intracavity
polarization rotation allows the same crystal to be used for
both processes at the same time. During each round trip in
the cavity, the polarization of the signal field is rotated by a
certain amount, resulting in an additional linear loss for the
linearly polarized signal mode, but creating a field component
for the SHG fundamental. However, the two processes are
not coupled in the crystal as they are in class-A interactions,
and the coupled-mode equations that govern this self-doubling
OPO are simply (5)–(7) and (9)–(10). We designate this self-
doubling OPO as class B.

In cases 4–6, SHG is a type-II process, requiring a fun-
damental field along both the fast and the slow axes. The
OPO signal is common to either one or the other of these two
components, regardless of the type of OPO phase matching. As
a result, the two processes are coupled to each other through
the signal field, as in class-A self-doubling OPO’s. However in
the present case, the coupling is through only one polarization
component of the fundamental. An intracavity polarization
rotation of the signal field is required for SHG to take place.
The set of coupled mode equations that describe all three cases
are

(19)

(20)

(21)

(22)

(23)

We designate this self-doubling OPO process as class C. The
only difference between cases 4 and 5 is the polarization
direction of the idler. In case 6, the polarization direction of
the signal and the rotated signal are interchanged (with respect
to those in cases 4 and 5), but this makes no difference in the
equations since the SHG process is symmetric to this change.

In ordinary three-wave mixing, as described by (5)–(7),
Manley–Rowe relations state that the quantities and

are conserved throughout the interaction [10]. It is
possible to formulate similar conservation laws for the self-
doubling OPO’s. For class-A OPO’s, the quantities
and are conserved. Similarly, for class-C
OPO’s, the quantities and
are conserved.

IV. SOLUTIONS

In order to analyze the performance of self-doubling OPO’s,
it is necessary to calculate the single-pass saturated parametric
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(a) (b)

(c) (d)

Fig. 2. Single-pass solutions for a class-A self-doubling OPA for different input signal photon flux densities�2(0). (a) 10�4�3(0). (b) 10�2�3(0). (c)
0:25�3(0). (d) 0:8�3(0). The evolution of the pump (p), signal (s), idler (i), and frequency-doubled signal (ds) fields are shown as functions of the normalized
propagation distance� in the crystal. In all cases� = 1.5. All fields are shown normalized to the input pump flux.

gain experienced by the signal field. Analytical solutions of
class-B equations are readily available in the form of OPA
and SHG solutions separately, since the two processes are not
coupled in the crystal. These are the well-known OPA and
SHG solutions in terms of Jacobi elliptic functions [11] and
hyperbolic functions [10], respectively. For class-A and class-
C self-doubling OPO’s, however, we resorted to numerical
techniques to solve the coupled mode equations. These so-
lutions were computed using forward finite differencing and
variable step Runge–Kutta integration. These two methods
were implemented independently to verify the results against
each other.

We first used forward finite differencing of complex field
amplitudes to compute the evolution of the fields in a single
pass through the nonlinear crystal. We found that the single-
pass solutions of complex class-A and class-C coupled-mode
equations are phase insensitive if no idler or second-harmonic
is present at the crystal input. This expected behavior justifies
our converting the complex coupled-mode equations to real
equations. We solved the set of real equations using the
Runge–Kutta–Fehlberg method, and verified these solutions
with our previous results obtained from finite differencing of
complex field amplitudes.

In our calculations, the order of magnitude of most physical
parameters are either based on the experiment reported by
Kartalŏglu et al. [9], or some estimate as to what range of
values they are more likely to be in. However, our aim here
is not to model this experiment accurately, but to bring out
the fundamental properties of self-doubling OPO’s using a
simple continuous-wave monochromatic plane-wave theory.

Our analysis does not take into account many experimental
realities such as the Gaussian beam nature of the fields,
the temporal profile of the pulses, group velocity mismatch
between field components, group velocity dispersion, or beam
walk-off.

A. Class-A Self-Doubling OPO’s

Fig. 2 shows single-pass solutions for a specific class-A self-
doubling OPA as an example. The evolution of the photon flux
densities for the pump, signal, idler, and frequency-doubled
signal fields along the direction of propagation inside the
crystal are shown for different levels of signal input. We follow
convention and define a dimensionless normalized propagation
distance to present the results more generally
[6]. For this example, we have taken 1.5. All photon
flux densities are normalized to the input pump photon flux
density .

In Fig. 2(a), the input signal flux is . We
observe that for low input signal flux levels like this, the OPA
process dominates the interaction at smaller values of. In this
region, the signal experiences gain without much saturation.
The pump is depleted by 10% at 4.2. There is not much
SHG up to this point since the signal
flux is not high enough for efficient conversion. However, the
SHG process begins to show its influence at larger values of

as the signal flux further increases. This increase becomes
more gradual because of gain saturation (pump depletion) and
conversion to the second-harmonic, and reaches a maximum
at 5.6. At this point, the pump is depleted by 79.5%
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and the second-harmonic flux is 14.0% of the input pump
flux. From then on, the signal decreases due to SHG, but still
draws energy from the pump. The pump is fully depleted at

6.3, after which there is a small amount of backconversion
of the signal and the idler to the pump. The pump flux reaches
8.2% of its value at the input and then begins to decrease
again, with a corresponding increase in the signal and idler
flux. At some point 10, the pump is fully depleted again.
However, this oscillatory ringing behavior dies out and the
interaction stops, the entire pump being converted to the idler
and the second-harmonic. Neglecting the contribution of the
input signal, for every two pump photons at the input, there
are two idler photons and one second-harmonic photon at the
output.

Increasing the input signal flux [to in Fig. 2(b)]
shifts the entire process in the negativedirection. The evolu-
tion of the field components are not altered in any appreciable
way until the input signal level increases to a value that is a
significant fraction of the pump. Fig. 2(c) shows the evolution
of the fields for an input signal flux of . We observe
that the SHG process starts drawing energy from the signal
right away. Also, the ringing behavior due to backconversion
gets smaller in amplitude with increasing input signal flux.
When the input signal level is increased further [to
in Fig. 2(d)], the SHG process dominates the interaction from
the beginning. For an input signal flux exceeding 89% of the
input pump flux, the signal flux decreases monotonically for
all values of .

The parameter is a measure of the prominence of the SHG
process over the OPA process. Its value is an important factor
influencing the behavior of the solutions. With decreasing
the effect of SHG becomes less, and the ringing behavior due
to the OPA process increases in amplitude, total conversion to
the second-harmonic occuring farther in the crystal. Increasing

has the opposite effect of decreasing the ringing behavior.
For a fixed crystal length the gain of an ordinary

OPA is fully characterized by the dimensionless parameter
called the nonlinear drive [6], [7]. However, in

a self-doubling OPO, the net gain experienced by the signal
field is clearly influenced by both the OPA and SHG processes.
Fig. 3 shows the net parametric gainas a function of the
input signal flux [normalized to the input pump flux
for various values of while the nonlinear drive is fixed at a
value of 1. The unsaturated (small-signal) gain is independent
of and has a value of 2.38 (3.77 dB) for the given nonlinear
drive. The gain decreases from this value as the input signal
flux is increased, and eventually becomes less than unity (0
dB) for nonzero . This behavior is in stark contrast to an
ordinary OPA which never has a gain that is less
than unity and saturates more gradually with increasing signal
input.

A singly resonant self-doubling OPO is constructed by
placing the nonlinear crystal inside a cavity that is resonant at
the signal frequency. The pump field enters the cavity through
a dichroic mirror that is highly transmissive at that wavelength.
The cavity will typically have a few percent of linear loss

due to less than unity reflectivities of the cavity mirrors,
imperfect antireflection coatings on the nonlinear crystal, and

Fig. 3. Saturation of parametric gain with input signal flux�2(0) in class-A
self-doubling OPA’s for various values of� at a fixed nonlinear drive of 1.

other transmissive optics. Oscillation starts if the unsaturated
gain is higher than the total cavity losses. The intracavity signal
flux assumes such a value that the saturated gain compensates
for the cavity losses exactly. This intracavity signal flux is
found by solving

(24)

numerically for . This is equivalent to finding the inter-
section of the gain saturation curve of Fig. 3 with a horizontal
line of value (in decibels). Once the signal flux
at the input of the crystal is known, all other fields can be
calculated using single-pass solutions.

In our calculations, we take the total cavity lossto be 4%.
For this value, the signal flux at the input of the crystal is found
to be (with a nonlinear drive of 1 and 1.5).
Fig. 4 shows the evolution of the fields inside the crystal as
a function of the normalized propagation distance under these
circumstances. All fields are shown normalized to the input
pump photon flux. The signal flux starts from 64.4%, goes
through a maximum of 69.3%, and then at the output facet
decreases to 67.0% of the input pump flux, experiencing a net
gain of 1.042. The second-harmonic flux at the output of the
crystal is 25.4% of the input pump flux. The second-harmonic
is readily coupled out of the cavity with the use of a dichroic
cavity mirror that is highly transmissive at this wavelength.
The pump is depleted by 53.4%; and the output idler field,
which is also coupled out of the cavity with a dichroic mirror,
has a photon flux that is 53.4% of the input pump flux.

The performance of the self-doubling OPO is character-
ized by the photon conversion efficiency, the ratio of twice
the output second-harmonic flux to the input pump flux,

since two pump photons are needed to gen-
erate one second-harmonic photon. The conversion efficiency
represents the overall efficiency of the two-step process from
the pump to the signal to the second-harmonic, and is equal
to unity for the case of total conversion. The nonlinear drive
along with uniquely determine the conversion efficiency of
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Fig. 4. Evolution of the pump (p), signal (s), idler (i), and frequency-doubled
signal (ds) fields as functions of the normalized propagation distance� in the
crystal for a class-A self-doubling OPO. The nonlinear drive is 1,� = 1.5,
and linear cavity losses are taken to be 4%. All fields are shown normalized
to the input pump flux.

Fig. 5. Conversion efficiency as a function of the nonlinear drive for class-A
self-doubling OPO’s for various values of�.

the self-doubling OPO. Fig. 5 shows the dependence of the
conversion efficiency on the nonlinear drive for various values
of for a fixed cavity loss of 0.04. The threshold nonlinear
drive of this self-doubling OPO is 0.041 and independent of.
(This is equal to the threshold nonlinear drive of an ordinary
OPO with a signal output coupler reflectivity of
0.96.) Note that the conversion efficiency is very high for a
large range of the nonlinear drive, providedis not small
( 1.0).

Fig. 6 shows the nonlinear drive dependence of the ratio of
the intracavity signal flux to the input pump flux for various
values of . With increasing nonlinear drive, the ratio of
intracavity signal to the input pump increases first, reaches
a maximum, and starts decreasing after that. At a fixed value
of the nonlinear drive, a largerresults in a smaller intracavity
signal flux. This behavior is a result of the nonlinear output

Fig. 6. Intracavity signal flux (normalized to the input pump flux) as a
function of the nonlinear drive for class-A self-doubling OPO’s for various
values of�.

coupling mechanism through the SHG process and can also be
observed in Fig. 3. It is interesting to note that the intracavity
signal flux is always less than the input pump flux whenis
larger than 1.23.

We observe that near-quantum-limited wavelength upcon-
version is possible using a class-A self-doubling OPO. Even
though there is an optimum nonlinear drive for a particular
value of variations from this optimum have little effect
if is high ( 1, for example). This indicates that pulsed
self-doubling OPO’s pumped with beams having transverse
intensity variations are also likely to be efficient devices.
However, the optimum nonlinear drive required by interactions
having a large value may be difficult to attain. Low intracav-
ity signal flux levels reduce the risk of exceeding the damage
threshold of the nonlinear crystal in pulsed applications.

B. Class-B Self-Doubling OPO’s

In class-B self-doubling OPO’s, the OPA and SHG pro-
cesses are independent of each other, since the OPA signal and
the SHG fundamental have orthogonal polarizations. However,
an intracavity polarization rotation of the signal field with the
use of a half-wave retarder can couple the two processes and
allow frequency doubling to take place. For an intracavity
polarization rotation angle of a fraction of the signal
flux is coupled to the fundamental field mode. Consequently,
the signal field mode experiences an additional linear loss of

. At each pass through the crystal, the signal experi-
ences parametric gain, whereas the fundamental gets converted
to the second-harmonic. Here, we assume that the residual
fundamental at the output of the crystal is either coupled
out of the cavity with the use of a polarizing beamsplitter,
or negligible due to strong conversion. If instead both the
signal and the fundamental fields are resonated in the OPO
cavity, the polarization mixing at the retarder will result in the
interference of the two fields in an uncontrolled fashion.

As far as the OPO signal is concerned, the situation at
hand is the same as an ordinary OPO with an output coupler
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(a)

(b)

(c)

Fig. 7. Single-pass solutions for a class-C self-doubling OPA for different polarization rotation angles�: (a) 0�; (b) 30�; and (c) 40�. The evolution
of the pump (p), signal (s), idler (i), polarization rotated signal (rs), and frequency-doubled signal (ds) photon flux densities are shown as functions of
the normalized propagation distance� in the crystal. The total input flux at the signal wavelength is0:5�3(0) and � = 1.67 in all cases. All fields
are shown normalized to the input pump flux.

reflectivity of . The OPO signal experiences a
total linear loss of

(25)

where is the collective cavity loss due to less than unity
reflectivities of the mirrors and imperfect antireflection coat-
ings on the nonlinear crystal and other transmissive optics
such as the wave retarder and the polarizing beamsplitter.
There is no nonlinear output coupling in this situation, and the
intracavity signal flux is solely determined by the polarization
rotation angle and residual cavity losses . Even though
the SHG process is internal to the OPO cavity, it does not
benefit from high values of the intracavity signal flux. In effect,
this configuration is not different from external frequency
doubling of an ordinary OPO. As such, it is not expected to
be particularly efficient.

On the other hand, a different mode of operation is achieved
if the residual fundamental is not coupled out and the polariza-
tion rotation angle is set to 90. In this situation, the retarder
switches around the polarizations of the signal and the residual
fundamental, with no resulting interference due to polarization
mixing. The signal at the output of the crystal provides the
fundamental for SHG for the next round trip, whereas the
residual fundamental becomes the OPA input. Since the two
processes are not coupled in the crystal, this configuration
is conceptually equivalent to intracavity frequency doubling
of an ordinary OPO with a second crystal. The plane-wave

theory of such two crystal intracavity-doubled OPO’s has been
analyzed elsewhere previously [7].

C. Class-C Self-Doubling OPO’s

Class-C self-doubling OPO’s are characterized by a type-
II phase-matched SHG process, where the fundamental is
composed of two orthogonally polarized field modes. The
polarization of the OPO signal mode coincides with one of
these fundamental modes regardless of the type of OPO phase
matching. Since in principle there will be no SHG if both
fundamental polarizations are not present, a rotation of the
signal polarization inside the OPO cavity with the use of a
half-wave retarder is required to achieve frequency doubling.

In calculating the single-pass solutions of class-C coupled-
mode equations, we take the total linearly polarized input flux
at the signal (and fundamental) wavelength to be. We then
rotate the polarization of this input field by degrees such
that the input signal flux is and the input rotated
signal (fundamental) flux is . Fig. 7 shows single-
pass solutions for a specific class-C self-doubling OPA for
three different values of the polarization rotation angle.
For this example, we have taken and
1.67. The rotation angle is set to zero for the solutions
shown in Fig. 7(a). Since there is no polarization rotation,
only one of the two orthogonally polarized fundamental field
components is present at the input. The numerical solutions for
the evolution of the signal, idler, and pump fields reproduce
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(a) (b)

(c) (d)

Fig. 8. Saturation of parametric gain with total input flux�t in class-C self-doubling OPA’s for various values of the polarization rotation angle� and the
ratio of coupling constants�. (a) � = 0.5. (b)� = 1.0. (c) � = 1.5. (d)� = 3.0. The nonlinear drive is 1 in all cases.

the same well-known periodic solutions for an ordinary OPA
in terms of Jacobi elliptic functions [11].

Fig. 7(b) and (c) shows the evolution of the fields for
polarization rotation angles of 30and 40 respectively. We
observe that even though the evolution of the fields along
the direction of propagation is still oscillatory, polarization
rotation seems to destroy the periodic behavior seen in an
ordinary OPO ( 0 ). Furthermore, the minima and maxima
of various field modes do not occur at the same point in
either. The minima (maxima) of the second-harmonic coincide
with the maxima (minima) of the rotated signal; and the
minima (maxima) of the idler coincide with the maxima
(minima) of the pump, in accordance with the conservation
laws. However, the minima and maxima of the signal do not
coincide with the minima or maxima of any other field.

We have taken 1.67 in this example to illustrate
the seemingly nonperiodic behavior of the solutions. The
Manley–Rowe conserved quantities

and allow us to derive a
fourth conserved quantity and gain further insight into the

dependence of the solutions. It is possible to make the
transformations

and and substitute into (19) and
(23) to get

(26)

When integrated, this equation yields a fourth conserved
quantity which is equal to zero since

no idler or second-harmonic is present at the crystal input.
Using this relation and the Manley–Rowe relation for we
can reduce the coupled-mode equations to a single differential
equation

(27)

in the variable . If can be larger
than for any value of (which may be possible only if

the solution of (27) oscillates periodically around
zero. Otherwise, increases monotonically; the solution is
periodic only if has a rational value, and aperiodic otherwise.
If ( and being integers), then the pump (idler)
goes through number of minima (maxima), and the rotated
signal (second-harmonic) goes throughnumber of minima
(maxima), in a single period of the solutions. Unless bothand

are small integers, this periodic character cannot be observed
in just a few cycles of pump depletion and backconversion.

For a fixed value of the value of the polarization rotation
angle determines the degree of coupling between the OPA
and the SHG processes. As the signal field propagates through
the crystal, it experiences amplification due to parametric
generation and nonlinear loss due to SHG. The nonlinear SHG
loss depends on the photon flux density of the orthogonally
polarized fundamental mode, as well as the signal flux itself.
Furthermore, as far as the field component at the signal
polarization is concerned, polarization rotation results in an
additional linear loss factor. Therefore, we define the net
gain, including the effect of polarization rotation, as the ratio
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Fig. 9. Conversion efficiency, pump depletion, and intracavity signal flux
(normalized to the input pump flux), as functions of polarization rotation angle
� in a class-C self-doubling OPO. The nonlinear drive is 1 and� = 1.5.

of the output signal flux to the total input flux; .
We assume that the rotated signal component at the output is
either separated from the signal component with the use of a
polarizing beamsplitter, or strongly depleted.

Fig. 8 shows the net gain as a function of the total input flux
(normalized to the input pump flux) for different values of
and at a fixed nonlinear drive of 1. For 0 regardless of
the value of we have an ordinary OPA with a small-signal
gain of 2.38 (3.77 dB) that saturates with increasing input flux
and reaches unity around . When is
increased, the unsaturated gain decreases as because
of the extra linear loss that the signal field experiences. The
saturation behavior of the gain depends on the value of.
For smaller values of saturation is monotonic and more
rapid with increasing . Larger values of show more erratic
behavior, with regions of very gradual saturation and even
nonmonotonic character.

The intracavity signal flux for a class-C self-doubling OPO
at a constant value of is found by solving (24) using the
net gain shown in Fig. 8. Since the linear loss induced by
the polarization rotation is already included in the solution
for the net gain, represents all other linear cavity losses.
Fig. 9 shows the dependence of the intracavity signal flux,
conversion efficiency, and pump depletion to the polarization
rotation angle at a constant nonlinear drive of 1, 1.5,
and 0.04. The conversion efficiency starts out from zero
at 0 increases to 7.5% at 10.7 and becomes
zero again at 20.3 . Thereafter, the conversion efficiency
increases very rapidly to reach a maximum value of 78.5% at

28.6 and decreases again until the OPO goes below the
threshold at 48.6 . On the other hand, the pump depletion
starts at 27% at 0 and increases to unity at 26.6
and then decreases asis increased further. It is interesting
to note that maximum conversion does not occur at the same

as that for complete pump depletion. The intracavity signal
level is 6.2 times the input pump flux at 0 and decreases
monotonically with increasing . The OPO threshold is 4.1%

of the nonlinear drive at 0 and increases with because
of the extra linear losses induced by polarization rotation.

Fig. 10 shows the evolution of the fields at four different
values of for a nonlinear drive of 1, 1.5, and 0.04.
All fields are shown as normalized to the input pump photon
flux. Fig. 10(a) corresponds to the first smaller peak of the
conversion efficiency at 10.7 in Fig. 9. We observe that
the second-harmonic goes through a maximum at 0.44
inside the crystal, at which point the rotated signal is fully
depleted. The pump is fully depleted at 0.66 but increases
after that due to backconversion. The second-harmonic also
goes through a zero, which occurs at 0.87, and then at the
output increases to 3.8% of the input pump flux.

Fig. 10(b) shows the evolution of the fields at 20.3 the
angle at which conversion to the second-harmonic is zero. We
observe that the evolution of the fields has in general shifted
in the positive direction, and their amplitudes have changed
considerably. The pump is fully depleted at 0.76, and
the doubled signal reaches a maximum at 0.53 before
decreasing to zero at the crystal output. In Fig. 10(c),is set
to 26.6 the angle at which full pump depletion occurs. The
second-harmonic goes through its maximum at 0.69, and
decreases to 29.4% of the input pump flux at the output. Note
that a significant amount of rotated signal flux is present at the
output of the crystal. This flux is wasted since it is coupled
out of the cavity.

Fig. 10(d) corresponds to 28.6 the angle at which
there is maximum conversion to the second-harmonic. The
second-harmonic goes through a maximum at 0.85 inside
the crystal and decreases to 39.2% of the input pump flux at
the output. The pump depletion for this case is 90.6%. We
note that the amount of polarization rotation is critical for
the efficient operation of class-C self-doubling OPO’s. In a
practical device, can easily be adjusted to its optimum value
by rotating the intracavity half-wave retarder.

Fig. 11 shows the dependence of the conversion efficiency
and pump depletion on the nonlinear drive for different values
of . For each the rotation angle is adjusted to optimize
the conversion efficiency at a fixed nonlinear drive of 1. This
is kept fixed as the nonlinear drive is increased to generate the
curves of Fig. 11. Naturally, maximum conversion efficiency
occurs at a nonlinear drive very close to 1. However, the
conversion efficiency drops from its maximum value relatively
quickly as the nonlinear drive is changed, in contrast to class-
A self-doubling OPO’s (see Fig. 5). This sensitivity to the
nonlinear drive increases with increasing.

The intracavity signal flux and consequently the conversion
efficiency and pump depletion show discontinuities in their
nonlinear drive dependence at large values of. An example
of this is seen in Fig. 11(d) for 3. This behavior is
a consequence of the nonmonotonic behavior of the gain
saturation curve such as the one shown in Fig. 8(d). In general,
(24) can have multiple solutions, depending on the values of
the nonlinear drive, and . In Fig. 11, we always choose the
smallest of these solutions, assuming that the intracavity signal
builds up from noise to reach its steady-state value. However,
a hysteresis behavior can be observed in the intracavity signal
flux if the nonlinear drive is varied up and down.
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(a) (b)

(c) (d)

Fig. 10. Evolution of the pump (p), signal(s � 10); rotated signal (rs), idler (i), and doubled signal (ds) fields in the crystal, for different values of
the polarization rotation angle� for a class-C self-doubling OPO: (a)� = 10.7�, (b) � = 20.3�, (c) � = 26.6�, and (d)� = 28.6�. The nonlinear
drive is 1 and� = 1.5 in all cases.

(a) (b)

(c) (d)

Fig. 11. Conversion efficiency and pump depletion as functions of the nonlinear drive for class-C self-doubling OPO’s for different values of�: For each
� value, the rotation angle� is adjusted to maximize the conversion efficiency at a nonlinear drive of 1, yielding (a)� = 0.5, � = 24.1�; (b) � =
1.0, � = 24.8�; (c) � = 1.5, � = 28.8�; and (d) � = 3.0, � = 24.2�.

Fig. 12 shows the nonlinear drive dependence of the max-
imum conversion efficiency and the rotation angle at which
this maximum occurs, for various values ofThe conversion
efficiency increases steadily with increasing nonlinear drive,
reaches a plateau, and begins to decrease at very high drive

values. We observe that the conversion efficiency is close to
its maximum value for a large range of the nonlinear drive,
especially above a drive of 1. This saturation value for the
conversion efficiency depends onin a cyclical fashion, its
maxima occuring close to values that are odd integers. For
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(a) (b)

(c) (d)

Fig. 12. Maximum conversion efficiency and the polarization rotation angle at which maximum conversion occurs, as functions of the nonlinear drive for
class-C self-doubling OPO’s for various values of�: (a) � = 0.5, (b) � = 1.0, (c) � = 1.5, and (d)� = 3.0.

lower values of the rotation angle necessary for optimum
conversion increases monotonically with increasing nonlinear
drive, approaching 90. For high values [see Fig. 12(d)],
however, abrupt jumps in the optimumcan occur. The reason
for this behavior can be seen in the double peaked conversion
efficiency curve of Fig. 9; increasing the nonlinear drive has
the effect of decreasing the higher peak and increasing the
other, and the optimum makes a sudden jump when the two
peaks are equal in magnitude.

V. CONCLUSION

There are six different polarization geometries that can
potentially be phase matched for self-doubling OPO’s. These
polarization geometries can be categorized into three classes
depending on the coupled-mode equations that govern each
interaction. Class-A self-doubling OPO’s can be highly effi-
cient wavelength converters approaching the quantum limit.
Furthermore, they are not very sensitive to parameters such as
crystal length and pump intensity as long as the SHG inter-
action is strong. Intracavity polarization rotation is required
to achieve frequency-doubling in class-B and class-C self-
doubling OPO’s. However, class-B OPO’s are not expected
to be efficient, since the SHG fundamental does not have
a resonant component in the cavity. On the other hand, a
class-B configuration with 90polarization rotation results in
a situation analogous to intracavity doubling with a second
crystal. Class-C self-doubling OPO’s can be used for efficient
wavelength upconversion, as was experimentally demonstrated
by Kartalŏglu et al. [9]. Optimum operation can be assured
by adjusting the intracavity wave retarder in these OPO’s.
However, class-C OPO’s are more sensitive to variations in

pump intensity. A number of nonlinear crystals that satisfy the
simultaneous phase-matching for a variety of pump sources
can be identified. Extension of the self-doubling concept to
quasi-phase-matched crystals is another promising possibility.
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