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Abstract—This paper presents a theoretical analysis of self- tions that describe this interaction (under the slowly varying
doubling optical parametric oscillators (OPO’s) where a single envelope approximation) are [11]
nonlinear crystal is used for both parametric generation and
frequency doubling. In these devices, the parametric generation

and frequency-doubling processes are both phase matched for dbEy . wide Fo [t o—iAk= 5
the same direction of propagation inside the crystal. Differ- dz =-J nic 3Lno€ )
ent polarization geometries for which this simultaneous phase- dE wod '

matching condition can potentially be satisfied are identified and 2 _ —j 2% EgEfe_]AkZ (3)
categorized. Plane-wave coupled-mode equations are presented dz na2c

for each of these categories. Numerical solutions of these coupled- dEs . wade ARz

mode equations and calculation of the single-pass saturated signal dz =J nac EiEse (4)

gain are outlined. Intracavity signal photon flux calculations
based on these numerical solutions are presented. The dependence
of performance measures such as the photon conversion efficiencywhere d, is the effective nonlinear coefficient;,,, are the

on various design parameters are investigated. refractive indices, and\k = k3 — k; — ko is the wavevector

Index Terms—Nonlinear frequency conversion, optical para- Mismatch. The initial conditions at the input facet of the
metric oscillators, parametric devices, second-harmonic genera- nonlinear crystal determine whether the interaction results
tion. in second-harmonic, sum-frequency, difference-frequency, or
parametric generation.

The phase (wavevector) mismatetk plays an important

PTICAL parametric oscillators (OPO's) are widely usedole in all of these interactions. Whedvk is different from
for tunable wavelength conversion of lasers to previouspero, momentum conservation is violated and the interactions

unavailable wavelength ranges [1]-[3]. By itself, an OP@ecome very weak [10]. The phase-matching conditivh,=
can only provide downconversion to longer wavelengthg, has to be satisfied for efficient conversion of energy from
Upconversion to shorter wavelengths is achieved with the ugfe frequency to the other. Phase matching is mostly achieved
of a second nonlinear element for frequency doubling [4] gy utilizing the natural birefringence of nonlinear crystals [12],
sum-frequency generation [5]. This second nonlinear crys@b]_
is usually internal to the OPO cavity to take advantage of p pump field atws and a signal field ab at the input result
the high intracavity field intensities. The plane-wave theory ¢f 5, optical parametric amplifier (OPA), where the signal gets
these two-crystal intracavity upconversion OPO'’s have begh,jjified and, in the process, an idler fielduatis generated
studied extensively [6]-[8]. Recently, a self-doubling OP@ 1) The parametric gain experienced by the signal field is
that em_ploys asingle nonlinear _crystal for both parametrlcsubject to saturation as the pump and signal fields become
generation and frequency doubling has been reported [9]. TRiyharaple in intensity. A singly resonant OPO is constructed
new dewcg provides a hlghl_y efficient scheme for frequenc@g, placing the OPA inside a cavity that is resonant at the signal
upconversion of lasers. In this paper, we present a plane—wz?yeequency_ Oscillation starts if the unsaturated gain is higher

theory of the self-doubling OPO. than all cavity losses combined. The intracavity signal intensity
Il. SECOND-ORDER NONLINEAR INTERACTIONS assumes such a value that the saturated gain compensates for

the cavity losses exactly. A partially reflecting mirror is usually

ployed for coupling the signal out of the cavity. The idler

aves the cavity through a dichroic beamsplitter that is highly

I. INTRODUCTION

A second-order(x(?) nonlinearity results in the coupled
interaction of three fields whose frequencies are related
w3 = w1 +wo [10]. For collinear monochromatic plane wave o )

° 1 Fw [10] P transmitting at the idler frequency.

Em(2,t) = RelEn exp(j(wmt = km2)),  m =123 In an OPA, the lack of an idler field at the input of the crystal
(1) results in field solutions whose intensities are independent of
with complex field amplitudes®,,,, the coupled-mode equa-the relative phase of the pump and the signal. This results
in the well-known robust behavior of singly resonant OPQ's,
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It is convenient to define normalized and real field am-  case: 1 2 3 4 5 6
plitudes a,,, such that¢,, = a2, represent the photon flux Sk, . S . s S .
o 1 . il 11 i il 11 i
densities at each frequenay,,. In doing this, we choose the OPO: T‘f T i ? s T? T i ? 5
A . — — — -
phases of7,,, such that the required phase relation for the OPA P P P P b P
is satisfied and define the real and normalized amplitugles Sb. Sh o TSh_ ¢ Sh_ o Sb o TSé_
through SHG:T T T‘\ TN rs TW rs T‘\ S
ds ds ds ds S ds

El I—j\/ 271(4)1/711660 ai
E2 =4/ 27_%02/712660 as

Eg =4/ 27_%03/713660 as.

and

Class: A A B C C C

Fig. 1. Polarization diagrams for all possible self-doubling geometries. The
fast axis is horizontal and the slow axis is vertical. Polarizations for the pump
(p), signal (s), idler (i), polarization rotated signal (rs), and frequency-doubled
signal (ds) are shown. Intracavity polarization rotation is indicated with an
arc where required.

The coupled-mode equations for the normalized field ampli-

tudes (under phase-matched conditions) can be written in the TABLE |
form PoTENTIAL PHASE-MATCHING GEOMETRIES FOR THESELF-DouBLING OPO
da )
y 1 _ a3y (5) oPO SHG
z
dCLQ Type w3 = wi +wy wy +wz — 2wy
= 6
dz Hasd () I f—s+s s+s— f
da .
d?’:—ﬁalag @) 1l f—Ff+s s+f—
z
) . ] HI f—s+f
where the coupling constant is defined as
— ase P H Rotation Class
20 fwiwaws (8) Case OPO SHG gl
cBeg V| ninans
1 I I no A
In the case of second-harmonic generation (SHG), one has ,
X 2 II 1 no A
the fundamental field av = w; = w,; and the second-
harmonic field aw = ws. Depending on the type of phase 3 I yes B
matching that is utilizeda; and as may or may not be 4 1 1t ves C

distinguishable from each other. In type-l phase matching,

wr

I 1I yes C

the two fields are degenerate in every aspect and are indis-

tinguishable. This degeneracy reduces the number of coupled

mode equations to two [10]:

da4

= —RKaga4
dz
dCLG _1 Iﬁ;CLQ
dz 2774

with the coupling constant

/ 2h 2w3
KR = de 3
C7€p nanzne

6 111 II ves ¢

Normal dispersion is assumed. The fast and
slow axes are denoted bf and s, respec-
tively.

9)
(10) where a4 and az are the orthogonally polarized components
of the fundamental av and ag is the second-harmonic at
2w. Ordinarily, maximum conversion to the second-harmonic
takes place if the two orthogonal polarizations have the same
photon flux density. Therefore, the usual practice is to orient a
linearly polarized fundamental field at a®4&ngle to the two
eigen-polarization directions.

(11)

wherea, is the fundamental ab, ag is the second-harmonic
at 2w, and ny = njz. As in the OPA case, the lack of a IIl. THE SELE-DOUBLING OPO

second-harmonic field at the input allows us to write the
coupled-mode equations for real field amplitudes, where=
\/277,(4)4/714660 a4 and Eg = —j 2hw6/ﬂ6660 ag. In type-ll
phase matchings; andas have orthogonal polarizations and
thus, are nondegenerate in polarization. The coupled-mao

equations for this case are

da4

= —RKaeQs;
dz 2
da5

= —RKagl4
dz
dCLG

= K40Q5;
dz 2

The self-doubling OPO is based on the premise that both
parametric generation and frequency doubling can be phase
matched for the same direction of propagation inside the
’Q]onlinear crystal. This may happen in a number of different
pcﬁarization geometries, depending on the types of OPO and
SHG phase matching. Some of these geometries require an
intracavity polarization rotation for the signal field while others
do not.

Table | and Fig. 1 together summarize all polarization
geometries that can potentially be phase matched for a self-
doubling OPO. We follow the convention that the fields are
labeled according to; < we < ws [13]. The field atws is

(12)
(13)

(14)
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the OPO pump, since this is the highest frequency OPO fieifjuations. Note that the only difference between cases 1
The assignment of the “signal” label o or w» is somewhat and 2, other than possibly having differefitvalues, is the
arbitrary. In this paper, the resonant field in the OPO cavitpplarization direction of the idler, which is irrelevant to the
which also constitutes the fundamental field for the SHe&elf-doubling process. Therefore, the same set of coupled mode
process, is called the “signal.” For frequency upconversi@guations govern both cases. We designate this self-doubling
with the self-doubling OPO, the signal field has to bevat OPO process as class A.
so that2ws; > ws can be satisfied. In case 3, the polarization of the OPO signal is orthogonal
For materials exhibiting normal dispersion, the highestv that of the SHG fundamental. However, an intracavity
frequency fields of both interactiorfs); and2w,) have to be polarization rotation allows the same crystal to be used for
polarized along the fast axis of the crystal. In a type-l OP®pth processes at the same time. During each round trip in
both the signal and the idler are polarized along the slow axibe cavity, the polarization of the signal field is rotated by a
whereas in a type-ll (lll) OPO, the signal is along the slowertain amount, resulting in an additional linear loss for the
(fast) axis and the idler is along the fast (slow) axis. Typehhearly polarized signal mode, but creating a field component
SHG has the fundamental along the slow axis, whereas typddt the SHG fundamental. However, the two processes are
SHG has a fundamental component along both the fast and tie¢ coupled in the crystal as they are in class-A interactions,
slow axes. There is no type-lll interaction for SHG since thiand the coupled-mode equations that govern this self-doubling
process is degenerate in frequency. OPO are simply (5)—(7) and (9)—-(10). We designate this self-
There are six possible cases corresponding to differefdubling OPO as class B.
combinations of phase-matching types for the OPO and SHG|n cases 4-6, SHG is a type-ll process, requiring a fun-
as shown in Table | and Fig. 1. For each case, the respectil@mental field along both the fast and the slow axes. The
coupling constants:, and x, that govern the parametric OPO signal is common to either one or the other of these two
and second-harmonic processes depend on the phase-matcheatponents, regardless of the type of OPO phase matching. As
frequencies, the refractive indices, and the effective nonlinearesult, the two processes are coupled to each other through
coefficients. The ratio of the two coupling constarits= the signal field, as in class-A self-doubling OPQO’s. However in
kp/Kq 1S @n important quantity that may assume a range tife present case, the coupling is through only one polarization
values depending on these parameters. Here, the relative mamnponent of the fundamental. An intracavity polarization
nitudes of the frequencies and effective nonlinear coefficientstation of the signal field is required for SHG to take place.
are of particular importance. If the OPO and SHG processéBe set of coupled mode equations that describe all three cases
are of the same phase-matching type (cases 1, 5, and 6),are

effective nonlinear coefficients differ only due to dispersion day
[13]. However, for different phase-matching types (cases 2—4) dy  a@302 (19)
the effective nonlinear coefficients may be dramatically dif- day
ferent from each other, since they have different functional dy  [tal301 — KpGels (20)
dependences on the elements of the second-order nonlinear das
tensor. gy = fa0102 (21)
In cases 1 and 2, the polarization of the OPO signal is das
the same as that of the SHG fundamental. As a result, the g, = fdea: (22)
signal field is common to the OPO and SHG processes, which dag
become coupled to each other through the signal field. The set dz  ha2ds. (23)
of coupled mode equations that describe this interaction are i i i
We designate this self-doubling OPO process as class C. The
day only difference between cases 4 and 5 is the polarization
dz 302 (15) direction of the idler. In case 6, the polarization direction of
das the signal and the rotated signal are interchanged (with respect
dy | ef301 T Fpaea2 (16) " {6 those in cases 4 and 5), but this makes no difference in the
das equations since the SHG process is symmetric to this change.
dz | et1®2 @0 i ordinary three-wave mixing, as described by (5)—(7),
dag 1 2 Manley—Rowe relations state that the quantiti@s+ ¢3) and
dz 2 "® (18) (¢2 + ¢3) are conserved throughout the interaction [10]. It is

possible to formulate similar conservation laws for the self-

wherex, andx; are the coupling constants for the paramet”&oubling OPO’s. For class-A OPO's, the quantities + ¢s)
generation and second-harmonic generation processes, res 8'(¢2 + s +'2¢6) are conservecj Similarly, for cla?;s-c

tively. We arrive at these equations by combining the OP ) e .
equations [(5)~(7)] with the type-I SHG equations [(9)~(LO)], rz()cg;qilervl%amltlesd)l+¢3)’ ($2+d3+ o), and(¢s + ge)

The signali, and the fundamental, are the same field mode;
the rate of change of this mode is the sum of the rates of
change of the signal and the fundamental fields separately. The
same result can be obtained by considering the total nonlineain order to analyze the performance of self-doubling OPO's,
polarization field, at w. and rederiving the coupled-modeit is necessary to calculate the single-pass saturated parametric

IV. SOLUTIONS
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Fig. 2. Single-pass solutions for a class-A self-doubling OPA for different input signal photon flux densitis (a) 10~1¢3(0). (b) 10=2¢5(0). (c)
0.2563(0). (d) 0.8¢3(0). The evolution of the pump (p), signal (s), idler (i), and frequency-doubled signal (ds) fields are shown as functions of the normalized
propagation distancé in the crystal. In all caseg = 1.5. All fields are shown normalized to the input pump flux.

gain experienced by the signal field. Analytical solutions ddur analysis does not take into account many experimental
class-B equations are readily available in the form of OPrealities such as the Gaussian beam nature of the fields,
and SHG solutions separately, since the two processes arethettemporal profile of the pulses, group velocity mismatch
coupled in the crystal. These are the well-known OPA arktween field components, group velocity dispersion, or beam
SHG solutions in terms of Jacobi elliptic functions [11] anavalk-off.
hyperbolic functions [10], respectively. For class-A and class-
C self-doubling OPO'’s, however, we resorted to numerical .
techniques to solve the coupled mode equations. These Qo-Class-A Self-Doubling OPO’s
lutions were computed using forward finite differencing and Fig. 2 shows single-pass solutions for a specific class-A self-
variable step Runge—Kutta integration. These two methodsubling OPA as an example. The evolution of the photon flux
were implemented independently to verify the results agairdénsities for the pump, signal, idler, and frequency-doubled
each other. signal fields along the direction of propagation inside the
We first used forward finite differencing of complex fieldcrystal are shown for different levels of signal input. We follow
amplitudes to compute the evolution of the fields in a singlnvention and define a dimensionless normalized propagation
pass through the nonlinear crystal. We found that the singldistance = r,a3(0)z to present the results more generally
pass solutions of complex class-A and class-C coupled-md@& For this example, we have take® = 1.5. All photon
equations are phase insensitive if no idler or second-harmofiix densities are normalized to the input pump photon flux
is present at the crystal input. This expected behavior justifigensity ¢3(0) = a3(0).
our converting the complex coupled-mode equations to realin Fig. 2(a), the input signal flux ig,(0) = 10~%¢3(0). We
equations. We solved the set of real equations using tbleserve that for low input signal flux levels like this, the OPA
Runge—Kutta—Fehlberg method, and verified these solutigm®cess dominates the interaction at smaller valugs lof this
with our previous results obtained from finite differencing ofegion, the signal experiences gain without much saturation.
complex field amplitudes. The pump is depleted by 10% &at= 4.2. There is not much
In our calculations, the order of magnitude of most physic8HG up to this poinfgs = 1.5 x 1072 ¢3(0)], since the signal
parameters are either based on the experiment reportedflay is not high enough for efficient conversion. However, the
Kartaloglu et al. [9], or some estimate as to what range o8HG process begins to show its influence at larger values of
values they are more likely to be in. However, our aim heig as the signal flux further increases. This increase becomes
is not to model this experiment accurately, but to bring oumore gradual because of gain saturation (pump depletion) and
the fundamental properties of self-doubling OPQO’s using @nversion to the second-harmonic, and reaches a maximum
simple continuous-wave monochromatic plane-wave theomt £ = 5.6. At this point, the pump is depleted by 79.5%
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and the second-harmonic flux is 14.0% of the input pump \ : . : .
flux. From then on, the signal decreases due to SHG, but still
draws energy from the pump. The pump is fully depleted at ,
& = 6.3, after which there is a small amount of backconversion
of the signal and the idler to the pump. The pump flux reaches
8.2% of its value at the input and then begins to decreage?
again, with a corresponding increase in the signal and idlér
flux. At some point¢ > 10, the pump is fully depleted again. 5 |
However, this oscillatory ringing behavior dies out and the
interaction stops, the entire pump being converted to the idlgr
and the second-harmonic. Neglecting the contribution of the °
input signal, for every two pump photons at the input, there
are two idler photons and one second-harmonic photon at the,
output.

Increasing the input signal flux [t60=2¢5(0) in Fig. 2(b)] |
shifts the entire process in the negativdirection. The evolu- % 1 2 3 p 5 6 7 8
tion of the field components are not altered in any appreciable 0,0}/ 9,(0)
way until the input signal level increases to a value that is a _ o _ ‘ _

L . . . Fig. 3. Saturation of parametric gain with input signal ftex(0) in class-A
Slgnlflcant fraction of the pump. Fig. Z(C) shows the e\/Oll"tloglalf-douinng OPA's for various values of at a fixed nonlinear drive of 1.
of the fields for an input signal flux df.25¢3(0). We observe
that the SHG process starts drawing energy from the sign

right away. Also, the ringing behavior due to backconversio%%er transmissive optics. Oscillation starts if the unsaturated

gets smaller in amplitude with increasing input signal qu>€am is higher than the total cavity losses. The intracavity signal

) . . lux assumes such a value that the saturated gain compensates
When the input signal level is increased further (t8¢3(0) g b

- . . ; for the cavity losses exactly. This intracavity signal flux is
in Fig. 2(d)], the SHG process dominates the interaction frolzgund by solving

the beginning. For an input signal flux exceeding 89% of the
input pump flux, the signal flux decreases monotonically for glp2(0)] = 1 (24)
all values of¢. 1-L

The parametef is a measure of the prominence of the SH@umerically forg,(0). This is equivalent to finding the inter-
process over the OPA process. Its value is an important facggsiction of the gain saturation curve of Fig. 3 with a horizontal
influencing the behavior of the solutions. With decreasihg line of value1/(1 — L) (in decibels). Once the signal flux
the effect of SHG becomes less, and the ringing behavior daethe input of the crystal is known, all other fields can be
to the OPA process increases in amplitude, total conversioncislculated using single-pass solutions.
the second-harmonic occuring farther in the crystal. Increasingin our calculations, we take the total cavity ldsso be 4%.
£ has the opposite effect of decreasing the ringing behavioFor this value, the signal flux at the input of the crystal is found

For a fixed crystal length(/), the gain of an ordinary to be 0.644¢3(0) (with a nonlinear drive of 1 ang = 1.5).
OPA is fully characterized by the dimensionless parametgig. 4 shows the evolution of the fields inside the crystal as
(kal)?¢3(0), called the nonlinear drive [6], [7]. However, ina function of the normalized propagation distance under these
a self-doubling OPO, the net gain experienced by the sigreitcumstances. All fields are shown normalized to the input
field is clearly influenced by both the OPA and SHG processgaimp photon flux. The signal flux starts from 64.4%, goes
Fig. 3 shows the net parametric gajnas a function of the through a maximum of 69.3%, and then at the output facet
input signal flux [normalized to the input pump flus(0)] decreases to 67.0% of the input pump flux, experiencing a net
for various values off, while the nonlinear drive is fixed at again of 1.042. The second-harmonic flux at the output of the
value of 1. The unsaturated (small-signal) gain is independenystal is 25.4% of the input pump flux. The second-harmonic
of 3, and has a value of 2.38 (3.77 dB) for the given nonlineds readily coupled out of the cavity with the use of a dichroic
drive. The gain decreases from this value as the input sigrality mirror that is highly transmissive at this wavelength.
flux is increased, and eventually becomes less than unity {Be pump is depleted by 53.4%; and the output idler field,
dB) for nonzerog. This behavior is in stark contrast to arnwhich is also coupled out of the cavity with a dichroic mirror,
ordinary OPA(3 = 0), which never has a gain that is lesshas a photon flux that is 53.4% of the input pump flux.
than unity and saturates more gradually with increasing signalThe performance of the self-doubling OPO is character-
input. ized by the photon conversion efficiency, the ratio of twice

A singly resonant self-doubling OPO is constructed bthe output second-harmonic flux to the input pump flux,
placing the nonlinear crystal inside a cavity that is resonant&gs(l)/¢3(0), since two pump photons are needed to gen-
the signal frequency. The pump field enters the cavity throughate one second-harmonic photon. The conversion efficiency
a dichroic mirror that is highly transmissive at that wavelengthepresents the overall efficiency of the two-step process from
The cavity will typically have a few percent of linear losshe pump to the signal to the second-harmonic, and is equal
(L) due to less than unity reflectivities of the cavity mirrorsto unity for the case of total conversion. The nonlinear drive
imperfect antireflection coatings on the nonlinear crystal, amdbng with 3 uniquely determine the conversion efficiency of

| I L L L 1 L
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) ) ) ) ) Fig. 6. Intracavity signal flux (normalized to the input pump flux) as a
Fig. 4. Evolution of the pump (p), signal (s), idler (i), and frequency-doubleginction of the nonlinear drive for class-A self-doubling OPO's for various
signal (ds) fields as functions of the normalized propagation distameehe \51ues of 3.

crystal for a class-A self-doubling OPO. The nonlinear drive i & 1.5,

and linear cavity losses are taken to be 4%. All fields are shown normalized

to the input pump flux. coupling mechanism through the SHG process and can also be
observed in Fig. 3. It is interesting to note that the intracavity
signal flux is always less than the input pump flux wheis
larger than 1.23.

We observe that near-quantum-limited wavelength upcon-
version is possible using a class-A self-doubling OPO. Even
though there is an optimum nonlinear drive for a particular
value of 3, variations from this optimum have little effect
if 3 is high 1, for example). This indicates that pulsed
self-doubling OPO’s pumped with beams having transverse
intensity variations are also likely to be efficient devices.
However, the optimum nonlinear drive required by interactions
having a large? value may be difficult to attain. Low intracav-
ity signal flux levels reduce the risk of exceeding the damage
threshold of the nonlinear crystal in pulsed applications.

Conversion efficiency
o o o o o
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T : T T

o
i
T

o
T

8o 0.1 Nonlincjardrive T 100 B. Class-B Self-Doubling OPOQO'’s

Fig. 5. Conversion efficiency as a function of the nonlinear drive for class-A In C|&SS-_B seli-doubling OPO's, the .OPA and SH(.B pro-

self-doubling OPO's for various values of cesses are independent of each other, since the OPA signal and
the SHG fundamental have orthogonal polarizations. However,

, ) an intracavity polarization rotation of the signal field with the
the self-doubling OPO. Fig. 5 shows the dependence of th€s of 4 half-wave retarder can couple the two processes and
conversion efficiency on the nonlinear drive for various valuggo frequency doubling to take place. For an intracavity
of /3 for a fixed cavity loss of 0.04. The threshold nonlineggo|arization rotation angle af, asin? « fraction of the signal
drive of this self-doubling OPO is 0.041 and independent.of fjyx is coupled to the fundamental field mode. Consequently,
(This is equal to the threshold nonlinear drive of an ordinagye signal field mode experiences an additional linear loss of
OPO with a signal output coupler reflectivity &f=1—L = 42 At each pass through the crystal, the signal experi-
0.96.) Note that the conversion efficiency is very high for ances parametric gain, whereas the fundamental gets converted
large range of the nonlinear drive, providgdis not small to the second-harmonic. Here, we assume that the residual
(B = 1.0). fundamental at the output of the crystal is either coupled

Fig. 6 shows the nonlinear drive dependence of the ratio @it of the cavity with the use of a polarizing beamsplitter,
the intracavity signal flux to the input pump flux for variousr negligible due to strong conversion. If instead both the
values of 3. With increasing nonlinear drive, the ratio ofsignal and the fundamental fields are resonated in the OPO
intracavity signal to the input pump increases first, reacheavity, the polarization mixing at the retarder will result in the
a maximum, and starts decreasing after that. At a fixed valimerference of the two fields in an uncontrolled fashion.
of the nonlinear drive, a larggtresults in a smaller intracavity As far as the OPO signal is concerned, the situation at
signal flux. This behavior is a result of the nonlinear outpdtand is the same as an ordinary OPO with an output coupler
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Fig. 7. Single-pass solutions for a class-C self-doubling OPA for different polarization rotation ang(e$ ¢°, (b) 30°, and (c) 40. The evolution

of the pump (p), signal (s), idler (i), polarization rotated signal (rs), and frequency-doubled signal (ds) photon flux densities are shownresdinctio
the normalized propagation distangein the crystal. The total input flux at the signal wavelength0is¢3(0) and 5 = 1.67 in all cases. All fields
are shown normalized to the input pump flux.

reflectivity of R = cos®«. The OPO signal experiences aheory of such two crystal intracavity-doubled OPO’s has been
total linear loss of analyzed elsewhere previously [7].

L=1-(1-L.)cos’a (25)
C. Class-C Self-Doubling OPQO'’s

where L. is the collective cavity loss due to less than unity Class-C self-doubling OPQ’s are characterized by a type-
reflectivities of the mirrors and imperfect antireflection coatt phase-matched SHG process, where the fundamental is
ings on the nonlinear crystal and other transmissive opticemposed of two orthogonally polarized field modes. The
such as the wave retarder and the polarizing beamsplitieolarization of the OPO signal mode coincides with one of
There is no nonlinear output coupling in this situation, and thikese fundamental modes regardless of the type of OPO phase
intracavity signal flux is solely determined by the polarizatiomatching. Since in principle there will be no SHG if both
rotation anglex and residual cavity lossek.. Even though fundamental polarizations are not present, a rotation of the
the SHG process is internal to the OPO cavity, it does nsignal polarization inside the OPO cavity with the use of a
benefit from high values of the intracavity signal flux. In effecthalf-wave retarder is required to achieve frequency doubling.
this configuration is not different from external frequency In calculating the single-pass solutions of class-C coupled-
doubling of an ordinary OPO. As such, it is not expected tmode equations, we take the total linearly polarized input flux
be particularly efficient. at the signal (and fundamental) wavelength togheWe then

On the other hand, a different mode of operation is achieveatate the polarization of this input field by degrees such
if the residual fundamental is not coupled out and the polariztat the input signal flux isp; cos? , and the input rotated
tion rotation angle is set to 90. In this situation, the retarder signal (fundamental) flux isp, sin? . Fig. 7 shows single-
switches around the polarizations of the signal and the residpaks solutions for a specific class-C self-doubling OPA for
fundamental, with no resulting interference due to polarizatidhree different values of the polarization rotation angle
mixing. The signal at the output of the crystal provides thEor this example, we have takey = 0.5¢3(0) and 8 =
fundamental for SHG for the next round trip, whereas the67. The rotation angle: is set to zero for the solutions
residual fundamental becomes the OPA input. Since the twbown in Fig. 7(a). Since there is no polarization rotation,
processes are not coupled in the crystal, this configurationly one of the two orthogonally polarized fundamental field
is conceptually equivalent to intracavity frequency doublingomponents is present at the input. The numerical solutions for
of an ordinary OPO with a second crystal. The plane-watke evolution of the signal, idler, and pump fields reproduce
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Fig. 8. Saturation of parametric gain with total input flix in class-C self-doubling OPA'’s for various values of the polarization rotation amglad the
ratio of coupling constants. (a) 3 = 0.5. (b)3 = 1.0. (c)8 = 1.5. (d) 3 = 3.0. The nonlinear drive is 1 in all cases.

the same well-known periodic solutions for an ordinary OPAo idler or second-harmonic is present at the crystal input.
in terms of Jacobi elliptic functions [11]. Using this relation and the Manley—Rowe relation 3y, we

Fig. 7(b) and (c) shows the evolution of the fields focan reduce the coupled-mode equations to a single differential
polarization rotation angles of 3Gand 40, respectively. We equation
observe that even though the evolution of the fields along 1 /doN\2
the direction of propagation is still oscillatory, polarization <—) + Oy cos?(0) + Cs sin®(80) = Ca (27)
rotation seems to destroy the periodic behavior seen in an * dz
ordinary OPO ¢ = 0°). Furthermore, the minima and maximan, the variablef(z). If C; cos2(8) + Cs sin?(36) can be larger
of various field modes do not occur at the same poin{ inthan ¢, for any value off (which may be possible only if
either. The minima (maxima) of the second-harmonic coincigg - 45°), the solution of (27) oscillates periodically around
with the maxima (minima) of the rotated signal; and thgero. Otherwisef(z) increases monotonically; the solution is
minima (maxima) of the idler coincide with the maximgyeriodic only if 3 has a rational value, and aperiodic otherwise.
(minima) of the pump, in accordance with the conservatiqp 3 — 5/ (p and ¢ being integers), then the pump (idler)
laws. However, the minima and maxima of the signal do ngpes through; number of minima (maxima), and the rotated
coincide with the minima or maxima of any other field. signal (second-harmonic) goes througmumber of minima

We have taken3 = 1.67 in this example to illustrate (maxima), in a single period of the solutions. Unless hotmd
the seemingly nonperiodic behavior of the solutions. Theare small integers, this periodic character cannot be observed
Manley—Rowe conserved quantiti€ = af + a3, C2 = in just a few cycles of pump depletion and backconversion.
a3 + a3 + af, and C3 = a + af allow us to derive a  For a fixed value of3, the value of the polarization rotation
fourth conserved quantity and gain further insight into thgngle determines the degree of coupling between the OPA
/# dependence of the solutions. It is possible to make th@d the SHG processes. As the signal field propagates through

a

transformationsa; = Cisinf a3 = /Cicosf,as = the crystal, it experiences amplification due to parametric
Vs cosy, andag = v/ siny, and substitute into (19) and generation and nonlinear loss due to SHG. The nonlinear SHG
(23) to get loss depends on the photon flux density of the orthogonally

polarized fundamental mode, as well as the signal flux itself.
(26) Furthermore, as far as the field component at the signal
polarization is concerned, polarization rotation results in an
When integrated, this equation yields a fourth conservedditionalsin® « linear loss factor. Therefore, we define the net
quantity Cy = 6/k, — v/ks, Which is equal to zero since gain, including the effect of polarization rotation, as the ratio

a1
a2_l€3a dz Ky dz’
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10 T T T T - < - ‘ . of the nonlinear drive atvr = 0° and increases with, because

' B | of the extra linear losses induced by polarization rotation.

ggg]gﬁm ' Fig. 10 shows the evolution of the fields at four different

08r . values ofc, for a nonlinear drive of 13 = 1.5, andL = 0.04.

sl _ | Allfields are shown as normalized to the input pump photon
ggzg?{;?o) flux. Fig. 10(a) corresponds to the first smaller peak of the

: 2 R 1 conversion efficiency at = 10.7 in Fig. 9. We observe that

the second-harmonic goes through a maximung at 0.44

inside the crystal, at which point the rotated signal is fully

o4r : 7 depleted. The pump is fully depletedé@t 0.66 but increases

after that due to backconversion. The second-harmonic also

goes through a zero, which occurséat 0.87, and then at the

oar ’ i output increases to 3.8% of the input pump flux.

01} Conversion 1 Fig. 10(b) shows the evolution of the fieldscat= 20.3, the

Efficiency g . .
/—\ angle at which conversion to the second-harmonic is zero. We

5 L anzglsle (degg:ges) 3 4 45 0 _observe tr_lz_it the _evol_ution of the_fields _has in general shifted
in the positive¢ direction, and their amplitudes have changed
Fig. 9. Conversion efficiency, pump depletion, and intracavity signal f'%onsiderably. The pump is fully depleted &t= 0.76, and
(nqrmallzed to the input pumpﬂux), as functlpns of pplar]zatlon rotation ang{%e doubled signal reaches a maximumgai: 0.53 before
« in a class-C self-doubling OPO. The nonlinear drive is 1 gnd 1.5.
decreasing to zero at the crystal output. In Fig. 104cis set
to 26.6', the angle at which full pump depletion occurs. The
of the output signal flux to the total input fluy;= ¢>(1)/é+.  second-harmonic goes through its maximung at 0.69, and
We assume that the rotated signal component at the outpufiégreases to 29.4% of the input pump flux at the output. Note
either separated from the signal component with the use ofi@t a significant amount of rotated signal flux is present at the
polarizing beamsplitter, or strongly depleted. output of the crystal. This flux is wasted since it is coupled
Fig. 8 shows the net gain as a function of the total input fluyt of the cavity.
(normalized to the input pump ﬂUX) for different values cof F|g 10(d) Corresponds tey = 28637 the ang|e at which
and/ at a fixed nonlinear drive of 1. Fer = 0°, regardless of there is maximum conversion to the second-harmonic. The
the value ofg, we have an ordinary OPA with a small-signakecond-harmonic goes through a maximung at 0.85 inside
gain of 2.38 (3.77 dB) that saturates with increasing input flke crystal and decreases to 39.2% of the input pump flux at
and reaches unity arountl = ¢2(0) ~ 8¢3(0). Whena is  the output. The pump depletion for this case is 90.6%. We
increased, the unsaturated gain decreases»dsy, because note that the amount of polarization rotation is critical for
of the extra linear loss that the signal field experiences. Th& efficient operation of class-C self-doubling OPO’s. In a
saturation behavior of the gain depends on the valug.of practical devicew can easily be adjusted to its optimum value
For smaller values of3, saturation is monotonic and morepy rotating the intracavity half-wave retarder.
rapid with increasingv. Larger values off show more erratic  Fig. 11 shows the dependence of the conversion efficiency
behavior, with regions of very gradual saturation and evefhd pump depletion on the nonlinear drive for different values
nonmonotonic character. of 3. For eachd, the rotation anglev is adjusted to optimize
The intracavity signal flux for a class-C self-doubling OP@he conversion efficiency at a fixed nonlinear drive of 1. This
at a constant value ak is found by solving (24) using the js kept fixed as the nonlinear drive is increased to generate the
net gain shown in Fig. 8. Since the linear loss induced kyurves of Fig. 11. Naturally, maximum conversion efficiency
the polarization rotation is already included in the solutiogccurs at a nonlinear drive very close to 1. However, the
for the net gain,L represents all other linear cavity lossesgonversion efficiency drops from its maximum value relatively
Fig. 9 shows the dependence of the intracavity signal fluyuickly as the nonlinear drive is changed, in contrast to class-
conversion efficiency, and pump depletion to the polarizatign self-doubling OPQO’s (see Fig. 5). This sensitivity to the
rotation anglex at a constant nonlinear drive of 8, = 1.5, nonlinear drive increases with increasifig
and L = 0.04. The conversion efficiency starts out from zero The intracavity signal flux and consequently the conversion
at & = 0°, increases to 7.5% at = 10.7, and becomes efficiency and pump depletion show discontinuities in their
zero again atv = 20.3. Thereatfter, the conversion efficiencynonlinear drive dependence at large valuegofAn example
increases very rapidly to reach a maximum value of 78.5% @ft this is seen in Fig. 11(d) fo3 = 3. This behavior is
o = 28.6, and decreases again until the OPO goes below theconsequence of the nonmonotonic behavior of the gain
threshold atv = 48.6°. On the other hand, the pump depletiosaturation curve such as the one shown in Fig. 8(d). In general,
starts at 27% atv = 0° and increases to unity at = 26.6°, (24) can have multiple solutions, depending on the values of
and then decreases asis increased further. It is interestingthe nonlinear driveg, and/. In Fig. 11, we always choose the
to note that maximum conversion does not occur at the sasmallest of these solutions, assuming that the intracavity signal
« as that for complete pump depletion. The intracavity signblilds up from noise to reach its steady-state value. However,
level is 6.2 times the input pump flux at= 0° and decreases a hysteresis behavior can be observed in the intracavity signal
monotonically with increasing.. The OPO threshold is 4.1% flux if the nonlinear drive is varied up and down.

0.9

06

05k B ) N -

03F : . -

0.0
a



456 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 3, MARCH 1998

-
=]

° o =
[0} [os] o
o o
(0] [eo)

o
IS
o
ES

o

N
o
[S)

Relative photon flux density

o
=)

Relative photon flux density

o
=]

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
§
(@ (b)

2‘1'0 2‘1.0

@ = P

% c

Sos Los8

x x i

3 =

=06 =06

5 5

= = rs ds

2o4 o4

joR joR

2 9

=02 = 0.2

© (3]

@ T [s(x10)

T oo T oo

o 0 0.2 0.4 06 0.8 1

S
(d)

Fig. 10. Evolution of the pump (p), sign&k x 10), rotated signal (rs), idler (i), and doubled signal (ds) fields in the crystal, for different values of
the polarization rotation angle for a class-C self-doubling OPO: (a) = 10.7, (b) @ = 20.3, (c) @ = 26.6°, and (d)o = 28.6°. The nonlinear
drive is 1 andg = 1.5 in all cases.
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Fig. 11. Conversion efficiency and pump depletion as functions of the nonlinear drive for class-C self-doubling OPO’s for different valles efich
[ value, the rotation angler is adjusted to maximize the conversion efficiency at a nonlinear drive of 1, yielding @&) 0.5, « = 24.1°, (b) 8 =
10,0 =248, (c) 3 =15 o = 288, and (d)8 = 3.0, « = 24.2.

Fig. 12 shows the nonlinear drive dependence of the mamalues. We observe that the conversion efficiency is close to
imum conversion efficiency and the rotation angle at whidks maximum value for a large range of the nonlinear drive,
this maximum occurs, for various values/@fThe conversion especially above a drive of 1. This saturation value for the
efficiency increases steadily with increasing nonlinear drivepnversion efficiency depends ghin a cyclical fashion, its
reaches a plateau, and begins to decrease at very high dmaxima occuring close t@ values that are odd integers. For
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Fig. 12. Maximum conversion efficiency and the polarization rotation angle at which maximum conversion occurs, as functions of the nonlinear drive fo
class-C self-doubling OPO'’s for various values @f (a) 3 = 0.5, (b) 8 = 1.0, (¢)8 = 1.5, and (d)g = 3.0.

lower values off3, the rotation angle necessary for optimunpump intensity. A number of nonlinear crystals that satisfy the
conversion increases monotonically with increasing nonlinesimultaneous phase-matching for a variety of pump sources
drive, approaching 90 For high 3 values [see Fig. 12(d)], can be identified. Extension of the self-doubling concept to
however, abrupt jumps in the optimumcan occur. The reasonquasi-phase-matched crystals is another promising possibility.
for this behavior can be seen in the double peaked conversion
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