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of quadrature-squeezed states

Kahraman G. Kpruli and Orhan Aytu
Department of Electrical and Electronics Engineering, Bilkent University, TR-06533 Bilkent, Ankara, Turkey
(Received 2 March 1999

This paper investigates the generation of quadrature-squeezed states of light using a degenerate optical
parametric amplifieDOPA) that is pumped by a focused Gaussian beam. The formulation that is presented
facilitates the calculation of squeezing for an arbitrary local oscillator beam. This formulation also establishes
a formal equivalence between the classical parametric gain and the measured level of squeezing. The maxi-
mum squeezing that can be achieved using a Gaussian-beam local oscillator is determined to be limited to 13.4
dB, as a consequence of gain-induced diffraction. The phase lag of the maximally squeezed quadrature is
shown to be significantly different from the plane-wave theoretic value/@f unless the focusing is very
weak. The use of a second DOPA for generating a local oscillator beam that is matched to the squeezed field
is also investigated. In this case, squeezing is limited only by the available pump power.
[S1050-2947@9)09911-4

PACS numbgs): 42.65.Yj, 42.50.Dv, 42.50.Lc

[. INTRODUCTION with a Gaussian-beam pumped DOPA. Second, this model

neglects the Gouy phase of the pump beam, resulting in a

Degenerate optical parametric amplifi¢BOPA’s) play  miscalculation of the phase-sensitive gain at regions away

an important role in the generation of nonclassical states ofom the focus. On the other hand, the classical analysis of

light such as squeezed stafds-4]. A DOPA is a phase- Ref.[8] also assumes the plane-wave theoretic value/af

sensitive light amplifier, whose gain depends on the opticafor the phase lag of the maximally deamplified quadrature.
phase difference between the pump and the input signdturthermore, this model is limited to the weak focusing re-

fields. This property results in one phase quadrature of thgime, where the confocal parameter of the pump beam is
input signal field being amplifiedparametric gain greater much Iarge_r than the_mteractlon length. L|k(_aW|se, 'ghe model
than unity, while the orthogonal quadrature gets deamplified®’ Ref- [7] is also limited to the weak focusing regime, and
(parametric gain less than unityWhen the input signal to a takes the optlr_nal phase lag to lné2. .

DOPA is in a vacuum state, the output signal becomes ﬁqiThe Gaussian-beam pumped DOPA model presented in

guadrature-squeezed vacuum state that exhibits quantumS paper faC|I|ta'§es accurate ce_llculanon (.)f the phase-
fluctuations that are below the quantum limit for the deam sensitive DOPA gain and the resulting squeezing. Our model

plified quadraturd?2,5]. is valid in all focusing regimes, as long as the parametric

X , interaction can be considered to be perfectly phase matched.
In this paper, we present an accurate and detailed analySigis analysis is based on a modal expansion of the signal
of Gaussian-beam pumped DOPA'’s. Modeling of practicakie|q in terms of cylindrically symmetric Laguerre-Gaussian

DOPA's is crucial for both designing experiments aimed atyeams, In Sec. II, we outline our formulation for calculating
generating large levels of squeezing, and also understandifge classical small-signal gain of a Gaussian-beam pumped
the spatial properties of the generated squeezed field. In BOPA for an arbitrary cylindrically symmetric input signal
typical experiment, the Gaussian-beam nature of the pumpeam. In Sec. I, we investigate the generation of squeezed
field brings about transverse gain variations that influencgacuum states with a DOPA, and the detection of these states
the behavior of the DOPA. A number of authors have invesusing a local oscillatofLO) beam of arbitrary profile. Here
tigated the effects of these gain variations in Gaussian-beame show that the measured squeezing level is equal to the
pumped DOPA’Y6—-8]. These models have shown that the classical deamplificatiofone over the parametric gaiex-
signal field experiences phase and amplitude distortions thgderienced by an arbitrary input signal to the DOPA, if the
influence the net gain or squeezing achieved by the DOPAconjugate of that input were to be used as the LO beam in the
In particular, the authors of Reffi6] concluded that quadra- detection of squeezed vacuum generated by the same DOPA.
ture squeezing with a Gaussian-beam DOPA is limited to @An important consequence is that the classical formulation of
dB as a consequence of these distortions. Even though th$ec. Il can be used to calculate squeezing. In Sec. IV, we
model brings out the importance of phase and amplitude disapply the results of the previous sections to the case of a
tortions in the signal field, its quantitative conclusions areGaussian beam LQ@or input signal. Here, we show that the
incorrect as a consequence of two erroneous assumptionsaximum squeezing that can be achieved with a Gaussian
First, the authors have assumed that the phase of the maxi©O beam is about 13 dB, a figure much higher than the 6-dB
mally squeezed quadrature lags the pump phaserfy  limit of Ref. [6]. In Sec. V, we investigate the generation of
which is the value predicted by the plane-wave theory ofLO beams that are matched to the distorted spatial profile of
DOPA’s[9]. This false assumption leads to a significant un-the squeezed fiel[d.0,11]. Here we show that a matched LO
derestimation of the squeezing level that can be achievedeam can be generated with a DOPA that is identical to the
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one used for the generation of squeezed vacuum, and that the w=cosh I |Ap|). (4)
squeezing level detected using such a matched LO is limited
only by the available pump power. v=sinh(«l|Ap|). (5)

Il. CLASSICAL DOPA ANALYSIS The DOPA gain is given by

2

; ; i A(1/2
In this section, we formulate a method for calculating the s(112) —|u+exdi(o— 7r/2)]v|2, ©6)

classical small-signal gain of a traveling-wave DOPA 9(0)= ‘AS(—IIZ)
pumped by a focused Gaussian beam. We consider a geom-
etry where the waist of the pump beam is located at thavhere 6=¢,—2¢s is the phase difference between the
center of the nonlinear crystal. We assume that there is pepump and the signal waves at the input of the crystal, and
fect phase matching, no pump depletion, and no spatial walkAs(—1/2p) = |Aslexp(¢s). Equation(6) reveals the phase de-
off between the pump and the signal beams. This formulapendent nature of the DOPA gain. The maximum amplifica-
tion facilitates the calculation of the small-signal gain of ation is
DOPA for any(cylindrically symmetri¢ input signal beam. )

Since the configuration at hand has cylindrical symmetry, max{g(0)}=(u+v)*=exp2«l[Ay)), @)

we express all fields as z propagating waves with trans- B .
verse amplitude profiles that depend only on the radial dis2nd oceurs ab= /2. On the other hand, maximum deam-

tance p=\x2+yZ and the propagation distance For a plification maxX1/g(#)} is equal to maximum amplification

. . in magnitude, and occurs 8t — 7/2.
Eilé;r:gl ﬁgsjn:j:stc?igec:jpg;al frequency ob2we consider a The field amplitude of a Gaussian pump beam can be

written as

®

Ed(r,t)=3A4(p,2)exdi(wt—ksz)]+c.C., (1) — W2
Ao(p.2) =T p( )

Apo
where c.c. denotes the complex conjugate of the first term. zlz 1-2iz/z

L_Jnder the.slowly varying envelope approximation, the S"(‘gnal\/vherewo is the radius of the beam waist locatedzatO,
field amplitudeAg(p,z) is governed by 8]

zo=ka§ is the confocal parameteftwice the Rayleigh

IA(p,2) 1 range, k,=2ks is the pump wave number, and,
%— WVfAs(P,ZF —ikAy(p.2)AS (p,2), =|Apolexple,) is a complex constant whose amplitude is
s related to the pump powerP, through |Ay|

@) =\/8pr/7TZOCZEO. The transformationsz=¢z, and p

whereA,(p,2) is the pump field amplitudes = wd./nC is =rW, can be used to normalize E) as
the nonlinear coupling constamt, is the effective nonlinear IALT, ) ,
coefficient,ng is the refr_actwe mdzexks; nsg)/c is the wave T HIVIAL(r, &) =—iyexpigy)up(r,é)AL(r,£),
number of the signal field, an¥i{ =d/dp~+ (1lp)dldp is
o L , 9)
the transverse Laplacian in cylindrical coordinates.
Equation (2) applies to an optical parametric amplifier where ¢, is the phase of the pump beams= kz|Aq| is a
(OPA) that is degenerate in all aspects including the polargonstant, and
ization direction; a type-| phase-matched DOPA satisfies this
requirement. However, if the OPA is type-Il phase matched 1 —r?
with orthogonally polarized signal and idler modes, a com- Up(r, &)= 1-2ie A 120¢
bination of these modes has to be considered as the signal of
the DOPA. In this cases in Eq. (2) becomes the geometric  Since the DOPA is a phase-sensitive amplifier, it is desir-
mean of the refractive indices of the signal and idler modesable to keep the phase differenée ¢,— 2 ¢ constant at all
However, since the wave numbers of the two modes argoints along both the transverse and longitudinal directions.
different, it is not possible to define a sinddgvalue for the  For this reason, it is common practice to choose the input
combined mode. For type-ll phase-matched OPA’s, ). signal to be a Gaussian beam that has the same confocal
holds approximately if the wave numbers of the signal andharameter and beam waist location as the pump beam. Figure
idler modes are close to each other. 1 shows the phase fronts of the signal and pump beams in the
In a plane-wave analysis, thedependence of the fields absence of any parametric interaction between them. Even
and hence the transverse Laplacian term in(Endisappear.  though the phase curvatures of the two beams are the same
In this case, the pump field amplitude is a constap{z) everywhere, the presence of the Gouy phase terms results in
=|Aplexpl¢y), and, since the interaction is phase matcheda gradual slip in the phase differenéeas a function ofz
the pump wave numbés, = 2ks. The solution of the plane- This phase slip should not be neglected evenlfag<1,
wave problem for a crystal of lengththat is centered e  since the derivative of the Gouy phase with respeczt te

. (10

=0 is[9] maximum atz=0. The magnitude of the gain is influenced
by this phase slip even at small valuesl &,.
A(112)= uAs(—112) —i expli ¢p) vAL (—1/2), 3 Note that in the Gaussian beam analysis of the DOPA, it

is convenient to defin@ as the phase difference between the
where pump and the signal at=0 as if there is no interaction
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Porta and SlushefThe linearity of Eq.(9), which makes
such an expansion possible, is a consequence of the unde-
pleted pump approximatiohUsing this expansion, we con-
vert Eq.(9) into an ordinary differential equation in matrix
form. This form is useful because it lends itself easily to
accurate numerical calculations, and also yields valuable in-
e formation on the coupling between the modes.
-2 The transverse field variations in E@®) may be handled
05 025 o 0.05 05 with other numerical techniques as well. Finite differencing
2z, in the r plane is another method that we have considered.
However, this method has a few disadvantages. The step
FIG. 1. Phase fronts of the Gaussian pump and signal beangizes inz andr must satisfy a stability condition, and hence
inside the nonlinear crystal in the absence of the DOPA interactioncannot be chosen arbitrarily small. Furthermore, a finite-
The bounding curves show the beam radiief16f peak intensity. sized window has to be used in the transverse plane, and
For clarity, the wavelength is exaggerated and the pump phase isven when absorbing boundary conditions are used, this in-
shifted so that the phase fronts coincidezat0. troduces additional errors. Moreover, for lardéz, values,
the window size has to be increased to keep numerical errors

between them. This convention assures that the definition gimall, and this increases the size of the equations. Finally,
¢ is independent of/z,. Alternatively, the phase difference numerical errors due to finite differencing are larger than
can be defined at the input plane<(—1/2). This phase dif- those of the mode expansion method. _
ferenced’ is related to the one defined at the center through Equation(9) reduces to the paraxial Helmholtz equation
0’ = 6+tan 1(1/z,). However, we do not prefer this alterna- vyhen |ts.r|ght-hand side is equ_al to zero. Th_e general solu-
tive definition, since?’ depends o/z, whereasd does not. tion of this homo.geneous equation can be written in terms of
In order to calculate the gain experienced by an arbitrarj-2guerre-Gaussian beanihe cylindrical symmetry of the
signal input beam, Eq9) has to be solved with the initial 980metry makes Laguerre-Gaussian beams more suitable
condition A(r,&=—&,), where &=1/2z,. Equation (9) than Hermlte-Ga_ussm_n peamsln .general, Laguerre-
does not have an exact analytical solution even when th&aussian beams in cylindrical coordinatese(¢) have two
input signal is a Gaussian beam. An approximate analyticdndices, one associated witland the other witkp. Since the
solution for a Gaussian input was introduced by Chpal. ~ 9eometry at hand has cylindrical symmetry, we drop the sec-
[8]. In this analysis, the signal is assumed to have the sam%nd index and consider only the set of cyI|ndr|.caIIy symmet-
waist location and confocal parameter as the pump, and tHac modes. Therefore, the homogeneous solution can be writ-
solution is obtained using a perturbative method where th&€n as
result is expressed in terms of powersl &4, up to the qua-
dratic term. This analysis has shown that the transverse pro- -
file of the pump intensity results in phase and amplitude As(r,§)=n§=‘,o AnGn(r,€),
distortions in the signal field, an effect known as gain-

induced diffraction(GID). The overall effect of these distor- . . N
. ) X : - whereA, is the complex amplitude of theth cylindrically
tions integrated in the transverse plane brings a limit to the . .

. e ! . symmetric Laguerre-Gaussian mode,
maximum deamplification that can be obtained using a
DOPA. However, the solutions in this formulation are only )
to the second order ilVzy, and hence the validity of this G.(r.&)=L r 1
model is limited tol/zy<1. me M 1+4¢2)1-i2¢

In another analysis introduced by La Porta and Slusher )

[6], the signal field is expressed as an infinite sum of or- -r . _
thogonal spatial modes, and the coupling between these xex 1-i2¢ expli2ntan™=2¢), (12
modes as they propagate through the DOPA is investigated.
However, this model contains some errors that have signifi  peing thenth-order Laguerre polynomial. The cylindri-
cant influence on the results and conclusions. Most imporgajly symmetric Laguerre-Gaussian beams are expressed in
tantly, the Gouy phase of the pump beam is missing in thigch a way that they all have the same confocal parameter as
analysis, leading to an error in the calculation of the squeez,g pump, and their waists are all locatedat0. The beams

ing level. _ , _defined in Eq(12) form an orthonormal set, where
The two aforementioned models share an important mis-

conception that deamplificatiofor squeezing assumes its "
maximum value at a phase differenée- — 7/2, the value 2f Gn(r,&)Gr(r,&)rdr=38,n. (13
given by the plane-wave theory. In Sec. IV, we show that the 0
0 value that maximizes deamplification dependd /ag, and
may differ from — /2 significantly. Overlooking this issue We use this orthonormal set to express the solution of the
results in an underestimation of the deamplification orinhomogeneous equation by allowing the mode amplitudes
squeezing levels by several dB. to be functions of. SubstitutingA(r, ) into Eq. (9), mul-

In our analysis, we express the signal field as a sum ofiplying both sides withGy,, and integrating over the trans-
orthonormal spatial modes, much like in the analysis of Laverse plane, we obtain,

pIW,
o

(11
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d sary to find the gain, we evaluate these matrices since this
d_gAm( §)=—12yexpiepy) form of the solution is particularly useful in bringing out the

phase dependence of the gain. To calculatentheolumn of
these matrices, we solve E@.5) for the initial condition

A(—&o)=expli ps)ay, (20

wherea,, is a unit vector whose only nonzero element is the

Equation(14) relates the rate of change of the amplitude ofnth e_I_eme_nt. The output vector corresponding to this initial
the mth mode to the amplitude of theth mode. Equation Ccondition is
(14) may be written in matrix form as

X > fmup(r,g)G;(r,g)G:(r,é)r dr|A7(8).
n=0 0

(14

g A(€0)=exqli o) 2, [ Muny—i eXpli 0)Nmsl. - (21
qGATTA (15 "
To obtain thenth column ofM andN, we solve the output

whereA is the Signa| vector whose elements are the modé/ector for two different initial condition phases, and use Eq

amplitudesA,(€), andT is a square coefficient matrix whose 17). . o _ o
elements are In our analysis, we use central finite differencing in the

direction to solve Eq(15). There are two sources of numeri-

2~ (M+n+1)(m4n)! iy explibp) cal error in these calculations. The first one is due to the
Ton=— ey Tia? finite step sizeA ¢, where the erroe obeys the inequality
Xexf —i(2m+2n+1)tan 2], (16) e<('yA§)32A—§§. (22

as a result of the integral in E¢l4). Therefore, the partial
differential equation of Eq.9) is now reduced to an ordinary
differential equation in matrix form.

The matrix element,, represents the coupling between
themth and thenth modes. The first factor in E¢16) shows

In our calculations, we choose the step size in such a way

that the error in the field amplitude is always less than

5x 10 4. The second source of error arises from truncating

the infinite sum of Eq(11) at a finite mode indexn=ms.

how the amplitude oT ,,, depends on the mode indices. The I—!owevgr, the structure .OT’“” allows us to represent the

fundamental mode at the input is coupled most strongly to'5|gnal f'elq accu_rately. with only the lower-order; modes,
when the input signal is composed of only a few lower-order

the fundamental mode at the output, and the coupling de .
creases monotonically as the output mode index increase _odes. Under these circumstances, the power that couples to

The denominator in the second factor signifies the deperF— e higher-order modesﬂ> ms)_ Is negligik_)Ie. We have cal-
dence of the coupling on the interaction distagcéhe cou- culated that when the input signal consists of only the fun-

pling between the modes decreaseg awreases, as a result damental mode, the first 20 modes at the output are sufficient

of decreasing pump intensity away from the beam waist alo represent the output signal field with an error that is a few

£=0. The last factor is a consequence of the Gouy phases ders of magnitude less than that due to the finite step size.
the pump, input, and output modes. This factor is presen ne method we have used to investigate the accuracy of our

even whenrm=n=0, resulting in a phase slip between the results is to check iNyy comes out to be a purely real quan-

pump and the fundamental mode of the signal, as shown iﬁ?z;’tﬁxcond't'on that is a consequencelobeing a Hermitian

Fig. 1. .
: ; : Once the elements dfl andN are found, the gain of the
The | f Eq.(15) all h I : ; !
solutignlggamy of Bq.(15) allows us to write the genera DOPA can be calculated for any input signal field. For an

arbitrary signal input represented by the vectof—&g)
— T .
A(&))=MA(— &) —i expid,)NA* (— &),  (17) =exp(o)po P1 P2 -1, wherep, are the coefficients of
(& (=6 i (=6 modal expansion, the small-signal gain of the DOPA can be
where M (1y,&,) and N(y,£,) are state transition matrices written as
that relate the output to the input signal field. In Appendix A,

0 © 2

we show thatM andN are symmetric and Hermitian matri- _ . *
ces, respectively. In Appendix B, we show thdtand N 9(0)_mz:0 ngo M mrPn €1 (6= /2) INmnpr
satisfy the relations (23
MM* —NN=I, (18  Note that at a fixed value af,=1/2z,, the gain depends on
both 6 and y. In Sec. IV, we use Eq(23) to calculate the
MN*—-NM=0, (199  gain for a Gaussian input signal, and examine the depen-

_ ) ) ) dence of the gain on the paramet@rsy, andl/z,.
wherel is the identity matrix.

Anglytical qxpressions foM and N do npt exist. How- lll. QUADRATURE SQUEEZING
ever, it is possible to calculate the output signal vegttd,)
for any specific initial conditiolA(— &) by solving Eq.(15) Squeezed states of the light field are most commonly gen-

numerically. Even though calculating andN is not neces- erated using DOPA’$2,5]. In this section, we consider the
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generation of squeezed vacuum states with a Gaussian-beam-When the DOPA is pumped by a Gaussian beam, the
pumped DOPA, and the detection of these states using a Ldput to the DOPA can be considered to be the set of all
beam of arbitrary profile. Our analysis shows that, the meakaguerre-Gaussian modes, each mode being in the vacuum
sured squeezing is equal to the classical deamplification exstate. The annihilation operators of the input modes are in-

perienced by an arbitrary input Signal to the DOPA, if thedependent of each Other' and hehéﬁyéﬁ]: 5mn_ Since all

conjugate of that input were to be used as the LO beam in thg _ . : S\ —
detection of squeezed vacuum generated by the same DOPﬁl.e |nplﬂt2modes are in the vacuum state, we Hawg) i 0
nd (Aap,)=1/4 for all n, where a,,=1/Za,exp(-i¢)

In particular, the maximum squeezing measured by a Gaus& X
ian LO beam is equal to the maximum deamplification that™H-C:] is the measured quadrature of thién mode.
can be achieved for a Gaussian input signal in a DOPA. Quantizing Eq(17) leads to
Therefore, the classical analysis described in Sec. Il can be R -~ ) -
directly used for calculating the squeezing measured at the b=Ma—i exp(i ¢,)Na', (29
output of a DOPA. . R

In the plane-wave theory of DOPA’s, quantizing E§)  wherea andb are the input and output annihilation operator

leads to the transformatidi®] vectors, respectively. Equatiq29) shows that each output
mode
b=pa—iexpi¢,) val, (24) "
£ ~ ) ~t
whereu and v are real quantities given by Eqgl) and(5), bm_nz«o Mmn@n =i expli dp)Nmnn (30

anda andb are the annihilation operators associated with the

input and output signal plane waves, respectively. When thés a weighted sum over all the input modes. The total output

input signal is in a vacuum state, the output signal is in asignal is

squeezed vacuum state. Homodyne detection provides a

measurement of the varian¢eoise in an arbitrary quadra- A “

ture of the squeezed field.2]. (In homodyne detection, a bs(r)=mZ_0 BmGm(r,&q) (31

coherent-state plane-wave LO of frequengeys mixed with -

the squeezed field, and the photon number of the resulting; e plane of detectiosi= ¢, .

f@eld is measurefl.A LO having a phase of measures the An arbitrary LO beam can be expressed as a sum of

field quadrature Laguerre-Gaussian modes. When all modes of the LO are in
coherent states, the total LO field can be written as

~ 1. -

a¢=§[aexrx—i¢)+afexrxi¢)]. (25) .
) a(r)= 2 AnGn(r,£0)d, (32
The input vacuum state has a mea,)=0 and a variance "

(Aad)=(a%)—(a,)?=1/4. The measured quadrature of the whereq,, are the complex constants of the mode expansion,
output squeezed vacuum state is andd is the annihilation operator corresponding to the co-
o i herent state LO. i
b¢=§exp(— ig)ut+iexp—if)v]at+H.c., (26 In balanced homodyne detection, the LO figlis mixed
with the squeezed fields, and measurements of the photon

where H.c. stands for the Hermitian conjugate of the firsthumbers of the resulting beams are realized by two detectors
term. This quadrature has a variance of whose photocurrents are subsequently subtract@ The

difference photocurrent operator is given by

(Ab%)=Z|u+iexp—io)v? @ i:zwf (blg+H.crdr. (33
0

which depends on the phase differertce ¢, —2¢ between . .
the pump and the LO. The ratio of the output and inputThe orthonormality of the Laguerre-Gaussian modes reduces

variances is defined as the squeezing parameter Eq. (33 to
@by LS ab'a
S(9)=<Aé§>=|,u+| exp(—i6)v|% (28 I_szzo Ombpd+H.c. (34)

Substituting Eq.30) into Eqg. (34), interchanging the order
of the summations, and using the properties tlais sym-
etric andN is Hermitian(see Appendix A we obtain

Maximum squeezing occurs d@= — /2 where S(6) as-

sumes its smallest value ofc v)?. In this case, the mea-
sured quantum noise of the squeezed state becomes lowd)
than the quantum limit by a factor &= 1/min{S(6)}. In the ©
plane-wave theory, the maximum classical deamplification 7 772 2 Qm[MﬁméHi exp(—i¢p)Nnmén]6I+H.c.

of the DOPA has the same value as maximum squeeRing n=0 m=0

i.e., ma{S(6)ymin{S()}=1. (35



PRA 60 ANALYSIS OF GAUSSIAN-BEAM DEGENERAE . .. 4127

When d is in a coherent statéa) with mean value 2

(a|d|a)=]|a|exp(d), the variance of the difference photo- 15
current is
10
o0 o0 2 a
(AT =722 | 3 Mo+ i expl—i0)Nprtm| |al? = s
n=0 |m=0 <
(36) 2o
g
o
provided|a|?>1. Since a vacuum state input yielda1?) -5

=m?|a|?, the squeezing parameter is

]

SOEDS

=0

]

Z%Mmﬂﬁ+@ﬂfﬂﬁ—WQHNmNn

2

, 1rj/2 T
(37) : . :
FIG. 2. DOPA gaing(6) (solid line) and squeezing parameter

where the dummy indicem andn have been interchanged. S(¢) (dashed lingas functions o9, wherey=4 andl/zo=1.
Comparing Eq(37) with Eq. (23), we note thayg(#) and

Equation(39) shows that there are contributions from all of

S(6) are given by identical expressionsgf=p} , and the ) .
sign of the phase termd( m/2) is reversed. We conclude the input r_nodes in a measurement of the output fundamental
mode. This effect is a direct consequence of GID.

SqUcoring parameter on' the phate difirence beween the AS SHoWn n Sec. ll, the squeezing setup analyzed here is
pump and the LO is identical to the dependence of the cla: fpggﬂlx\/,vietﬂu;\:]a:ﬁnattzithﬁa?nsllﬁlsb of the gain of a classical
sical gain of the DOPA on the phase difference between th P gnal g y

pump and the signal input, provided the LO has the conju- A= £2)=ex(i 100 ... 40

gate profile of the signal input. In the calculation of the clas- (=& Ridl I 40
sical gain we consider the coupling of a given set of modesn, this case, the classical small-signal gain expression of Eq.
at the input to all of the modes at the output, whereas fo{23) reduces to

squeezing we consider the coupling of all of the input modes

(each in the vacuum statéo a set of given output modes *

(determined by the LO begmThe equivalence between the g(6)= >, IM o+ expli (68— 7/2) INpmo| 2. 41
classical and quantum solutions is a consequence of having m=0
the pump focus at the center of the crystal. The classical
input and the LO beams are conjugates of each other sinric;Z
they are expressed on different sides of the pump focus. In %

In general, the value o6 depends on the parametets
and+y. The constant

Sec. IV, we use this equivalence to calculate the squeezing 3

; : 2d, [2w°zyP
parameter for a Gaussian LO, and examine the dependence y= 20| Apol = — Y (42)
of squeezing on the parametetsy, andl/z,. nc? TEQ

being proportional to the square root of pump poviRy

= mzoC?€g|Apo|?/Bw and the effective nonlinear coefficient
In a typical squeezing experiment, the LO used for homod., is a measure of how strongly the DOPA is pumped.

dyne detection is a Gaussian beam that has the same confo&&Pm an experimental point of view, however, the nonlinear

parameter as the pump. In other words, the LO beam drive defined as

IV. GAUSSIAN LOCAL OSCILLATOR

q(r)=Go(r,&g)d (38) D=

8w ) I 5
| (x IPp)=(Z—)y 43
7C€g 0

is identical to the fundamental Laguerre-Gaussian beam used

in the expansion of the signal field. In this section, we conds & more relevant parameter to investigate, since it is inde-
sider a Gaussian LO beam, and investigate the dependenceRgindent of the confocal parametgy. In a typical experi-
the measured squeezing level on various experimental p&nental setting, the maximum availati® is limited by the
rameters. In particular, we determine the limits imposed byaser power, the crystal length, and the effective nonlinear
GID on the maximum squeezing that can be measured. coefficient. On the other hand, it is usually possible to adjust

The Gaussian LO of Eq38) measures only thB, mode the value ofzy by changing the focused spot size of the

at the DOPA output, and the general expression of(@g. ~ PUMP beam.
for the squeezing parameter reduces to Figure 2 illustrates the phase dependences of the squeez-

ing parameter and the classical gain through an example
o where S(8) andg(6) are plotted as functions of the phase
0)= Mt exd —i(6—m/2)IN |2, 39 differenced for |/zo=1 andy=4. The minimum values of
S(6) m§=:0 Mo+ €xpf =i(6=/2) INmol 39 Sandg occur atés and 6, respectively, both points being
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FIG. 3. Maximum(amplification) and minimum(deamplification values of DOPA gairg(6), and the optimum phase differenég as
functions ofy; (a) 1/2y=0.1 and(b) 1/zy=1.

markedly different from— 7/2, the value predicted by the the phase fronts of the signal beam are distorted as the beam

plane-wave theories. Note that a false assumption that maxpropagates through the DOPA crystal. Here the fundamental

mum squeezingminimum S) occurs atd= — 7/2 results in  mode itself may be deamplified more than the overall beam;

an error that is greater than 15 dB. On the other hand, theowever, the coupling of the fundamental mode to the

phase separation between the maximum and minimum pointsigher-order modes results in an overall decrease in the

of Sis m, just as in the plane-wave theory. Furthermore, adeamplification. Also note that, the product of maximum am-

comparison of Eqs(23) and (37) shows thatfs+ 6,= — . plification and deamplification is close to unitgs in the

This relation, and the symmetry property gfand S with plane-wave theopyfor small values ofy, where GID effects

respect tod=— /2, are independent of the value ldz,. are less pronounced. However, for large valuey dhis is

This is a consequence of definirg at the center of the no longer true, and GID effects may become so large that

crystal. For the alternative definition at the input plane, ongy(#) may be greater than unity for all values 6f(for y

has .+ 09’]: — o+ 2tan 1(1/z,) instead. >15 in thel/zy=1 example. Figure 4 illustrates the phase-
Another important quantity is the sensitivity & #) to  front distortions due to GID, where the phase fronts of the

the fluctuations in the phase differenéabout its minimum  signal and the pump beams are shown fer4, I/z5=1,

point 6, in other words, the sharpness of the dip in Fig. 2.and6= ¢,. Note the increased divergence of the signal beam

In an experiment, the phase difference between the pump aridwards the output.

the LO beams fluctuates in time by a certain amount, even At a fixed value ofl/z,, the squeezing paramet&rde-

when active stabilization is employed. These fluctuationgpends on both¥ and y. In our analysis, we compute the

may wash out the squeezing level during the measurement

[8]. We define the normalized 1090.41 dB phase width of 4

the squeezing parameter &s A /27, whereA 6 is the full

width at 1.1migS}. (For the example shown in Fig. &

=8.3x10 3.) In an experiment, if the phase fluctuations be-

come larger thary, the maximum squeezing that can be 2
detected begins to deviate from 1/d8h significantly.
Therefore, it is desirable to operate at a lafyealue. o
Figure 3 shows the maximum classical amplification and % 0
deamplificatiof maximum and minimum values of( 8)] as

functions of y at1/z,=0.1 andl/z=1. The 6, values at

which the deamplification is maximized are also included in -2
the figure for eachy value. Note that, in the limit agy
approaches zerog, approaches the plane-wave theoretic

value of — /2, regardless of the value dfzy. This is ex- —4 s ‘ ‘

pected since in this regime GID effects disappéahe limit 05 —0.25 ﬂg 0.25 0.5
becomes dependent bfz, if the phase difference is defined 0

at the input plane. FIG. 4. Phase fronts of the pump and signal beams inside the

As vy is increased, the amplification of the DOPA in- nonlinear crystal illustrating distortions due to GID, wheye 4,
creases without bound. However, maximum deamplification/z,=1, and 6=¢,. The bounding curves show the beam radii
is achieved at a particular value of above which the deam- (1/e? of peak intensity. For clarity, the wavelength is exaggerated
plification decreases. This behavior is a consequence of GIRind the pump phase is shifted ky2.
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expected since GID effects are small in this regime. Squeez-
ing levels larger than 10 dB can be realized ffry<<0.04.
However, in this regime the nonlinear driize and hence the
pump power, required to obtain maximum squeezing are
very high. Also note that, the normalized phase widtlis
very narrow, less than>810 * for 1/z,<0.04.

Squeezing decreases with increasibigy up to I/z,
=0.3, while 6, deviates from— /2, the requiredD de-
creases, and increases. However fdrz,>0.3, squeezing
begins to increase while the requirBdevels off at about 12
dB. Even though$ begins to decrease from its maximum
value atl/z;=0.3, it nevertheless stays relatively high.
Squeezing levels in excess of 10 dB can be obtained with
relatively low nonlinear drive in the 081/z,<4.2 range. In
this regime, s is significantly different from— #/2, and§
stays greater tharn 5x 10" 3. The highest squeezing is 13.4
dB and occurs at/zy=1.6, where the optimunD is 12.3
dB, and6=5.2x10 3.

Even though squeezing in excess of 10 dB is possible for
1/2;<<0.04, the required nonlinear drive is likely to prohibit
working in this regime. The nonlinear drive required to
achieve 11.9 dB squeezing Hizo=0.01 is approximately
450 times that alt/zy=1.15(or 2.35 for the same squeezing
level. Furthermore, operating Btz,=0.01 requires a phase
stability that is 160 times better than thatlat,=1.15 (or
2.35. The advantages of working in the larige, regime are
clear.

A comparison of our formulation with previous models is
provided in Fig. 6. For two different/z, values, we plot
squeezingdeamplification as a function ofy using(A) the
model of Ref.[8], (B) the model of Ref[6], (C) our model
with 6= — /2, and (D) our model with §=6,. For the

andy values that minimize the squeezing parameter by using/z,=0.1 case in Fig. @), the results of Ref[8] (A) are
numerical optimization algorithms. Figure 5 shows the maxi-essentially reproduced by our model when we $et
mum possible squeezingleamplification as a function of
I/z5. The 6 and D values that maximize squeezing at eachat the samey. The model of Ref[6] (B), on the other hand,
I/z4 value are also included in the figure. Note that for eachoverestimates the squeezing level since the Gouy phase of
I/z4 value,D and y are related through Eq43). The nor-
malized phase widtld is also included in the figure.

For small values of/z,, the phase difference that maxi- levels of squeezing. On the other hand forthg=1 case in
mizes the squeezing levé is close to— m/2; this is as

— /2 (C), both predicting about the same deamplification

the pump is neglected in these calculations. When we set
to its optimum valuedy in our model O), we find higher

Fig. 60b), the formulation of Ref[8] (A) is no longer appli-

12 ! ! ! 12 ! ! ! !
(a) | iz, =0.1 (b) : : iz =
11| SRR ........................ ......................... ....................... 4 AOF oo .................. ................. .................... .................. p
D
@ 8_ ....................... ..................... ......................... ..................... < @ 8_ .................. .................. .......................................................... -
g : i : ~ j : D
o ; : : 2 / E
N By S P TN 1 N 6 R A J
[« ? ! : [)] : :
2 : ; i 3 i E
o : ‘\B : o : :
(/5] 4_ ................... ..................... N ..................... - [43] 4_ ............... ............... R R F R p
c \B
: A : : : c
2- ...................... ....................... ........................ ....................... - 2- ............... .................. .......................................................... <
A
0 1 I 1 0 1 1 ! !
0 20 40 60 80 0 2 4 6 8 10
v v

FIG. 6. Deamplification(or squeezinga function of y calculated usingA) the model of Ref[8], (B) the model of Ref[6], (C) our
model with = — 7/2, and(D) our model with6= 6; (a) 1/z,=0.1 and(b) |/z5=1.
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cable, since this model is valid only fofzy<1. The model V. MATCHED LOCAL OSCILLATOR
of Ref.[6] (B) would have been applicable in this large,

. . . . The main reason for using a Gaussian LO beam to detect
regime, had it contained the necessary Gouy phase and op'g- ueezing is experimental convenience. As a consequence of
mized the phase differenae We conclude that the squeez- d g b : 9

ing limits calculated in Ref[6] are not valid. On the other GID, however, a Gaussian LO is not matched to extract the

. ) . L maximum squeezing at the output of a Gaussian-beam
hand, the model of Ref8] is not apphcaple in the h'ngo. Pumped DOPA. A LO that is perfectly matched to the DOPA
regime where large levels of squeezing at low nonlinea

. . output would be a beam whose mode expansion coefficients
drive values are possible.

> . gn, Minimize S as given in Eq(37). There may also be LO
imT:r?aﬂgiglgww ifﬂttj:leeenz(i:r): ngoerﬂﬁ?gﬂi dlf;?(;t'ozaprll?g;ae beams that are matched better than a Gaussian but worse
mp queezing exp ) 4 .~ than a perfectly matched LO.
ficiency of 7, the relation between the generated squeezin

terS and th d - . 9 The use of matched LO beams for the detection of
gifil/r:rznsye[lz]an e measured squeezing paramé&grns quadrature squeezing was reported in two experiments

[10,11]. Both are based on generating a matched LO beam
with an OPA that is identical or similar to the one used for
Sn=7S+(1— 7). (44) generating squeezed vacuum. The idea is to mimic the phase
and amplitude distortions of the squeezed field on the LO
o beam so that the two beam profiles may match each other.
Therefore, measured squeezing is limited to #/(j), re- In this section, we investigate the generation of a matched
gardless of the value & S LO through the amplification of a Gaussian beam with a
The conditions for validity and the limitations of the popa that is identical to the one used for generating a
DOPA model described in this paper should be carefullysqueezed vacuum. We show that the squeezing measured
pointed out. The perfect phase-matching condition assumegith such a matched LO is equal to the amplification expe-
at the beginning breaks down whefz, is so large that the  rienced by the Gaussian beam input. In contrast to deampli-
beam divergence angle becomes comparable to or greatggation, amplification with a DOPA is not bounded for a
than the crystal acceptance angle. This is why we have limgayssian input, as shown in Fig. 3 and discussed in Sec. IV.
ited our investigation td/z,<10. (The acceptance angle of Therefore, the use of a matched LO beam alleviates the GID-
typical nonlinear crystals can be as large as a few degrees; #posed limits on squeezing.
I/zy value of 10 implies a pump beam divergence less than \we consider two identical DOPA's; the first one is used
2° at a pump wavelength of 500 nm ahd 10 mm) On the  for amplifying an input Gaussian beam, and the second one
other hand, our model assumes that there is no walk-off iﬂlor generating squeezed vacuum. The output of the first
the transverse plane between the pump and the signal beantsopA is then used to measure the squeezed vacuum at the
This condition is satisfied if noncritical phase matChing iSOutput of the second DOPA in a balanced homodyne con-
employed. However, for critically phase-matched DOPA'sfiguration. Later in this section, we discuss that the scheme
our model may not be accurate, depending on the magnitudghalyzed here is identical to the self-generated matched LO
of the walk-off angle. Furthermore, our model is only ap- experiment reported in Refl1], and approximately valid
proximately valid for type-ll phase-matched DOPA's. A for the nondegenerate ORNOPA) experiment of Ref[10].
more accurate analysis should consider the signal and idler The Gaussian input to the first DOPA is represented by

modes separately during the interaction, and combine thefihe initial condition given in Eq(40). Using Eq.(17), the
at the output. Modeling of pulsed DOPA’s should take thegytput field can be written as

temporal profiles of the pulses into account.

The results shown in Fig. 5 do not reflect the absolute A(&g)=May+exdi(6,— m/2)]Nag, (45
limits of squeezing even within the confines of our model. In
the beginning of our analysis, we assumed that the confoca¥here the unit vectorap=[1 0 0 ---]T, and 01= bp1
parameters of the signal and pump beams are equal. How-2¢g is the phase difference between the pump and the
ever, we have found that by allowing the signal and theinput signal of this DOPA. The gain is given by E41), and
pump to have different, values, it is possible to increase the equal tog(6,)=|A(&y)|?, since the input signal has unity
squeezing level, as previously noted in H&f. For example amplitude. Note thag(6;) assumes its maximum value at
atl/zo=1.6 where squeezing is maximum in Fig. 5, having a6, = 64+ 7.
0.91 ratio between the confocal parameters of the signal and The output beam given in E@45) is used as the LO to
the pump beams improves squeezing by 0.7 dB. Furthedetect squeezing at the output of the second DOPA. The
more, placing the pump focus at the center of the crystal maynode expansion coefficients of the LO beam are the ele-

not be the optimum strategy eithief]. ments of the vector
In summary, to achieve large levels of squeezing in an
experiment where the LO is a Gaussian beam, it is necessary _ A(%)
to choosd/zy~ 1.6 and adjust the pump power to realize the a= IACEDN (46)

corresponding optimunD value (approximately 12 dB

This strategy requires much less pump power and phase stilote that, even though the quantum state of this LO beam is
bility compared to working in the weak focusitigmalll/z,) not a coherent state, E¢37) is still valid since any excess
regime. A squeezing experiment using a Gaussian LO is cd-O noise is canceled in the balanced homodyne configura-
pable of achieving about 13 dB of squeezing, provided theré¢ion [11,13. Using Eq.(37), the squeezing detected by the
is adequate phase stability and high quantum efficiency. matched LO beam can be written as
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FIG. 7. Squeezing measured with a matched local oscillator as a w10

function ofl/z, at constant nonlinear drive valuBsranging from O
to 16 dB in 2-dB increments.

. 5 0 5 10 15
S(61,6,)=|IMa* +exd —i(6,— w/2)INq’,  (47) D (dB)

=]
I8

where 6,=¢,,—2¢ is the phase difference between the FIG. 8. (a) Maximum squeezingb) optimuml/z,, and(c) nor-

pump of the second DOPA and the LO. Note that, themalized phase widtl# as functions of available nonlinear drize

squeezing parameter depends on b@ttand 6,. - .

Substituting Eq(46) into Eq. (47) and using the proper- have bOth. been (_3pt|m|zed at.ealﬁhand |z point. Fo_r a

ties MN* —NM=0 andMM* —NN=1 (see Appendix B fixed ponllnear drlv_eD, squeezing increases rapld!y with in-

the squeezing parameter becomes creasingl/z,, reaching a maximum at some relatively large
value ofl/z,. The peak of each curve in Fig. 7 represents the

maximum possible squeezing that can be achieved at that

S(6y,60,)= {1+ exd —i(6,— 6,)]}MM* &, nonlinear drive value. Figure 8 shows the maximum possible
IA(&o)IP squeezing and the optim&lz, value as functions of the
+{exi] —i(0,— /2)] available nonlinear driv®. The normalized phase widihis

1 also given at each nonlinear drive. For the rang® afalues
+exd —i(6,— 7/2)]IMN*a, covered in Fig. 8, the optimuriiz, is in the 1.4-2.4 range.
Therefore, we conclude that, just as in the case of a Gaussian
—exd —i(6,— 01)11ag|?. (48 LO, operating in the largé/z, regime is desirable when
using a matched LO as well.
Regardless of the value @, the LO phasep, and hence The advantages of detection with a matched LO rather
6>, can be adjusted so th&— 6, =, at which point EqQ.  than a Gaussian LO are clear. In the matched LO case, the
(48) reduces to squeezing that can be measured is only limited by the avail-
able nonlinear driv®, whereas in the case of a Gaussian LO
S(01) 1 1 49) it is limited to about 13 dB because of GID. A comparison of

Figs. 8 and 5 provides some quantitative insight into the
advantages of using a matched LO. With a Gaussian LO, a
Note that, Eq.(49) is the minimum of Eq(48) when 6, is nonlinear drive of 12 dB is needed for generating about
held constant and, is varied. Equatiorf49) shows that the 13-dB squeezing. The use of a matched LO, on the other
measured squeezing level is identical to the classical gain.hand, yields a squeezing level of 18.4 dB at the same non-
Equation(49) assumes its lowest value when the gain oflinear drive. On the other hand, the quantum efficiency of
the first DOPA is maximized by adjustings so that 6, homodyne detectiom may be the real limiting factor in an
= 04+ m. We conclude that the highest squeezing level meaeXxperimental situation. In such a case, using a matched LO
sured by the matched LO is equal to the maximum amplifi{or any other method that increases squeezimguld not

AP 900

cation experienced by the Gaussian beam input, i.e., improve the measured squeezing level much. For example, if
7n=0.8, the 5-dB increase in squeezing gained by using a
R=maxXg(6,)}. (50 matched LO shrinks to a mere 0.5 dB in measured squeez-

ing.

The maximum amplification that can be achieved with a The analysis presented in this section applies directly to
DOPA is not bounded for a Gaussian input be@®ee Fig. the self-generated matched LO experiment reported in Ref.
3). Therefore, squeezing is limited only by the available non{11]. In this experiment, a type-ll phase-matched OPA is
linear driveD. used for generating squeezed vacuum. The signal mode of
Figure 7 shows the maximum squeezing level as a functhe squeezing DOPA is polarized at-a45° angle to the
tion of I/z, at a number of fixed values, whered; andé,  signal and idler modes of the type-ll OPA. However, the
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nondegeneracy in polarization allows this OPA to be used adB of squeezing can be generated with much less pump
two identical DOPA'’s that have orthogonally polarized sig- power. Another advantage of operating in this regime is the
nal modeq11]. A Gaussian input to the orthogonally polar- reduced phase stability requirements in the experimental
ized DOPA mode facilitates the generation of a matched LGsetup, as reflected in the much larger phase-width vasues
by the same OPA. Note that the self-generated LO scheme In this paper, we have also investigated the generation and
cannot be used with type-l DOPA’s. However, an identicaluse of matched LO beams in the detection of squeezed
but separate DOPA can still be used for generating aacuum at the output of a Gaussian-beam pumped DOPA. A
matched LO beam. matched LO generated by amplifying a Gaussian input signal
In the experiment reported in R¢fL0], squeezing is gen- with a DOPA is found to alleviate GID-induced limits on
erated with a type-ll OPA similar to the one in R¢L1l].  squeezing. In this scheme, we found that the measured
However, in this experiment the idler output of a NOPA is squeezing is equal to the classical amplification of the LO-
used as the matched LO beam. Analyzing this configurationgenerating DOPA, and is limited only by the available pump
we have found that this LO beam is matched to the squeezqubwer.
field much better than a Gaussian LO, although not as good
as the self-generated LO. However, the difference between ACKNOWLEDGMENTS
the two matched LO’s is minimal when the classical gain of
the LO generating OPA is high. This is as expected, since the The authors wish to thank Dr. E. Sezer and Dr. I. Aksun
difference between the idler and signal fields decreases rafr valuable discussions.
idly with increasing gain.
In summary, a matched LO beam can be generated usingPPENDIX A: M IS SYMMETRIC AND N IS HERMITIAN
a DOPA that is identical to the one used for generating . . .
squeezed vacuum. The squeezing that can be generated anofn this appendix, we show that the matridédsandN that

detected with such a setup is limited only by the available?PP€ar in EQ(17) are, respectively, symmetric and Hermit-

nonlinear drive, the phase stability, and the quantum effilan: provided that
ciency. T
T=—— (A1)
—iexpli¢p)

i ] satisfies the conditions
In this paper, we have presented a detailed and accurate

VI. CONCLUSION

model of squeezed-state generation using Gaussian-beam T(=&€=T'*(§), (A2)
pumped DOPA's. This model incorporates diffractive effects
resulting from transverse gain variations in the tight focusing TT=T", (A3)

regime as well as the weak.

The theoretical framework of this paper has shown thawhereT is the coefficient matrix of E¢(15). Since the beam
for a Gaussian-beam pumped DOPA, there is a formawaist of the pump is located at the center of the nonlinear
equivalence between the classical small-signal gain and theystal, these conditions are satisfied by the coefficient ma-
squeezing parameter, just as in the plane-wave theory. Adrix whose elements are given in EG.6).
cording to this, the classical deamplification experienced by Consider the solution of
an arbitrary input signal beam is equal to the measured
squeezing, when the conjugate of this beam is used as the iAzT’A* (A4)

LO in the homodyne detection of squeezed vacuum gener- dé¢ '
ated by the same DOPfexcept for a shift in phase

Applying our formalism to the case of a Gaussian LOwhere the elements oA and T’ are complex quantities.
beam, we found that in general the phase difference thdtquation(A4) can be converted to an equation involving
maximizes squeezing depends on the ratio of the crystainly real quantities using
length to the confocal parameter of the pump bedfryj.

Even though this phase difference is close to the plane-wave A=X+I1Y, (A5)
theoretic value of- 7/2 for weak focusingl(zy<1), it de- ) )

viates from this value significantly as the focus becomes T'=U+iv (A6)
tighter. More significantly, the squeezing predicted at at ield

phase difference of /2 is usually several dB lower than oye

that at the optimum phase difference. This behavior is not d [X U Vv IIx

particular to the Gaussian LO case, but applies to any LO _[ }:[ } (A7)

In the Gaussian LO case, GID effects impose a limit on ] ) ) )
the maximum squeezing that can be achieved. This limit del he linearity of Eq(A7) allows us to write the solution at
pends on the value dfz,, and achieving it requires a spe- 9iven the initial condition ag” (£>¢"), using a state tran-
cific pump power(nonlinear drive. In the weak focusing Sition matrixy(¢,¢') as
regime, even though the limit on squeezing is not stringent, ) , ,

o Y i o X<§>} [wn@,f R >HX<§ )

the pump power required to achieve it is prohibitively high.
In the tight focusing regime, choosirgz,~1.6, about 13 Y(¢) Por(€,€") ol E,E) || Y(E)

} . (A8)
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For the problem at hand, the initial condition is specified atand using the transformatioA’=A exp(¢,/2— 7/4), Eq.
&= —¢, and the solution is sought &t=¢,. Therefore, a (Al7) is converted to
new state transition matrix can be defined ¥4 ¢&)

=i(&y,— &p). Taking the derivative of¥'(&,) and using d
Egs.(A2) and (A3), we obtain d—gA’ =T'A’*. (A18)
d [Py, \Iflz} u Vv H\PH \Iflz} From Eq.(A14), the solution ofA’ is found to be
doltar Wal 1V —0llYa A'(£)=MA'(~£) +NA* (~£&),  (A19)
’ — e + ' _ ,
qul \Plz U _V 0 0 0
+ W, Wall-V —U|’ (A9)  from which we can write the solution @ as
We define a new matrik=%—P WP, where A(&))=MA(— &) —iexpli pp)NA* (—£p). (A20)
I 0 APPENDIX B: MM*—=NN=I1 AND MN*-NM=0
P= , (A10)
0 I The general solution of Eq4A4) as given in Eq(A8) can

andl is the identity matrix. The matriX’ satisfies be rewritten in complex form as

d Ty Tyl [U VT Ty A(§,E)=M(&ENA(=E)+N(EENA (=€), (BD)
dé, Iy FZJZ[V —U} Iy FZJ Substituting Eq(B1) into Eq. (A4), we obtain
oI r”} v _V} ALl d
Ty Tl -v —u| ALY GEMEE)=TN (68, (B2)

Note thatWw(0)=I1 when &=0, which implies thatl’(0)
=0. With this initial condition, the solution of EqA11) d
becomesl’(£,)=0 for all £&,. Using the defining equation d—gN(f,é'FT'M*(f,é')- (B3)
for I', we can write
The initial conditions are

\I}ll q’lZ _ \I}-]I.—l _"I,-Zrl (A]_Z)
Uy Uy |-W], ¥, M(§,§) =1, (B4)
Therefore, the solution of EqA4) can be rewritten as N(¢&',E)=0. (B5)
X(&) V(&) Wil [X(—&) Using Egs.(B2) and(B3), and the fact thal’ is symmetric,
= T { , (A13)  we obtain
Y(&o)| | —¥ié0) WarAéo) ]l Y(—&o)
i d
or, in complex form, as d_g(MTM* ~N'N)=0, (B6)
A(&o)=MA(—= &) +NA* (= &), (A14)
where the matricem andN are given by Ol%(MTN* —~N™™M)=0. (B7)
Ui+ Vo VitV Using Eqgs.(B4), (B5), (B6), and(B7), we end up with
= 7 i , (A15)
MTM* —NTN=I, (B8)
\Iill_\PZZ . \PIZ_ \P-]I.—Z
N:< 2 +1 2 . (A16) MTN*_NTM:O. (Bg)
As a consequence of EGA12), the matricesM and N are When the pump focus is at the center of the interaction,
found to be symmetric and Hermitian, respectively. the results of Appendix A can be used to write E@S8) and
The solution of Eq(15) can be obtained using the solu- (B9) as
tion of Eq. (A4). Rewriting Eq.(15) as
MM* —NN=1, (B10)
d
A — i ; Ak
dgA i expligp) T'A*, (A17) MN* —NM=0. (B11)
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