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Abstract Active snake contours and Kohonen’s self-orga-
nizing feature maps (SOMs) are employed for representing
and evaluating discrete point maps of indoor environments
efficiently and compactly. A generic error criterion is de-
veloped for comparing two different sets of points based
on the Euclidean distance measure. The point sets can be
chosen as (i) two different sets of map points acquired with
different mapping techniques or different sensing modali-
ties, (ii) two sets of fitted curve points to maps extracted
by different mapping techniques or sensing modalities, or
(iii) a set of extracted map points and a set of fitted curve
points. The error criterion makes it possible to compare the
accuracy of maps obtained with different techniques among
themselves, as well as with an absolute reference. Guide-
lines for selecting and optimizing the parameters of active
snake contours and SOMs are provided using uniform sam-
pling of the parameter space and particle swarm optimiza-
tion (PSO). A demonstrative example from ultrasonic map-
ping is given based on experimental data and compared with
a very accurate laser map, considered an absolute reference.
Both techniques can fill the erroneous gaps in discrete point
maps. Snake curve fitting results in more accurate maps
than SOMs because it is more robust to outliers. The two
methods and the error criterion are sufficiently general that
they can also be applied to discrete point maps acquired
with other mapping techniques and other sensing modali-
ties.
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1 Introduction

Autonomous robots must be aware of their environment and
interact with it through sensory feedback. The potential of
simple and inexpensive sensors should be fully exploited for
this purpose before more expensive alternatives with higher
resolutions and resource requirements are considered. Ultra-
sonic sensors have been widely employed because of their
accurate range measurements, robustness, low cost, and sim-
ple hardware interface. We explore the limits of these sen-
sors in mapping through intelligent processing and repre-
sentation of ultrasonic range measurements. When coupled
with intelligent processing, ultrasonic sensors are a useful
alternative to more complex laser and camera systems. Fur-
thermore, it may not be possible to use the latter in some en-
vironments due to surface characteristics or insufficient am-
bient light. Despite their advantages, the frequency range at
which air-borne ultrasonic transducers operate is associated
with a large beamwidth that results in low angular resolution
and uncertainty at the location of the echo-producing fea-
ture. Furthermore, ultrasonic range maps are characterized
by echo returns resulting from multiple and higher-order re-
flections, cross-talk between transducers, and noise. These
maps are extremely inefficient and unintuitive representa-
tions of even the simplest environmental structures that gen-
erate them. Thus, having an intrinsic uncertainty of the ac-
tual angular direction of the range measurement and being
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prone to the various phenomena mentioned above, a consid-
erable amount of processing, interpretation, and modeling of
ultrasonic data is necessary.

In this paper, we propose two approaches for efficiently
representing and evaluating discrete point maps of an envi-
ronment obtained with different ultrasonic arc map (UAM)
processing techniques. The first approach involves fitting
active snake contours (Kass et al. 1987) to the processed
UAMs. Snakes are inherently closed curves suitable for rep-
resenting the features of an environment on a given map. The
second approach involves fitting Kohonen’s self-organizing
feature maps (SOMs) (Kohonen 1982) (which can be im-
plemented as either closed or open curves, using the posi-
tions of map points as input features) to an artificial neural
network. In ultrasonic maps, gaps frequently occur where a
number of contiguous points are marked as empty despite
the fact that they are occupied. Both approaches generate
parametric curves that fill the erroneous gaps between map
points and allow the map to be represented and stored more
compactly and smoothly, with fewer points and using a lim-
ited number of parameters. These methods also make it pos-
sible to compare the accuracy of maps acquired with differ-
ent techniques or sensing modalities among themselves, as
well as to an absolute reference.

In earlier work, there have been two basic approaches to
representing ultrasonic data: feature-based and grid-based.
Grid-based approaches do not attempt to make difficult geo-
metric decisions early in the interpretation process, unlike
feature-based approaches that extract the geometry of the
sensor data as the first step. As a first attempt to feature-
based mapping, several researchers have fitted line segments
to ultrasonic data as features that crudely approximate the
room geometry (Crowley 1985; Gex and Campbell 1987;
Drumheller 1987). This approach proves to be difficult and
brittle because straight lines fitted to time-of-flight (TOF)
data do not necessarily match or align with the world model,
and may yield many erroneous line segments. Improving
the algorithms for detecting line segments and including
heuristics do not really solve the problem. A more phys-
ically meaningful representation is to use regions of con-
stant depth (RCDs) as features, which are circular arcs from
specularly reflecting surfaces that are natural features of the
raw ultrasonic TOF data. These arcs were first reported in
Kuc and Siegel (1987) and further elaborated on in Leonard
and Durrant-Whyte (1992). They are obtained by placing
a small mark along the line of sight at the range corre-
sponding to the measured TOF value. In specularly reflect-
ing environments, an accumulation of such marks usually
produces arc-like features. As a more general approach that
is not limited to specularly reflecting surfaces, the angu-
lar uncertainty in the range measurements has been repre-
sented by UAMs (Başkent and Barshan 1999) that preserve
more information (see Fig. 3(a) for a sample UAM). Note

that the arcs in the UAM are uncertainty arcs and different
than the arcs corresponding to RCDs. The UAMs are ob-
tained by drawing arcs spanning the beamwidth of the sen-
sor at the measured range, representing the angular uncer-
tainty of the object location and indicating that the echo-
producing object can lie anywhere on the arc. The proba-
bility of the reflection point being in the middle of the arc
is the largest, symmetrically decreasing towards the sides.
In the literature, the probability of occupancy along the
arc has been modeled by Elfes heuristically (Elfes 1987;
Barshan 2007).

Thus, when the same transducer transmits and receives,
all that is known is that the reflection point lies on a circular
arc of radius r , with a larger probability in the middle of
the arc. More generally, when one transducer transmits and
another receives, it is known that the reflection point lies on
the arc of an ellipse whose focal points are the transmitting
and receiving elements. The arcs are tangent to the reflecting
surface at the actual point(s) of reflection.

Completely specular and completely diffuse (Lambertian)
reflection are both idealizations corresponding to the two
extreme cases of the actual spectrum of real reflection char-
acteristics. These two extrema are unreachable in practice
and many real environments are, in fact, compositions of
both specularly and diffusely reflecting elements. Compared
to RCDs, constructing UAMs is more generally applica-
ble in that they can be generated for environments com-
prised of both specularly and diffusely reflecting surfaces
as is the case for many typical indoor environments. On
the other hand, RCDs are structures that occur in environ-
ments where specular reflections are dominant. In earlier
work, techniques based on the Hough transform have been
applied to detect line and point features from arcs for both
airborne and underwater ultrasonic data (Tardós et al. 2002;
Ribas et al. 2007).

In Barshan (2007), the directional maximum technique
for processing UAMs was introduced and its performance
compared with existing techniques, listed in Table 1. Voting
and thresholding (VT), directional maximum (DM), mor-
phological processing (MP), and modified arc-transversal
median (ATM-mod) techniques were proposed by our re-
search group; the remaining techniques were developed by
other researchers working on ultrasonic sensing. The direc-
tional maximum technique was shown to result in more ac-
curate maps of the environment and proved superior in elim-
inating artifacts and outliers of the UAM. Each processed
UAM is comprised of a collection of (usually a large number
of) discrete map points. However, most resulting processed
UAMs still contain outlier map points due to cross-talk, mul-
tiple and higher-order reflections, and noise. Some of the
techniques listed in Table 1 process UAMs in such a way
that crucial map information is lost, resulting in sparse maps
or maps with several erroneous gaps.
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Table 1 UAM processing techniques used in this study and their in-
dices

k UAM processing technique

1 Point marking (PM) (Kuc and Siegel 1987)

2 Voting and thresholding (VT) (Barshan 1999)

3 Directional maximum (DM) (Barshan 2007)

4 Morphological processing (MP) (Başkent and Barshan 1999)

5 Bayesian update (BU) (Elfes 1987)

6 Arc-transversal median (ATM-org) (Choset et al. 2003)

7 Modified ATM (ATM-mod) (Barshan 2007)

8 Triangulation-based fusion (TBF) (Wijk and Christensen 2000b)

In this paper, active snake contours and Kohonen’s self-
organizing maps are employed to compactly and efficiently
represent and evaluate the results of processing UAMs by
each technique. Representing the map points with snake
curves or SOMs allows us to compare maps obtained with
different techniques among themselves, make an assessment
of goodness of fit, and compare the results with an absolute
reference. For these purposes, we develop and employ a
generic error criterion that can be used to compare two dif-
ferent sets of points based on the Euclidean distance mea-
sure. The two sets of points can be (i) two different sets of
map points acquired with different mapping techniques or
different sensing modalities (e.g., ultrasonic data and laser
data), (ii) two sets of fitted curve points (e.g., two snake
curves) to maps extracted by different mapping techniques
or different sensing modalities, or (iii) a set of extracted map
points and a set of curve points fitted to them (i.e., assess-
ing goodness of fit). Through the use of a demonstrative
example, a comparison with a very accurate laser map of
the same environment (considered an absolute reference) is
provided based on the error criteria defined. The two ap-
proaches are shown to be capable of fitting accurately to fea-
tures with high curvature, such as edges and corners, as well
as smoother features, such as planar walls, in typical indoor
environments. They can be conveniently employed to fill the
erroneous gaps in discrete point maps. The two approaches
are sufficiently general that they can also be applied to dis-
crete point maps acquired with other mapping techniques
and other sensing modalities.

This paper is organized as follows: In Sect. 2, a generic
error criterion for comparing two different sets of points
based on the Euclidean distance measure is presented. Sec-
tions 3 and 4 provide some background information on ac-
tive snake contours and SOMs, respectively. In Sect. 5, we
provide a physical interpretation and guidelines on select-
ing and optimizing the parameters involved in the two ap-
proaches, employing uniform sampling of the parameter
space and particle swarm optimization. In Sect. 6, the details
of representing the extracted map points using active snake

contours and SOMs are provided. The error criterion is used
in three different ways to evaluate map accuracy. Using the
best-fitting parameter values, the results based on real exper-
imental data are presented. Section 7 provides a discussion
and Sect. 8 concludes the paper by providing some direc-
tions for possible extensions of this work.

2 The error criterion

Let P ⊂ R
3 and Q ⊂ R

3 be two finite sets of arbitrary points
with N1 points in set P and N2 points in set Q. We do not
require the correspondence between the two sets of points
to be known. Each point set could correspond to either (i) a
set of map points acquired by different mapping techniques
or different sensing modalities (e.g., laser, ultrasonic, or in-
frared map points), (ii) discrete points corresponding to an
absolute reference (the true map), or (iii) some curve (in
2-D) or shape (in 3-D) fit to the map points (e.g., polynomi-
als, snake curves, or spherical caps). The absolute reference
(or ground truth) could be an available true map or plan of
the environment or could be acquired by making range or
time-of-flight measurements through a very accurate sens-
ing system.

The well-known Euclidean distance d(pi ,qj ) :
R

3 ×R
3 → R

≥0 of the ith point in set P with position vector
pi = (pxi,pyi,pzi)

T to the j th point qj = (qxj , qyj , qzj )
T

in set Q is given by:

d(pi ,qj ) =
√

(pxi − qxj )2 + (pyi − qyj )2 + (pzi − qzj )2

i ∈ {1, . . . ,N1}, j ∈ {1, . . . ,N2} (1)

In Barshan (2008), we consider and compare three dif-
ferent metrics to measure the similarity between two sets of
points, each with certain advantages and disadvantages. In
this work, we use the most favorable of them to measure the
closeness or similarity between sets P and Q:

E(P−Q) = 1

2

(
1

N1

N1∑
i=1

min
qj ∈Q

{d(pi ,qj )}

+ 1

N2

N2∑
j=1

min
pi∈P

{d(pi ,qj )}
)

(2)

According to this criterion, we take into account all points
in the two sets and find the distance of every point in set
P to the nearest point in set Q and average them, and vice
versa. The two terms in (2) are also averaged, so that the cri-
terion is symmetric with respect to P and Q. If the two sets
of points are completely coincident, the average distance be-
tween them will be zero. If one set is a subset of the other,
there will be some error. Had an asymmetric criterion been



154 Auton Robot (2010) 29: 151–168

employed, say, including only the first (or the second) term
in (2), the error would have been zero when P ⊂ Q (or
Q ⊂ P ). Gaps occurring in the maps and sparsity are pe-
nalized by the error criterion, resulting in larger errors on
average.

The error criterion we propose is sufficiently general that
it can be used to compare any two arbitrary sets of points.
This makes it possible to compare the accuracy of discrete
point maps acquired with different techniques or sensing
modalities with an absolute reference, as well as among
themselves, both in 2-D and 3-D. When curves or shapes
(e.g., lines, polynomials, snakes, spherical or elliptical caps)
are fitted to the map points, the criterion proposed here also
enables us to assess the goodness of fit of the curve or shape
to the map points. In other words, a fitted curve or shape
comprised of a finite number of points can be treated in ex-
actly the same way.

3 Fitting active snake contours to UAMs

A snake, or an active contour, first introduced by Kass et
al. (1987), can be described as a continuous deformable
closed curve. Active snake contours have been commonly
used in image processing for edge detection and segmen-
tation (Kass et al. 1987; Menet et al. 1990; Cohen 1991;
Cohen and Cohen 1993), and have been mostly classified
into three categories (Jacob et al. 2004):

• point-based snakes, where the curve is represented as a
collection of discrete points,

• parametric snakes, where the curve is described using
combinations of basis functions, and

• geometric snakes, where the curve is represented as a
level set of a higher-dimensional surface.

This classification is not universal and many authors cat-
egorize snakes merely into two, namely parametric and geo-
metric, with the first category stated above considered a spe-
cial kind of parametric snake. The snake used in this study
belongs to the first category. The variants of snakes are ana-
lyzed in a unified manner in Liang et al. (2006).

We define a snake as a parameterized closed curve v(s) =
[px(s),py(s)]T , s ∈ [0,1], where px(s) and py(s) are func-
tions representing the Cartesian coordinates of the snake in
2-D and s is the normalized arc length parameter of the
snake curve. This parameterization is dimensionless. The
deformation of the snake is controlled by internal and ex-
ternal forces. Internal forces impose elasticity and rigidity
constraints on the curve, whereas external forces stretch or
shrink the curve to fit to the image data. The total energy of
the snake curve is given by the functional

Esnake =
∫ 1

0
[Eint(v(s)) + Eext(v(s))] ds (3)

The internal energy component is given by

Eint(v(s)) = 1

2

(
α

∥∥∥∥
d(v(s))

ds

∥∥∥∥
2

+ β

∥∥∥∥
d2(v(s))

ds2

∥∥∥∥
2)

(4)

where α is the elasticity parameter and β is the rigidity para-
meter, and ‖ · ‖ denotes the 2-norm. The first derivative term
in (4) penalizes long curves, whereas the second derivative
term penalizes sharp curvatures. This internal energy defi-
nition is used in many applications, possibly with varying
α(s) and β(s). The use of other internal energy expressions
is not very common.

The external energy component is denoted by
Eext(v(s)) = U(v(s)), where U is a potential function that
depends on the image data. In general, the potential function
can be selected in different ways, depending on the applica-
tion. However, it must be at minimum on the edges of the
image if the snake is to be used for edge detection, segmen-
tation, or finding the boundaries of an environment as in
our application. Kass et al. (1987) suggest using the nega-
tive of the image gradient magnitude as a potential function.
However, this is only feasible if the snake is initialized close
to the image boundaries, otherwise the snake curve would
be stuck in local minima or a flat region of the potential
function. Filtering the image with a Gaussian low-pass fil-
ter is also suggested in the same paper to increase the cap-
ture range of the snake, but this causes the edges to become
blurry, thus reducing map accuracy. In black-on-white and
gray-level images, the image intensity can be used as the
potential function, either in binary form or convolved with
a Gaussian blur (Cohen 1991). Obviously, this method also
suffers from the drawbacks stated above. Another solution,
proposed in Cohen and Cohen (1993), is using a distance
map as a potential function to increase the capture range of
the contour, which is the approach used in this study.

In this work, we chose to use a potential function for
the external energy term based on the Euclidean distance
map, as suggested in Cohen and Cohen (1993). Although
our problem is in 2-D, let us first make a more general def-
inition of a distance map in 3-D. Let Q ⊂ R

3 be a finite set
of arbitrary points. For all points p of the mapped region, we
define a distance map DQ(p) : R

3 → R
≥0 between a point

p and set Q as the minimum of the Euclidean distances of
that point to all the points in the set Q. That is,

DQ(p) = min
qj ∈Q

{d(p,qj )} j ∈ {1, . . . ,N2} (5)

where qj is the position vector of the j th point in the set Q.
According to this definition, the two summands in (2) are,
in fact, nothing but distance functions and the error criterion
can be rewritten as:

E(P−Q) = 1

2

(
1

N1

N1∑
i=1

DQ(pi ) + 1

N2

N2∑
j=1

DP (qj )

)
(6)
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Computing the Euclidean distance map is costly, and
a number of algorithms and other distance functions have
been proposed in the literature to approximate it (Borgefors
1986; Rosenfeld and Pfaltz 1968). In this study, the Euclid-
ean distance map is implemented in its original form and the
potential function is chosen as:

U(p) = DQ(p) = min
qj ∈Q

{d(p,qj )} j ∈ {1, . . . ,N2} (7)

for all points p of the mapped region and a point set Q.
Approaches that do not use a potential function as the ex-

ternal energy term also exist in the literature (Xu and Prince
1998). Such approaches relax the constraint that the exter-
nal forces pulling the snake towards the edges should be
conservative, i.e., derived from a potential field. For exam-
ple, Xu and Prince (1998) define a non-conservative force
field representing the external forces and use force-balance
equations rather than an energy-based approach to solve the
problem.

With the above definitions of external and internal en-
ergy, calculus of variations can be used to find the curve
that minimizes the energy functional in (3). The minimiz-
ing curve should satisfy the following Euler-Lagrange equa-
tion (Kass et al. 1987):

α
d2v(s)

ds2
− β

d4v(s)

ds4
− ∇U(v(s)) = 0 (8)

Although it may be possible to solve this equation analyt-
ically for some special cases, a general analytical solution
does not exist. The common practice is to initialize an ar-
bitrary time-dependent snake curve v(s, t). Equation (8) is
then set equal to the time derivative of the snake, where a
solution is found when the time derivative vanishes. That is,

α
∂2v(s, t)

∂s2
− β

∂4v(s, t)

∂s4
− ∇U(v(s, t)) = ∂v(s, t)

∂t
(9)

These equations are then discretized to find a numeri-
cal solution. The snake is treated as a collection of discrete
points joined by straight lines and is initialized on the im-
age. Approximating the derivatives by finite differences, the
evolution equations of the snake reduce to the following:

px(n + 1) = (A + γ I)−1
(

γ px(n) − κ
∂U

∂px

∣∣∣∣[px(n),py(n)]

)

(10)

py(n + 1) = (A + γ I)−1
(

γ py(n) − κ
∂U

∂py

∣∣∣∣[px(n),py(n)]

)

(11)

Here, n is the current time (or iteration) step, px(n) and
py(n) are vectors representing the positions of the collec-
tion of discrete points on the snake at time n, γ is the Euler

step size, and κ is a weight factor for the external force. I is
the identity matrix of the appropriate size and A is a penta-
diagonal banded matrix that depends on α and β . The sizes
of the matrices A and I are determined by the number of
points on the snake, which may change as the algorithm is
executed.

4 Fitting self-organizing maps to UAMs

Another method used in map representation and in eval-
uating the different techniques is the self-organizing map
introduced by Kohonen (1982), which is basically an ar-
tificial neural network that uses a form of unsupervised
learning, and is suitable for applications where the topol-
ogy of the data is to be learned. Robots that learn the en-
vironment structure using artificial neural networks are re-
ported on in Kurz (1996) and Yamada (2004). SOMs for
curve and surface reconstruction have been used in ap-
plications such as computer-aided design (CAD) model-
ing of objects having irregular shapes (Kumar et al. 2004;
Knopf and Sangole 2004). In this paper, we use the SOM
for fitting curves to the ultrasonic map points obtained with
the different UAM processing techniques.

An SOM is an artificial neural network with two layers.
We use a 1-D SOM, whose structure is illustrated in Fig. 1.
The two neurons at the input layer are used to input the px

and py coordinates of a map point. Each neuron at the out-
put layer represents a point on the curve to be fitted, and
the associated connection weights are the px and py coor-
dinates of this point. The output neurons are arranged as a
chain-like structure, where each neuron, except those at the
two ends, has two neighbors. This neighborhood affects the
weight updates described below. For each input map point,
the winning neuron is determined to be the closest point
on the curve to that input. Thus, for the input map point
p = (px,py)

T , output neuron weights wi = (w1i ,w2i )
T ,

and a total of N points on the curve, the index i∗ of the

Fig. 1 Structure of the 1-D SOM
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winning neuron is given by:

i∗ = arg min
i=1,...,N

√
(px − w1i )2 + (py − w2i )2 (12)

Through the use of a Gaussian function g0,σ (n)(·), updat-
ing the weights is done such that the weight update of one
neuron also affects the neighboring neurons. Then, for all
neurons i = 1, . . . ,N , the weight update rule is

wi (n + 1) = wi (n) + λ(n)g0,σ (n)(|i − i∗|)[p(n) − wi (n)]
(13)

where n is the iteration step, wi (n) is the 2 × 1 weight
vector of neuron i, p(n) is the position vector of the in-
put map point, λ(n) is the time-dependent learning rate, and
g0,σ (n)(·) is a 1-D Gaussian function with zero mean and
standard deviation σ(n). Note that λ(n) and σ(n) are func-
tions of the iteration number n and should be decreased at
the end of each epoch as the iterations are performed, with
respective decay coefficients kλ and kσ . An epoch is com-
pleted when all map points are given as input to the SOM
once.

5 Parameter selection and optimization

Active snake contours and SOMs have a number of para-
meters that affect the convergence characteristics and per-
formance of curve fitting. Since each problem or situation
requires a different set of parameter values, universally ac-
cepted values for these parameters do not exist in the liter-
ature. For the map points extracted from an unknown en-
vironment, it is difficult to guess or estimate these parame-
ter values beforehand. The parameters depend on the shape
and the nature of the environment as well as on the map-
ping technique used. For example, a structured environment
mostly composed of specularly reflecting surfaces may re-
quire a different set of parameters than an unstructured envi-
ronment with some combination of specularly and diffusely
reflecting surfaces. Optimization methods can be applied to
select the best parameter values specific to the problem at
hand. Below, we provide guidelines for selecting these pa-
rameters and suggest two alternative approaches that can be
employed for this purpose.

For the active contour method, the parameters that must
be selected are α,β (4), γ , and κ ((10) and (11)). As stated
above, α penalizes elongation and β penalizes bending or
sharpness of the snake curve. For example, selecting a small
β value enforces the second derivative in the energy term
to have smaller weight, thus allowing sharp corners in the
snake. γ is the Euler step size of the discretization and κ is a
weight factor for the external force. Some authors use κ = 1,
as in the original definition, where it is also stated that the

step size γ should be reduced if the external force becomes
large (Kass et al. 1987). Including a κ parameter (different
than one) provides more user control of the problem. De-
termining these parameters depends on the initialization and
the required curve features, such as length and curvature.

For the SOM method, the parameters that affect conver-
gence and the performance of curve fitting are the learning
rate λ(n) and the standard deviation σ(n). These are func-
tions of the iteration number n and should be decreased as
the iterations are performed. In our implementation, we mul-
tiply each with decay coefficients 0 < kλ < 1 and 0 < kσ < 1
at the end of each epoch. Thus, the parameters to be chosen
are λ(0), σ (0), kλ, and kσ . The initial learning rate λ(0) is
usually chosen to be less than one in order not to “overshoot”
the map points in fitting. If the curve is initialized close to
the boundaries of the mapped region, λ(0) and σ(0) should
be chosen smaller. The Gaussian function has a value of one
at its peak point, where i = i∗, and decreases symmetrically
and gradually. Using a Gaussian function in (13) to update
the weights allows all neurons to be updated at the same
time, resulting in a smoother fitting curve to the input data
at each iteration. If we visualize the 1-D SOM as a chain-
like structure, σ(n) determines the tightness/looseness of the
chain. The larger it is, the tighter the chain, and vice versa.
Its initial value depends on the length and position of the
initial curve and the total number of points on that curve.

Since finding the best-fitting parameters depends on
many factors, it is not possible to determine and fix them for
every purpose beforehand. In this work, we followed two
different approaches to estimate the best parameter values
for a given set of map points.

In the first approach, we sample the parameter space uni-
formly and search for parameter sets that minimize the error.
For example, in snake fitting, since there are four parameters
to be estimated, the parameter space is a 4-D hypercube.
We divide this hypercube evenly into a sufficient number of
smaller-sized hypercubes and use the parameter values that
correspond to the center of each hypercube. In other words,
each parameter is uniformly incremented and all possible
combinations of the selected parameter values are consid-
ered. The parameter values that resulted in the minimum
error for both approaches are presented in the first line of
Table 2.

We used particle swarm optimization as the second ap-
proach (Kennedy and Eberhart 1995). This method is in-
spired by the idea of swarms in nature in order to find the
minimum (or, without loss of generality, maximum) value
of an objective function. Here, we outline the method as im-
plemented in this study. For a more detailed overview of the
original form of the algorithm and its many variants, we re-
fer the reader to Poli et al. (2007).

The swarm is composed of a number of particles, each of
which is a candidate for a minimum. At an arbitrary iteration
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Table 2 Best parameter values
found by (i) uniform sampling
of the parameter space, and
(ii) initializing PSO with the
best parameters of (i)

Method Snake curve fitting SOM

α β γ κ λ(0) σ (0) kλ kσ

(i) Uniform sampling 4.20 0.60 0.60 1.80 0.03 2.59 0.83 0.76

(ii) PSO (initialized by (i)) 4.58 1.23 0.98 1.72 0.02 2.85 0.90 0.76

n of the algorithm, each particle in the parameter space has
a position xn, a velocity ẋn, a “previous best” value pBestn,
and the corresponding previous best position pn. The best
value would be the lowest (highest) value of the objective
function achieved by the particle so far, for a minimum
(maximum). We denote the value of the objective function
at a position x by J (x). Furthermore, the minimum (maxi-
mum) of pBestn among all particles is denoted as the global
best, gBestn, and the corresponding position as gn. The ve-
locity and position of each particle is updated according to
the equations:

ẋn+1 = wnẋn + c1ϕ1(pn − xn) + c2ϕ2(gn − xn) (14)

xn+1 = xn + ẋn+1 (15)

where wn is called the inertia weight, c1 and c2 are con-
stants, and ϕ1 and ϕ2 are independent random variables uni-
formly distributed in the interval [0,1]. In this study, we take
c1 = c2 = 2, as suggested in Kennedy and Eberhart (1995).
The inertia weight wn serves as a memory coefficient and
prevents the particles from taking “sharp turns” during the
iterations, resulting in a smoother movement of the parti-
cles.

At each step of the algorithm, the values pBestn and
gBestn are checked to see if they should be updated. In
searching for a minimum, if the current value J (xn) of a par-
ticle is less than its pBestn value, pBestn is set to the current
value and pn is set to its current position xn. Similarly, if the
current value J (xn) of any particle is less than the gBestn
value, gBestn and gn are updated accordingly.

We used the PSO algorithm summarized above to opti-
mize the parameters for the active contour and SOM meth-
ods. The objective function to be minimized is selected as
the average error between the fitted curves and the absolute
reference for the map, obtained by a very accurate laser
system. We initialized the parameter values in two differ-
ent ways. First, random initialization is considered: For the
active contour method, all four parameters of each of the
20 particles of PSO are initialized randomly in the inter-
val [0,12]. For the SOM method, λ(0) parameter is initial-
ized randomly in [0,0.5], kλ and kσ are initialized randomly
in [0,1], and σ(0) is initialized randomly in [0,20]. How-
ever, random initialization did not result in the smallest er-
ror values. As another alternative, we used the best para-
meter values found by uniform sampling and added white
Gaussian noise to them to initialize each particle of PSO. For

the active contour method, all parameters were added white
Gaussian noise with standard deviation 0.2. For SOM, the
standard deviations of the Gaussian noise added to the four
parameters were 0.01, 0.4, 0.02, and 0.02, respectively. This
approach reduced the errors considerably, as well as improv-
ing the convergence speed of PSO. The parameter values
that resulted in the minimum error for active contours and
SOM are presented in the second line of Table 2.

6 Experiments

We obtained our experimental results using the front three
ultrasonic sensors and structured-light system of the No-
mad 200 robot. We used a simple rule-based wall-following
algorithm for the indoor environment shown in Figs. 2
and 3(a). The environment is a small room—approximately
2.75 m square—with four corners and an edge feature. There
is a cater-corner opening in the lower left corner of the room
from which no ultrasonic or structured-light data were re-
ceived. Referring to Fig. 3, the environment is comprised of
smooth wooden (top and left) and painted (right) walls, and
a window shade with vertical slats of 15 cm width (bottom).
Some of the corners of the room are not perfect (e.g., where
the shade and the right wall make a corner).

To demonstrate our methodology, we used the mapping
results of the different UAM processing techniques listed in
Table 1 and described in detail in Barshan (2007). Each of
these techniques results in a different set of map points, to
which both a snake curve and an SOM are fitted in 2-D.

Let each set of processed UAM data points be denoted
as Mk , where k corresponds to one of the UAM processing
techniques indexed in Table 1. For compatibility, let the set
of original laser data points be denoted as M0. Then, for
the laser map (k = 0) and for the kth ultrasonic map (k =
1, . . . ,8), the potential function used in fitting the kth snake
is selected as

Uk(p) = DMk
(p) k = 0,1, . . . ,8 (16)

for all points p. Here, DM0(p) denotes an element of the
Euclidean distance map with respect to the original laser
data and DMk

(p) denotes an element of the distance map
with respect to the kth processed UAM. Note that the value
of the potential function is zero for those points on the image
corresponding to the extracted map, and increases gradually
with increasing distance of the point p from the map points.



158 Auton Robot (2010) 29: 151–168

Fig. 2 Views of the environment in Fig. 3(a): (a) looking towards the
right, showing the top, right, and bottom walls; (b) looking towards the
lower right corner, showing the right and bottom walls in Fig. 3(a). The
cylinder is an additional feature

In the following, the set of curve points fitted to the
map points resulting from the kth UAM processing tech-
nique will be referred to as Sk where k = 1, . . . ,8. That
is, the kth curve is represented as a collection of points
pik, i = 1, . . . ,Nk , where Nk is the total number of points
on curve Sk . The set of points of the curve fitted to the orig-
inal laser data will be referred to as S0.

The map of the environment acquired with a structured-
light laser system is shown in Fig. 3(b). This is the original
laser data, which is quite accurate, and it is used as the ab-
solute reference. The corresponding Euclidean distance map
is shown in Fig. 3(c), and is drawn by rescaling the values
of the potential function to be between zero and 255. In the
distance map, the darkest points of value zero correspond
to a distance of zero and, after normalization, the lightest

Table 3 Values of some experimental quantities

Map size 525 × 525

Initial curve center (30,55)

Initial curve radius 185

Number of snake points 400–500

Number of snake iterations 250

Intensity range of distance map 0–255

Number of SOM epochs 20

Number of SOM input neurons 2

Number of SOM output neurons 160

Number of PSO particles 20

Number of PSO iterations 20

Number of samples of parameter space 1,296

points correspond to the value 255. The snake fitted to this
laser data is shown in Fig. 3(d), superimposed on the data
points. Figure 3(e) shows the SOM fitted to the same laser
data. These will be used for comparison in Sects. 6.1 and 6.2.
Values of some quantities used in the experiments are pro-
vided in Table 3.

6.1 Results of fitting active contours

The snake is initialized as a circle whose center is at (30,55)

with a radius of 185 units to encompass the room bound-
ary (Fig. 3). Then, the snake is evolved for a fixed number
of iterations (250). After each iteration, the points on the
snake are checked for uniformity. The distance between any
two neighboring points is maintained between two and four
units, determined experimentally. That is, after each itera-
tion, the points are deleted or created as required by this
constraint. We allow the snake to converge to outlier points
caused by cross-talk, multiple, and higher-order reflections
to provide a fair evaluation of the different techniques.

Using the two-sided error criterion defined in (2), we de-
fine the error of the fit at iteration n as follows:

E(Sk(n)−Mk)(n)

= 1

2

(
1

Nk(n)

Nk(n)∑
i=1

DMk
(pik(n)) + 1

Lk

Lk∑
j=1

DSk(n)(qjk)

)

k = 0, . . . ,8 (17)

Here, n = 1, . . . ,250 is the iteration step, pik(n) is the posi-
tion vector of the ith point on snake k at iteration n, qjk is
the position vector of the j th point of Mk , Nk(n) is the num-
ber of points on snake k at step n, and Lk is the number of
points of Mk . Note that if the snake fits perfectly to the ex-
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Fig. 3 (Color online) (a) The
raw UAM, (b) original laser
map, (c) distance map with
respect to the laser data,
(d) snake fitted to the laser data,
(e) SOM fitted to the laser data

tracted map points at any iteration (in other words, if every

snake point corresponds to a map point and vice versa), this

error becomes zero, since each of the summed distance val-

ues in (17) would be zero. We calculate and store this error

for each iteration. Then, the snake curve that results in the

minimum error is determined and selected as the snake that
best represents the corresponding map points.

In this paper, we used a fixed number of iterations and

selected the snake that results in the minimum error. Our

observations reveal that the error decreases to a certain value

between iterations 100 and 150 and then oscillates around

that value, which does not affect the results significantly. In

a practical application, it is also possible to take the error

at the end of a fixed number of iterations or to set an error
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threshold to stop the iterations when the error goes below
the threshold (Altun and Barshan 2008).

To evaluate map accuracy based on the generic error cri-
terion given in (2), we chose the point sets P and Q in three
different ways.

In the first, we compare the snake fitted to processed
UAM points with the originally acquired laser data points
so that the two point sets are Sk and M0. Using the nota-
tion at the beginning of this section, the minimum distance
of point i on snake Sk to the set M0 is given by DM0(pik).
Then, the error is given as:

E(Sk−M0) = 1

2

(
1

Nk

Nk∑
i=1

DM0(pik) + 1

L0

L0∑
j=1

DSk
(qjk)

)

k = 0, . . . ,8 (18)

For our example, when k = 0, E(S0−M0) = 1.07, indicating
that the average error of the laser snake fit to the original
laser data is about one pixel. The errors for the other k values
are tabulated in Tables 4 and 5.

In the second criterion, we compare the processed UAM
snake Sk with the snake curve S0 fitted to the original laser
data (Fig. 3(d)). We calculate the distance of every point on
the snake Sk to the nearest point on the snake S0 and average

these distances, and vice versa:

E(Sk−S0) = 1

2

(
1

Nk

Nk∑
i=1

DS0(pik) + 1

N0

N0∑
j=1

DSk
(qjk)

)

k = 0, . . . ,8 (19)

≈ 1

2

(∫
Sk

DS0(p) ds∫
Sk

ds
+

∫
S0

DSk
(q) ds∫

S0
ds

)
(20)

Note that E(S0−S0) = 0 by definition. The summations in (19)
are, in fact, discrete approximations of the line integrals of
the distance map functions given in (20).

The third way measures how well the kth snake fits to the
ultrasonic map points of the kth technique, and is not related
to the reference laser data. It corresponds to the minimum
error that is obtained during the snake iterations using (17),
and is given by:

E(Sk−Mk) = 1

2

(
1

Nk

Nk∑
i=1

DMk
(pik) + 1

Lk

Lk∑
j=1

DSk
(qjk)

)

k = 1, . . . ,8 (21)

The errors of snake fitting for the different UAM process-
ing techniques are tabulated in the third, fourth, and fifth
columns of Tables 4 and 5. The results in Table 4 are ob-
tained by using the best-fitting parameter values obtained by

Table 4 Error values (in pixels)
for snake curve fitting and SOM
using parameters found by
uniform sampling of the
parameter space

k Method Snake curve fitting SOM

E(Sk−M0) E(Sk−S0) E(Sk−Mk) E(Sk−M0) E(Sk−S0) E(Sk−Mk)

1 PM 2.71 2.29 3.77 6.06 7.12 4.67

2 VT 2.81 2.51 1.87 2.91 4.13 2.25

3 DM 2.69 2.63 1.98 2.86 3.77 2.54

4 MP 4.82 5.14 2.95 7.09 8.17 2.69

5 BU 5.89 5.35 4.28 9.32 10.38 2.89

6 ATM-org 2.97 2.58 3.07 5.81 6.69 3.73

7 ATM-mod 3.11 3.02 2.70 4.21 5.56 2.79

8 TBF 4.00 4.63 4.62 5.22 6.59 4.60

Table 5 Error values (in pixels)
for snake curve fitting and SOM
using PSO parameters

k Method Snake curve fitting SOM

E(Sk−M0) E(Sk−S0) E(Sk−Mk) E(Sk−M0) E(Sk−S0) E(Sk−Mk)

1 PM 2.58 2.13 4.01 5.46 6.02 4.02

2 VT 2.78 2.45 1.91 2.85 3.65 2.18

3 DM 2.74 2.44 1.57 2.65 3.11 2.24

4 MP 5.02 5.39 2.90 6.88 7.46 2.63

5 BU 5.92 5.38 4.34 9.10 9.50 2.53

6 ATM-org 2.79 2.36 2.97 5.37 6.07 3.23

7 ATM-mod 2.97 2.91 2.39 3.99 4.79 2.54

8 TBF 4.28 4.93 4.68 4.81 5.67 4.21
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Fig. 4 (Color online) Results of
snake fittings for (a) PM,
(b) VT, (c) DM, (d) MP, (e) BU,
(f) ATM-org, (g) ATM-mod, and
(h) TBF

uniform sampling of the parameter space (first line of Ta-
ble 2). Similarly, the parameter values found by initializing
PSO with the uniform sampling parameters (second line of
Table 2) are used to obtain the results in Table 5. In both

tables, it can be observed that E(Sk−M0) and E(Sk−S0) values
are mostly comparable with each other since both take the
laser data as reference, in original and snake-fitted forms, re-
spectively. According to the results, PM, DM, and VT tech-
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Fig. 4 (Continued)

niques have the smallest errors, and MP and BU perform
the worst because these latter processing techniques result in
more spurious points on the extracted map. The remaining
techniques are comparable with each other. It can also be ob-
served that PM and ATM-org are the only methods for which
the E(Sk−Mk) value is larger than E(Sk−M0) and E(Sk−S0), in-
dicating that the snake curves for these methods fit better to
the laser data than the processed UAMs. This is because un-
like most of the other methods, many outlying points remain
after processing the UAM with these methods; the snake fits
poorly to these outliers and this causes the error E(Sk−Mk) to
increase.

Because smaller errors are obtained by uniform sampling
of the parameter space followed by PSO, the best-fitting pa-
rameter values found with this approach are used for the
given illustrations. The snake curves fitted to the processed
UAMs and the laser data are illustrated in Fig. 4. In the
different parts of the figure, the black features correspond
to map points obtained with a particular UAM process-
ing technique. The thick lines (blue lines in the color ver-

sion online) are the snakes fitted to these map points. The
curve in thin lines (red curve in the color version online)
is the snake fitted to the laser data, which is the same
in each part of the figure and is included as a reference
for visual comparison. This is also the same curve as in
Fig. 3(d).

Note that in this study, the snake curves are initialized
outside the boundaries of the room because the curve tends
to shrink rather than expand due to the first derivative term
in the energy expression. This fact should be taken into ac-
count in determining the initial location of the snake curve.
Initializing the snake within the boundaries of the environ-
ment is also a possibility, as the spurious points outside the
boundaries would not affect the snake curve as much, al-
lowing it to follow the boundaries of the room more closely.
However, inside initialization would not result in a fair com-
parison between the techniques in terms of the amount of
spurious points left after UAM processing. In addition, in
some mapping applications one may not be completely free
to choose the initial location. For example, in a room with
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Fig. 5 (Color online) Results of
SOMs for (a) PM, (b) VT,
(c) DM, (d) MP, (e) BU,
(f) ATM-org, (g) ATM-mod, and
(h) TBF

many obstacles close to the room boundaries, it would be
essential to initialize the snake curve outside in order to rep-
resent the boundaries of the room correctly. However, if de-
tecting obstacle boundaries is more important, one would

initialize the snake inside the boundaries. In fact, some ap-
plications may require both. The choice for the initial loca-
tion should depend on the configuration of obstacles and the
free space.
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Fig. 5 (Continued)

6.2 Results of fitting self-organizing maps

We initialize an SOM with 160 neurons as a circle outside
the boundaries of the room, with the same center and the
same radius as in the snake curve fitting procedure. The iter-
ations are stopped after 20 epochs. Similar to the case with
the snake curve, the distance between neighboring points on
the curve is maintained between 10 and 16 units. An SOM
fitted to the laser data using the parameters of uniform sam-
pling can be seen in Fig. 3(e), superimposed on the data
points. The curves fitted to the processed UAMs can be seen
in Fig. 5.

The previously defined error criterion is employed for
this method as well, using the curves fitted by the SOM in-
stead of snakes. The results of the SOM method are given
in the sixth, seventh, and eighth columns of Tables 4 and 5.
With a few exceptions, SOM errors are larger than snake
errors. The DM and VT methods demonstrate the best per-
formance. In Fig. 5(f), it can also be observed that the SOM
curve fitted to the map obtained by the ATM-org technique is

highly affected by the outlier points, unlike the snake curve
fitted for that technique (Fig. 4(f)). Curves generated by fit-
ting an SOM are not constrained by length or curvature as
the snake curves are, thus they are more likely to fit to the
outlier points. This results in larger error values in general.

7 Discussion

Looking at the error values in Tables 4 and 5 and observ-
ing Figs. 4 and 5, it can be concluded that DM, VT, and
ATM-mod methods eliminate most of the artifacts in the ul-
trasonic data resulting from multiple and higher-order re-
flections, cross-talk, and erroneous measurements. The PM,
MP, BU, and ATM-org methods cannot eliminate those ar-
tifacts as much, resulting in larger errors. This can be ob-
served more clearly in Fig. 5.

In general, if a UAM processing technique cannot elim-
inate artifacts well, the resulting errors are larger. DM, VT,
and ATM-mod are superior to the other techniques in elim-
inating artifacts, therefore they result in smaller errors. In
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Table 6 Computation times for
fitting snake curves and SOM
for a given parameter set.
Overall computation time for
snake fitting is the sum of the
computation times in the
Distance map and Snake fitting
columns

Method Number of Computation time (sec)

map points Distance map Snake fitting Overall SOM

PM 697 5.6 69.0 75 44

VT 2634 20.3 74.6 95 168

DM 863 7.1 78.2 85 55

MP 4692 35.1 110.6 146 299

BU 2994 21.9 105.9 128 191

ATM-org 920 5.8 66.6 72 59

ATM-mod 788 5.0 78.9 84 50

TBF 387 3.5 57.1 61 25

fact, DM can be considered an improved version of VT,
where directional processing of the map points is incorpo-
rated in the algorithm (Barshan 2007). The modified ATM
is also quite accurate and eliminates the artifacts better than
the original ATM. In the UAM, if there are arcs with no in-
tersections, these are removed with the modified ATM but
not with the original ATM. Generally speaking, the ATM
technique creates accurate yet sparsely filled maps. ATM is
found to require a denser UAM to begin with in order to pro-
duce a map with approximately the same number of points
as the other techniques.

The PM technique reduces each arc to a single point
mark in the middle of the arc. ATM-org places a more ac-
curate point mark on arcs with transversal intersections (ex-
cept those with two and none), reducing many of the arcs to
single points also. It treats arcs with no intersections in the
same way as PM. For this reason, the number of extracted
map points from these two techniques is quite similar.

The errors with TBF are usually larger than ATM-org and
ATM-mod errors. The TBF obtains the fewest number of
map points among all the techniques compared and results
in more gaps in the resulting map. This result is, however,
expected because apart from the fact that fewer arcs are used
at a given time to begin with (due to the sliding window),
TBF eliminates arcs with no meaningful and accurate corre-
spondence. In addition, planar wall locations found with this
method are not very accurate. This is also observed in Wijk
and Christensen (2000a)’s Figs. 15 and 16 as many outly-
ing points extracted by the algorithm. A major advantage of
TBF is that it is very fast and takes about the same time as
the simplest PM method (Barshan 2007) because it does not
divide the environment into grids but processes the informa-
tion geometrically.

Among the eight approaches considered, DM produces
relatively low errors and the associated computation time is
small (Table 6). Considering that DM also has high range
accuracy and is superior in eliminating the artifacts and out-
liers of the UAM, it can be considered as one of the best
methods in terms of the overall performance.

In Barshan and Başkent (2000, 2001a, 2001b), VT and
MP were investigated in detail based on simulations and
experimental studies for different transducer configura-
tions (linear, circular, random), different beamwidths (5◦
to 105◦), different surface curvatures, roughness, distance,
and different noise levels on time-of-flight measurements.
The best results were obtained with a random configura-
tion of transducers, followed by circular and linear ones.
For both methods, the errors were shown to increase with
increasing beamwidth, increasing surface distance, curva-
ture, and roughness. Although such detailed studies for the
other methods have not been performed, we expect similar
results for the remaining techniques because varying these
parameters primarily affects the quality of the information
inherent in the ultrasonic arc map. This also leads us to ex-
pect that for a given choice of these parameters, the results
of comparing the methods will not be altered significantly.

The active contour and SOM methods used for map rep-
resentation differ in many aspects. Snake curves minimize
an energy function that is the sum of their internal energy
(basically length and curvature) and a potential function that
is at minimum on the map points. As illustrated in our ex-
ample, snake curves are more robust to outliers than SOMs
(compare Figs. 4(f) and 5(f)). SOMs, on the other hand, are
not constrained by length or curvature and try to adjust the
curve to encompass all data points. For this reason, SOMs
are more likely to fit to outlying map points and may not
converge to the actual borders of the environment, resulting
in larger errors in general. This is the case when larger val-
ues of kλ and kσ are used with the effect that the decay is
slower. Experimenting with different kλ and kσ values, we
have observed that decreasing λ(n) and σ(n) more rapidly
causes the SOM to be more robust to the outlier points of the
ultrasonic map. When smaller values of kλ and kσ are used,
it is more likely that the SOM will fit to the topology of the
data rather than the outliers and the resulting errors will be
smaller. However, even in this case, active snake contours
are still superior in terms of the resulting errors.

The evolution equations (10) and (11) are used to update
the position of the snake. The parameters involved in these
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equations control the final shape of the snake such as de-
termining its length and curvature. Selecting the best para-
meters is less critical for the convergence of snakes than for
SOMs. For snakes, there may be more than one parameter
set that fit the given data points well. However, the conver-
gence of snakes is more sensitive to the initialization of the
curve than are SOMs, whereas the convergence of SOMs is
sensitive to the order in which the map points are input to
the neural network. In our implementation of the SOM, the
points were input randomly.

The running times of active contours and SOMs are tabu-
lated in Table 6 for each of the UAM processing techniques,
together with the number of data points in the correspond-
ing processed UAM. These running times are obtained using
MATLAB on a computer with a 1.80 GHz dual core proces-
sor. It can be observed that the running times of both meth-
ods increase with increasing data size, however, the running
time of the SOM is more dependent on data size. The com-
putation time of the SOM increases roughly linearly with
the number of data points, with an average processing time
of 64 ms per map data point. In the active snake contour
method, the data size mainly affects the time for calculat-
ing the distance map. On average, forming the distance map
takes 7.6 ms per map data point. Once the distance map
is formed, the running time of the snake fitting algorithm
is mainly determined by the number of points comprising
the snake curve. For our example, the average running time
is about 80 sec. The overall average running time is about
93 sec. The slight increase in the snake fitting time for the
BU and MP techniques is because the corresponding snake
curves are longer, resulting in more points to process at each
iteration (Fig. 4). Furthermore, the overall running time and
accuracy of the snake fitting technique change depending on
the resolution of the image that represents the map. More
generally, the computation times for both methods depend
on the selected parameters because these parameters control
the convergence characteristics of the curves. Even though
a fixed number of iterations is used in this study, parame-
ters can be tuned for a specific application and the compu-
tation times can be reduced by using an application-specific
number of iterations. However, regardless of a fixed or vari-
able number of iterations, the results given in Table 6 can be
viewed as an example of what to expect for processing times
in an application in terms of the map size and the curve-
fitting method used.

8 Conclusion

We have presented two approaches to compactly and effi-
ciently represent the maps obtained by processing UAMs
with different techniques. Representing the map points with
snake curves or self-organizing maps makes it possible to

compare maps obtained with different techniques among
themselves, as well as with an absolute reference. For this
purpose, we have defined and employed an error criterion
that can be used to compare two different sets of points
based on the Euclidean distance measure. The two sets
of points can be chosen as (i) two different sets of map
points acquired with different mapping techniques or differ-
ent sensing modalities (e.g., ultrasonic data and laser data),
(ii) two sets of curve points (e.g., two snake curves) fit-
ted to maps extracted by different mapping techniques or
different sensing modalities, or (iii) a set of extracted map
points and a set of curve points fitted to those points. Our
purpose in this paper was to represent ultrasonic maps effi-
ciently and to evaluate the performance of UAM process-
ing techniques through the use of a demonstrative exam-
ple. Among the eight UAM processing techniques con-
sidered, the directional maximum method can be consid-
ered as one of the best in terms of the overall perfor-
mance.

Although both active contours and SOMs can be em-
ployed to fill the erroneous gaps in discrete point maps, ac-
tive contours are superior in eliminating outliers in the data,
resulting in smaller errors. Active contours are more capable
of fitting accurately to environmental features with high cur-
vature, such as edges and corners, as well as smoother fea-
tures, such as planar walls, in typical indoor environments.

A physical interpretation of the parameters and guide-
lines on parameter selection are provided. The best-fitting
parameter values are found by uniform sampling of the para-
meter space and by particle swarm optimization. For snake
curve fitting, the error values are comparable for the two
approaches, whereas for SOM, PSO consistently results in
smaller errors. Another alternative is to use non-parametric
snakes that utilize a kernel density estimation approach (Öz-
ertem and Erdoğmuş 2007). However, this formulation does
not completely eliminate the parameter optimization proce-
dure, as a number of parameters must be determined for
both fixed- and variable-bandwidth kernels, especially for
noisy images. Furthermore, an additional heuristic proce-
dure needs to be used to assure convergence to concavities
in the map.

The two methods are sufficiently general that they can
also be applied to map data points acquired with other map-
ping techniques and sensing modalities. The results can be
extended to 3-D data by fitting 3-D shapes. Another pos-
sible extension of this work would be the automatic deter-
mination of the appropriate number of curves or shapes to
be fitted to a given set of extracted map points using clus-
tering techniques. Determining whether the curves should
be open or closed, or the shapes convex or concave, and ini-
tializing the multiple curve parameters are other challenging
issues.
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Başkent, D., & Barshan, B. (1999). Surface profile determination from
multiple sonar data using morphological processing. International
Journal of Robotics Research, 18(8), 788–808.

Borgefors, G. (1986). Distance transformations in digital images. Com-
puter Vision, Graphics, and Image Processing, 34(3), 344–371.

Choset, H., Nagatani, K., & Lazar, N. (2003). The arc-transversal me-
dian algorithm: a geometric approach to increasing ultrasonic sen-
sor azimuth accuracy. IEEE Transactions on Robotics and Au-
tomation, 19(3), 513–522.

Cohen, L. D. (1991). On active contour models and balloons. Com-
puter Vision, Graphics, and Image Processing (CVGIP): Image
Understanding, 53(2), 211–218.

Cohen, L. D., & Cohen, I. (1993). Finite element methods for ac-
tive contour models and balloons for 2-D and 3-D images.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11), 1131–1147.

Crowley, J. L. (1985). Navigation for an intelligent mobile robot. IEEE
Transactions on Robotics and Automation, RA-1(1), 31–41.

Drumheller, M. (1987). Mobile robot localization using sonar. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(2), 325–332.

Elfes, A. (1987). Sonar based real-world mapping and navigation.
IEEE Transactions on Robotics and Automation, RA-3(3), 249–
265.

Gex, W., & Campbell, N. (1987). Local free space mapping and path
guidance. In Proceedings of IEEE international conference on ro-
botics and automation (pp. 424–431).

Jacob, M., Blu, T., & Unser, M. (2004). Efficient energies and al-
gorithms for parametric snakes. IEEE Transactions on Image
Processing, 13(9), 1231–1244.

Kass, M., Witkin, A., & Tersopoulos, D. (1987). Snakes: Active con-
tour models. International Journal of Computer Vision, 1(4), 321–
331.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
Proceedings of the IEEE international conference on neural net-
works (Vol. 4, pp. 1942–1948).

Knopf, G. K., & Sangole, A. (2004). Interpolating scattered data us-
ing 2D self-organizing feature maps. Graphical Models, 66(1),
50–69.

Kohonen, T. (1982). Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43(1), 59–69.

Kuc, R., & Siegel, M. W. (1987). Physically-based simulation model
for acoustic sensor robot navigation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-9(6), 766–778.

Kumar, G. S., Kalra, P. K., & Dhande, S. G. (2004). Curve and surface
reconstruction from points: an approach based on self-organizing
maps. Applied Soft Computing, 5(1), 55–66.

Kurz, A. (1996). Constructing maps for mobile robot navigation based
on ultrasonic range data. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, 26(2), 233–242.

Leonard, J. J., & Durrant-Whyte, H. F. (1992). Directed sonar sensing
for mobile robot navigation. Boston: Kluwer Academic.

Liang, J., McInerney, T., & Terzopoulos, D. (2006). United snakes.
Medical Image Analysis, 10(2), 215–233.

Menet, S., Saint-Marc, P., & Medioni, G. (1990). Active contour mod-
els: overview, implementation and applications. In Proceedings of
the IEEE international conference on systems, man and cybernet-
ics (pp. 194–199).
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TÜBİTAK Young Investigator Award, and the 1999 Mustafa N. Parlar
Foundation Research Award. Dr. Barshan’s current research interests
include sensor-based robotics, intelligent sensing, ultrasonic, optical,
and inertial sensing, sensor signal processing, multi-sensor data fusion,
and human activity recognition and classification.


	Representing and evaluating ultrasonic maps using active snake contours and Kohonen's self-organizing feature maps
	Abstract
	Introduction
	The error criterion
	Fitting active snake contours to UAMs
	Fitting self-organizing maps to UAMs
	Parameter selection and optimization
	Experiments
	Results of fitting active contours
	Results of fitting self-organizing maps

	Discussion
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


