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ABSTRACT

This study investigates the processing of sonar signals
using neural networks for robust di�erentiation of com-
monly encountered features in indoor environments.
Di�erentiation of such features is of interest for intel-
ligent systems. Amplitude and time-of-
ight (TOF)
patterns of sonar signals acquired from a real system
are processed using neural networks. Compared to ear-
lier approaches, the pattern recognition capability of
neural networks allows di�erentiation of more targets
with increased accuracy by exploiting the identifying
features in the di�erential amplitude and TOF charac-
teristics of these targets. High accuracies are achieved
both for target di�erentiation and localization. An im-
portant observation follows from the robustness tests,
which indicate that the amplitude information is more
crucial than TOF for reliable operation.

1. INTRODUCTION

Neural networks have been employed e�ciently as pat-
tern classi�ers in numerous applications [1, 2, 3]. These
classi�ers make weaker assumptions on the shape of
the underlying distributions of input signals than tra-
ditional statistical classi�ers and can prove more robust
when the underlying statistics are unknown or the data
are generated by a nonlinear system.

This paper investigates the use of neural networks
to process sonar signals encountered in target di�er-
entiation and localization applications for indoor envi-
ronments. The pattern recognition capability of neural
networks allows di�erentiation of more targets with in-
creased accuracy by exploiting the identifying features
in the di�erential amplitude and TOF characteristics
of the echo signals. The robustness of the network per-
formance to partial removal of the input information
has been investigated, demonstrating that the network
is robust to di�erent failure modes, and indicating that
the amplitude information is more crucial than TOF
for reliable target di�erentiation and localization.

Commonly employed ranging systems are based on
time-of-
ight (TOF) which is the time elapsed between
transmission and reception of a pulse. Di�erential TOF
models of targets have been used by several researchers
[4, 5]. In earlier work, Barshan and Kuc introduce a
method based on both amplitude and TOF information
to di�erentiate planes and corners [6]. This algorithm
is later extended to other target primitives in [7]. In the
present paper, neural networks are employed to process
amplitude and TOF information so as to reliably han-
dle the target classi�cation and localization problem.

2. BACKGROUND ON SONAR SENSING

In commonly used TOF systems, an echo is produced
when the transmitted pulse encounters an object and
a range value r = ct�=2 is produced when the echo
amplitude �rst exceeds a preset threshold level � at
time t� back at the receiver. Here, t� is the TOF and
c is the speed of sound in air.

θθ

line-of-sight
 T/R RT RT/ /a b

r
θ

sonar sensor pairsonar sensor 

target

minr

d

sensitivity

joint
sensitivity

region

region
2a

(a) (b)

Figure 1: (a) Sensitivity region of an ultrasonic trans-
ducer. (b) The joint sensitivity region of a pair of ul-
trasonic transducers.

In general, it is observed that the echo amplitude
decreases with increasing target range (r) and absolute
value of the target azimuth (j�j). The echo amplitude
falls below � when j�j > ��, which is related to the
aperture radius a and the resonance frequency f� of

the transducer by �� = sin�1
�
0:61c
af�

�
[8].



In our system, two identical ultrasonic transducers
a and b with center-to-center separation d are employed
to improve the angular resolution of a single transducer,
limited by its beamwidth. Each transducer can operate
both as transmitter and receiver and detect echo sig-
nals re
ected from targets within its sensitivity region

[Fig.1(a)]. Both transducers can detect targets located
within the joint sensitivity region, which can be ap-
proximated by the overlap of the individual sensitivity
regions [Fig.1(b)].

The target primitives modeled in this study are
plane, corner, acute corner, edge and cylinder (Fig.2).
Since the wavelength of operation (� �= 8:6 mm at f� =
40 kHz) is much larger than the typical roughness of
surfaces encountered in laboratory environments, tar-
gets in these environments re
ect acoustic beams spec-
ularly, like a mirror. Specular re
ections allow the sin-
gle transmitting-receiving transducer to be viewed as a
separate transmitter T and virtual receiver R [9]. De-
tailed physical re
ection models of these target prim-
itives with corresponding echo signal models are pro-
vided in [7]. In the following, Aaa; Aab; Aba; and Abb

denote the maximum values of the sonar echo signals,
and taa; tab; tba; and tbb denote the TOF readings ex-
tracted from these signals. The �rst index in the sub-
script indicates the transmitting transducer, the second
index denotes the receiver.
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Figure 2: Horizontal cross sections of the target prim-
itives di�erentiated in this study.

3. DIFFERENTIATION ALGORITHM

In this section, the target di�erentiation algorithm used
in earlier work [7] is summarized. This will not only
be useful in motivating the structure of the inputs to
the neural network, but will also provide a basis for
comparison of its performance. This classi�cation al-
gorithm has its roots in the plane/corner di�erentiation
algorithm developed in the still earlier work by Barshan
and Kuc [6] based on the idea of exploiting amplitude
di�erentials in resolving target type. In [7], the al-
gorithm is extended to include other target primitives
using amplitude and TOF di�erentials. The extended
algorithm may be summarized in the form of rules:

if [taa(�) � tab(�)] > kt�t and [tbb(�) � tba(�)] > kt�t

then acute corner ! exit

if [Aaa(�)�Aab(�)] > kA�A and [Abb(�)�Aba(�)] > kA�A

then plane ! exit

if [maxfAaa(�)g�maxfAbb(�)g] < kA�A and

[maxfAbb(�)g�maxfAab(�)g] < kA�A then corner! exit

else edge, cylinder or unknown ! exit

Note that this algorithm does not provide a dis-
tinctive rule to di�erentiate edges and cylinders. In
the above algorithm, kA(kt) is the number of ampli-
tude (TOF) noise standard deviations �A(�t) and is
employed as a safety margin to achieve robustness in
the di�erentiation process. Di�erentiation is achievable
only in those cases where the di�erence in amplitudes
(TOFs) exceeds kA�A(kt�t). If this is not the case, a
decision cannot be made and the target type remains
unknown.

4. DIFFERENTIATION WITH NEURAL

NETWORKS

In this work, neural networks are employed to identify
and resolve parameter relations embedded in the char-
acteristics of experimentally-obtained sonar returns from
all target primitives considered in a robust manner.
Panasonic transducers are used with aperture radius
a = 0:65 cm, resonance frequency f� = 40 kHz, and
�� �= 54� [10] (Fig.1). The center-to-center separation
of the transducers used in the experiments is d = 25 cm.
The entire sensing unit is mounted on a small stepper
motor with step size 1:8� whose motion is controlled
through the parallel port of a PC with the aid of a mi-
croswitch. Data acquisition from the sonars is through
a 12-bit 1 MHz PC A/D card. Starting at the trans-
mit time, 10,000 samples of each echo signal are col-
lected and thresholded. The amplitude information is
extracted by �nding the maximum value of the signal
after the threshold is exceeded.

The targets employed in this study are: cylinders
with radii 2.5, 5.0 and 7.5 cm, a planar target, a corner,
an edge of �e = 90� and an acute corner of �c = 60�.
Amplitude and TOF data from these targets is col-
lected with the sensing unit described above at 25 dif-
ferent locations (r; �) for each target, from � = �20�

to � = 20� in 10� increments, and from r = 35 cm to
r = 55 cm in 5 cm increments (Fig.3). The target at
range r and azimuth � is scanned by the sensing unit
for scan angle �52� � � � 52� with 1:8� increments.

A three-layer feed forward neural network is em-
ployed. The inputs to the neural network are samples
of the amplitude and TOF di�erential signals Aaa(�)�
Aab(�); Abb(�)�Aba(�); taa(�)� tab(�), and tbb(�)�
tba(�). The target type, and its range and azimuth are
produced at the output of the network.
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Figure 3: Discrete network training locations.

Four sets of data are collected for each target lo-
cation for each target primitive, resulting in 700 (= 4
data sets � 25 locations � 7 target types) sets of train-
ing signals. The network is trained with these 700 sets
of data, using the back-propagation algorithm.

The network is tested as follows: Each target prim-
itive is placed in turn in each of the 25 locations shown
in Fig.3. Four sets of measurements are collected for
each combination of target type and location, again
resulting in 700 sets of experimentally obtained wave-
form data. The neural network estimates the target
type, range r, and azimuth � based on this data.

Table 1 presents the resulting percentages of cor-
rect target-type classi�cation and correct r and � es-
timation. A range or azimuth estimate is considered
correct if it is within an error tolerance of �r or �� of
the actual r or � respectively. The average percentages
over all target types are also given in the last row of
the table. The percentage of correct target type clas-
si�cation is high at 95%. The percentage of correct r
estimation lies in the range 74{93%, and that for cor-
rect � estimation lies in the range 89{97%, depending
on the error tolerance level (�r or ��). For comparison,
the average correct target type classi�cation obtained
using the di�erentiation algorithm given in Sec.3 on the
same data set is 61% and the average correct r and �
estimation percentages are 72% and 59% respectively
for j�rj = 1 cm and j��j = 2�.

The network is also tested for targets situated arbi-
trarily in the continuous estimation space and not nec-
essarily con�ned to the 25 locations of Fig.3. The re-
sults are given in Table 5 in parentheses. As expected,
the percentages in this case are lower than those for
the training positions. Noting that the network was
trained only at 25 locations and at grid spacings of
5 cm and 10�, it can be concluded from the percentage
of correct r and � estimates obtained at error toler-
ances of j�rj = 0:125 cm and 1 cm and j��j = 0:25� and

2�, that the network demonstrates the ability to inter-
polate between the training grid locations. Thus, the
neural network maintains a certain spatial continuity
between its input and output and does not haphaz-
ardly map positions which are not drawn from the 25
locations of Fig.3. The correct target type percentages
in Table 1 are quite high and the localization (r; �) ac-
curacy would be acceptable in many applications. If
better estimates are required, this can be achieved by
reducing the training grid spacing in Fig.3.

The network is further tested to investigate its ro-
bustness in physically plausible failure or missing data
situations. The same 700 sets of test data are used,
but with some of the network inputs equated to zero.
The results are tabulated in Table 2 for both the case
where testing is done at the training locations, and the
case when testing is done at arbitrary locations. Rows
1{4 correspond to the case when one of the di�eren-
tial input channels is made completely unavailable to
the network. Rows 4{8 represent failure of one of the
transducers. Rows 7 and 8 also correspond to the case
when the target does not fall within the joint sensitivity
region of the two transducers. Rows 9{12 correspond
to the case when the echo amplitudes fall completely
below � . This happens when the target is very far away
from the sensor or too far o� its line-of-sight. In this
case, TOF information cannot be extracted although
amplitude information is still available. Rows 13{16
correspond to the complementary case where TOF in-
formation is available but amplitude information is not.
Finally, the e�ect of the absence of randomly selected
samples of the input data is investigated and presented
in the last row. Here, 25% of the input data is made
unavailable to the network by randomly setting some
of the input samples to zero. Note that this percent-
age is the same as the percentage of samples excluded
when one of the input channels is completely blocked.
The result of these tests indicate that amplitude infor-
mation is much less dispensable, despite the fact that
TOF is more commonly exploited. It can also be con-
cluded from the table that there is a 1{16% decrease in
performance when the object is at an arbitrary location
as compared to when it is at a training location.

5. CONCLUSION

In this study, neural networks are employed for the
processing of real sonar data for target di�erentiation
and localization. The targets are discriminated using a
practical pulse/echo sonar system. As a result of train-
ing, the network learns identifying parameter relations
for the target primitives. This system relies on ampli-
tude as well as TOF data, thus allowing for improved



correct error tolerance �r error tolerance ��
classif. �0.125 cm �1 cm � 5 cm �10 cm �0:25� �2� �10� �20�

plane 100(90) 62(47) 66(50) 78(69) 88(80) 91(66) 96(68) 98(93) 99(92)

corner 99(100) 90(72) 90(72) 92(86) 95(91) 88(81) 90(85) 92(90) 93(90)

edge (�e = 90�) 99(96) 51(49) 59(56) 82(78) 92(90) 72(60) 77(69) 89(81) 97(95)

acute corner (�c = 60�) 98(99) 81(71) 83(75) 91(83) 95(88) 85(79) 87(80) 93(90) 97(92)

cylinder (rc = 2:5 cm) 90(88) 77(55) 80(60) 89(78) 94(87) 97(79) 97(83) 97(95) 98(99)

cylinder (rc = 5:0 cm) 89(70) 75(61) 77(65) 82(78) 89(91) 98(73) 98(78) 99(98) 99(96)

cylinder (rc = 7:5 cm) 92(86) 82(55) 86(60) 92(76) 98(86) 95(54) 97(60) 99(94) 99(96)

average 95(90) 74(59) 77(63) 87(78) 93(88) 89(70) 92(75) 95(92) 97(94)

Table 1: Percentages of correct classi�cation, and r and � estimation when the targets are tested in the training

positions and at arbitrary positions (in parentheses). The resolutions of the r and � encoders are 0.25 cm and 0:5�.

di�erentiation and localization. The robustness of the
network to partial removal of amplitude and TOF in-
formation has been investigated, demonstrating that
the network is robust to various failure modes. The
results indicate that amplitude information should be
more widely exploited.

Although trained on a discrete and relatively coarse
grid, the network is able to interpolate between the
grid locations and o�ers higher resolution (especially
in �) than that implied by the grid size. The correct
estimation rates for target type, r and � can be further
increased by employing a �ner grid for training.

In conclusion, the results presented here suggest
wider use of neural networks as robust pattern clas-
si�ers for sonar signal processing. There is scope for
further application of neural networks to sonar, based
on the facts that sonar data is di�cult to interpret,
physical models can be complex even for simple TOF
sonar systems, and expressions for sonar returns are
very complicated even for the simplest target types.
Acoustic propagation is also subject to distortion with
changes in environmental conditions. Future work will
investigate scale- and shift-invariant features of the tar-
gets and the employment of unsupervised learning al-
gorithms.
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