
A COMPARISON OF FOUR METHODS

FOR ACCURATE ULTRASONIC RANGE ESTIMATION

Billur Barshan and Birsel Ayrulu

Department of Electrical Engineering

Bilkent University 06533 Bilkent, Ankara, Turkey

ABSTRACT

Four methods of range estimation for airborne ultra-
sonic systems|namely simple thresholding, curve-�tting,
sliding-window, and correlation detection|are compared
on the basis of bias, standard deviation, total error, ro-
bustness to noise, and the di�culty of implementation.
Whereas correlation detection is theoretically optimal,
the other three methods can o�er acceptable perfor-
mance at much lower cost. Two variations of curve
�tting and four variations of sliding-window have been
considered. Performances of all methods are investi-
gated as a function of target range, azimuth, and signal-
to-noise ratio (SNR). Curve �tting, sliding-window, and
thresholding follow correlation detection in the order
of decreasing complexity. Apart from correlation de-
tection, minimum bias and total error is most consis-
tently obtained with the curve-�tting method. On the
other hand, the sliding-window method is always bet-
ter than the thresholding and curve-�tting methods in
terms of minimizing the standard deviation of the esti-
mate. The experimental results follow the simulations
closely. Overall, the three simple and fast estimation
methods provide a variety of attractive compromises
between estimation accuracy and system complexity.

1. INTRODUCTION

Successful operation of most ultrasonic ranging systems
relies on accurate time-of-
ight (TOF) estimation. A
pulse is transmitted and an echo is produced when the
transmitted pulse encounters an object. The TOF t�
is the time elapsed between the transmission of a pulse
and its reception, from which the target range can be
calculated as r = ct�

2
, given the speed of sound in air

c. Correct target localization using ultrasonics depends
on how accurately TOF can be estimated, and how well
c is known. In this paper, we consider three fast and
simple suboptimal methods of TOF estimation which
are compared to the optimal correlation detection on
the basis of bias, standard deviation, total error, ro-
bustness to noise, and computational complexity.

2. TIME-OF-FLIGHT ESTIMATION

In widely-used simple thresholding systems, a range
value r is produced when the echo amplitude �rst ex-
ceeds a preset threshold level � (Fig.1).
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Figure 1: Echo envelope and TOF estimation by
thresholding and curve �tting. Inset: Typical echo.

The main problem with this method is that the
TOF estimate obtained is, on the average, larger than
the true TOF, which corresponds to the starting point
(onset) of the echo signal. This is a consequence of
the relatively long rise-time of the echoes produced by
currently available low-bandwidth ultrasonic transduc-
ers for operation in air. Hence, the range information
obtained by simple thresholding is biased, making the
target appear slightly farther than it actually is. The
resulting bias error, which is in the range of several
millimeters to centimeters, could easily be avoided if it
were constant. However, this is not the case: The bias
is di�cult to model analytically since it is a function of
� , SNR, target location, size, and type, as well as other
factors [1] causing amplitude 
uctuations.

Another TOF estimation method is curve �tting, in
which the Levenberg-Marquardt nonlinear least-squares
method [4] is employed to �t a parabolic curve of the
form a�(t� t�)

2 to the onset of the echo to produce an
unbiased estimate. It has been veri�ed in [2, 3] that the
parabola is a good approximation for the onset of the
signal. The vertex of the parabola is taken as the TOF
estimate (Fig.1), which usually falls to the left of the
thresholding estimate, reducing the bias considerably.



The authors of [3] have employed a simpler but less
robust version of curve-�tting that does not require
the nonlinear iterative �tting procedure: Two di�er-
ent threshold levels �1 and �2 (�2 > �1) are set, and the
vertex of the parabola passing through the two signal
samples at which �1 and �2 are exceeded is found as:

t� =

p
�2=�1 t1 � t2p
�2=�1 � 1

: (1)

Here, t1 and t2 are the time samples at which �1 and �2
are exceeded. A threshold ratio �2=�1 of about 2 repre-
sents a suitable choice [3]. In the following, to distin-
guish the two approaches, we will refer to the original
iterative least-squares curve-�tting method as CUF(A)
and the 2-point analytical curve-�tting method as CUF(B).

The third method considered is the sliding win-

dow, whose use for ultrasonic signals was �rst suggested
in [5]. The method originates from the m-out-of-N de-
tection for radar signals [6]. A window of width N
is slid through the echo signal one sample at a time,
and the number of samples exceeding � is counted at
each window position. If this number exceeds a sec-
ond threshold m, then a TOF estimate is produced.
The advantage of the method is its robustness to noise
spikes of duration less than m since detection is based
on at least m samples exceeding � , instead of a single
one as in simple thresholding. We have considered four
variations of choosing the TOF: SW(A): the very �rst
sample of the window, SW(B): the �rst sample exceed-
ing � , SW(C): the sample at the center of the window,
and SW(D): the (N �m)th sample of the window.

The optimum correlation detectionmethod produces
an unbiased TOF estimate and maximizes the SNR
which is taken as the ratio of the maximum ampli-
tude of the echo signal to the amplitude noise stan-
dard deviation. A matched �lter that contains a replica
of the echo waveworm is employed to determine the
most probable location of the echo in the received sig-
nal. The computer implementation of this procedure
is time consuming because of the required correlation
operation. Since the shape of the echo usually changes
during propagation due to attenuation, and also varies
with target type, size, location, and orientation, a large
number of templates for the expected signal must be
stored for the correlation operation. Another funda-
mental problem with this method is the inherent time
delay involved since classical correlation detection re-
quires that the entire echo be observed before an esti-
mate is produced. Hence, when working in real time,
this method is only suitable for distant objects when
the echo duration is negligible compared to the travel
time. For nearby targets, or in those applications where
only the leading edge of the signal is available [7], the

estimate must be made at the beginning of the ob-
served echo, using methods such as those described
above. Nevertheless, this method serves as a useful
basis for comparison of the other methods.

3. SIMULATION STUDIES

For a target at range r and azimuth � in the far zone of
the transducer, the received time signal can be approx-
imated by the following signal model which is capable
of representing observed signals for a wide variety of
target types and locations [2]:

sr;�(t) = k(r) e
�

�2

2�2
� (�t)2e�a1�t sin(2�f��t)u(�t) (2)

Here, �t
�
= t � t�, f� is the resonance frequency of

the ultrasonic transducers, k(r) is a function of the
target type and range [2], a1 is a shape parameter of the
signal, and u(�t) is the unit step function delayed by
t�. The angular beam pro�le is modeled as a Gaussian
function with suitably chosen standard deviation ��.

First, we consider the problem of �nding suitable
values for N and m in the sliding-window method. The
intervals 5 � N � 50 and 1 � m � N are searched
for a wide range of r and � values. We have observed
that N = 40 and m = 10 are suitable choices for the
range of parameters considered, and used these values
throughout this study.

In the simulations, the values f� = 40 kHz, c =
343:5 m/s, �� = 27�, and a1 = 7050 are used to model
the echo signals obtained with Panasonic transducers.
The value of � is taken as 5 times the amplitude noise
standard deviation in all the suboptimal methods. The
value of r is varied from 0.25 m to 5.0 m with 0.25 m
increments, and � from 0� to 55� with 5� increments.

To estimate the bias and the standard deviation,
100 realizations are generated by adding zero-mean white
Gaussian noise to the signal. A comparison among the
various methods is made in Fig.2 and Table 1. We have
considered the three options of processing the original
signal modeled by Eq.(2) (O), the recti�ed signal (R),
and its envelope (E). The total error E is the root-
mean-square value of the di�erence between the range
estimate and the true range value. The bias b is the
signed average of the same di�erence. These are related
by E2 = b2 + �2, where � is the standard deviation.

Figs.2(a)-(f) show the dependence of bias, standard
deviation, and total error on r and �. The data for all
combinations of r; � are not presented due to space lim-
itations; parts (a)-(c) are for � = 0� and parts (d)-(f)
are for r = 0:5 m. The �gures indicate that increasing
r and j�j degrades the estimation accuracy. Since the
noise level is kept constant, this degradation is mostly
caused by the decreasing SNR due to the decrease in



signal amplitude with increasing r and j�j (Eq.(2)). For
example, when the target at r = 0:5 m is moved from
� = 0� to � = 55�, SNR changes from 35 dB to 17 dB.
Similarly, when the target is moved from r = 0:25 m to
r = 5 m along the line of sight (� = 0�), SNR changes
from 41 dB to 15 dB. It can be observed that jbj and E
of CUF(A) increases much more slowly with r and j�j,
making it an attractive choice compared to the other
methods which exhibit very large bias and total error
for certain values of r and �.
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Figure 2: b; �, and E vs. r, �, and SNR when the sig-
nal envelope is used. THD: thresholding, SW: sliding
window, CUF(A): least-squares curve �tting, CUF(B):
analytical curve �tting, COR: correlation.

Figs.2(g)-(i) illustrate the dependence of the per-
formance directly on the SNR while the target is at
r = 0:5 m and � = 0�. SNRs between 15{65 dB have
been realized by varying the amount of noise on the sig-
nal. Around 14 dB, the signal amplitude falls below � ,
and a TOF estimate cannot be produced. In comparing
the various methods, our purpose is to determine the
method(s) which most consistently result in the best
performance, over the range of r; �; and SNR. This is
because, even if we know the noise level, the signal level
and thus the SNR will depend on r and �, which are
the very quantities one is trying to estimate.

We begin our comparison of the several methods
by comparing the four variations of the sliding window

method among themselves. For all forms of the sig-
nal (i.e., O, R, or E), sliding-window (A),(C),(D) have
equal � as expected. This is because for a given N , the
points taken as TOF in these variations (the very �rst,
central, and the (N � m)'th samples of the window)
remain �xed with respect to each other. Variation (B),
on the other hand, exhibits a larger � than (A), (C),
and (D). For larger values of r or j�j, or smaller values
of SNR, we observe that variation (A) gives the small-
est bias, followed by variations (B), (C), and (D) in the
given order. Among the sliding-window variations, (B),
(C) and (D) would never be used since (A) can o�er
the same � with smaller bias error than (C) and (D),
and it can o�er both smaller b and � than (B). Thus,
sliding window (A) emerges as the method of choice
for larger r or j�j, or smaller SNR. This conclusion fol-
lows regardless of the relative importance attached to
minimizing jbj and �. For smaller r or j�j, or larger
SNR, the situation is more complicated and none of
the variations is clearly superior to the others.

The bias errors of both sliding-window and thresh-
olding methods increase with r and j�j. In contrast,
the bias of CUF(A) is relatively constant over the r,
� and SNR values considered, and is generally smaller.
It is followed by CUF(B), and the other methods.

On the other hand, the standard deviation of CUF(B)
is the largest, followed by CUF(A) at SNRs below 20 dB,
and by thresholding and SW(B) at SNRs above 20 dB.
Apart from the correlation method, smallest standard
deviations are obtained with SW(A),(C),(D). There-
fore, in terms of standard deviation, curve-�tting meth-
ods are not as good as the sliding window method.

The total error E turns out to be dominated by the
bias and therefore has a shape which resembles the bias
curve. In terms of bias and total error, CUF(A) shows
the overall best performance. Although some of the
variations of the sliding window result in smaller bias
and total error over certain intervals, it would not be
practical to exploit this since one does not know r and �
to begin with. Thus, we conclude that CUF(A) is the
method which most consistently results in the lowest
bias and total error over the range of parameters con-
sidered. In those instances where � is more important
than b and E , the method of choice would be SW(A).

In order of increasing computational complexity,
the methods can be sorted as thresholding, sliding-
window, curve �tting, and correlation detection. For
the processing of a single echo, the required CPU times
on a SUN SPARC 20 workstation are 5.6 ms, 8.3 ms,
and 11.1 ms for the �rst three methods respectively.
The classical correlation detection method requires many
orders of magnitude greater time if the correlationmethod
is performed at every possible sample shift; in other



words if it is used as a detection method. In a practi-
cal implementation, the detection of the pulse can be
performed by �rst thresholding and then applying the
correlation only in the vicinity of the point where � is
exceeded, to get an accurate TOF estimate. Although
such a hybrid thresholding/correlation method would
be faster in a practical situation, it would still be dif-
�cult to implement, owing to the need to store many
di�erent templates which represent di�erent points in
the target position space.
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Figure 3: Block diagram of the data acquisition system.

4. EXPERIMENTAL RESULTS

Experiments are performed with Panasonic transduc-
ers, resonant at f� = 40 kHz and exhibiting a relatively
large half beamwidth of approximately 60� [8]. A pla-
nar target is positioned at r = 0:5 m and � = 0�. The
block diagram of the experimental setup is provided
in Fig.3. Data acquisition is accomplished by using a
12-bit 1 MHz PC A/D card. 5,000 signal samples are
collected, sampling at 500 kHz. Echo signals are post-
processed on a SUN SPARC 20 workstation. Averages
over 100 noisy signals are computed to produce the
correlation templates for O, R, and E. Experimentally
obtained b; �, and E values for all four methods, com-
puted over 100 echo signals, are presented in Table 1.

simulation experiment
method b(cm) �(cm) E(cm) b(cm) �(cm) E(cm)

O 0.671 0.0822 0.676 0.585 0.0793 0.590
THD R 0.666 0.0843 0.672 0.582 0.0790 0.587

E 0.586 0.0524 0.588 0.576 0.0624 0.579

O �0.228 0.0394 0.231 �0.229 0.0449 0.233
SW(A) R �0.232 0.0415 0.235 �0.227 0.0449 0.231

E �0.448 0.0348 0.449 �0.423 0.0377 0.425

O 0.671 0.0822 0.676 0.585 0.0793 0.590
SW(B) R 0.666 0.0843 0.672 0.582 0.0790 0.587

E 0.586 0.0524 0.588 0.519 0.0681 0.523

O 0.459 0.0394 0.461 0.460 0.0449 0.462
SW(C) R 0.455 0.0415 0.457 0.458 0.0449 0.460

E 0.239 0.0348 0.241 0.225 0.0322 0.227

O 1.146 0.0394 1.147 1.147 0.0449 1.148
SW(D) R 1.142 0.0415 1.143 1.145 0.0449 1.146

E 0.926 0.0348 0.927 0.912 0.0366 0.913

O 0.436 0.242 0.499 0.428 0.227 0.484
CUF(A) R �0.269 0.0534 0.274 �0.216 0.0613 0.225

E �0.261 0.0345 0.263 �0.227 0.0361 0.230

O �0.578 0.301 0.652 �0.515 0.290 0.591
CUF(B) R �0.507 0.309 0.594 �0.472 0.283 0.550

E �0.530 0.161 0.554 �0.502 0.142 0.522

O 0.000 < 0.0001 < 0.0001�0.000344 0.0185 0.0185
COR R 0.000 < 0.0001 < 0.0001 �0.00447 0.0298 0.0301

E 0.000 < 0.0001 < 0.0001 �0.00523 0.0312 0.0316

Table 1: Simulation and experimental results for r =
0:5 m, � = 0�, and SNR=35 dB.

5. CONCLUSION

Four range estimation methods are compared on the
basis of bias, standard deviation, total error, robust-
ness to noise, and di�culty of implementation. Corre-
lation detection always gives the best results and forms
a basis for comparison for the simpler and faster sub-
optimal methods. However, it is also computationally
the most complex, with certain disadvantages in a real-
time implementation. Curve �tting, sliding-window,
and thresholding follow correlation detection in the or-
der of decreasing complexity and can o�er acceptable
performance at much lower cost. Performances of all
methods have been investigated as a function of tar-
get range, azimuth, and SNR. Two variations of curve
�tting and four variations of sliding-window have been
considered. Apart from correlation detection, lowest
bias and total error is most consistently obtained with
least-squares curve-�tting applied to the signal enve-
lope. However, when it is more important to minimize
standard deviation than bias and total error, sliding
window emerges as the method of choice. For all forms
of the signal (i.e., O, R, E), sliding-window variations
(A),(C),(D) have equal standard deviations which is
also the smallest among all the methods. Depending
on the relative importance of bias and standard devia-
tion for a given application, the method of choice can
be determined. Since bias is the dominant component
of the total error, developing algorithms that are robust
to bias errors are of interest. The experimental results
are in very good agreement with the corresponding sim-
ulations. Overall, the three simple and fast estimation
methods provide a variety of attractive compromises
between estimation accuracy and system complexity.
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