
1PERSPECTIVE PROJECTIONS IN THE SPACE-FREQUENCY PLANE ANDFRACTIONAL FOURIER TRANSFORMS_I. S�amil Yetik, Haldun M. Ozaktas, Billur Barshan, Levent OnuralBilkent University, Department of Electrical Engineering,TR-06533 Bilkent, Ankara, TurkeyABSTRACTWe analyse perspective projections in the space-frequencyplane and show that under certain conditions they can beapproximately modelled in terms of the fractional Fouriertransform. The region of validity of the approximation isexamined. Numerical examples are presented.1. INTRODUCTIONPerspective projections are used in many applications in im-age and video processing, especially when confronted withnatural or arti�cial scenes with depth (for instance, in robotvision applications). Perspective projection can be consid-ered as a geometric or pointwise transformation, in the sensethat each point of the input is mapped to another point inthe output [1, 2]. In this paper we will examine the per-spective projection in the space-frequency plane and showthat its e�ect on the input can be modelled in terms of thefractional Fourier transform.A widely employed space-frequency representation isthe Wigner distribution is going to be used in this paper.The Wigner distribution provides information regarding thedistribution of the signal energy over space and frequency.A discussion and properties of the Wigner distribution maybe found in [3].The fractional Fourier transform is a generalization ofthe ordinary Fourier transform with a fractional order pa-rameter a. It has found many applications in optics andsignal processing [4-9]. We refer the reader to [4] for a com-prehensive treatment and further references, and to [6] fora shorter introduction. The zeroth order fractional Fouriertransform corresponds to the identity operation and the�rst order fractional Fourier transform corresponds to theordinary Fourier transform. Furthermore, the fractionalFourier transform is index additive; that is, the a1th or-der fractional Fourier transform of the a2th order fractionalFourier transform is equal to the (a1 + a2)th order frac-tional Fourier transform. The ath order fractional Fouriertransform corresponds to a clockwise rotation of the Wignerdistribution by an angle � = a�=2 in the space-frequencyplane: The fractional Fourier transform has a fast imple-mentation with compexity O(N logN) [4, 6].To understand why the fractional Fourier transform isexpected to play a role in perspective projections, let usconsider the perspective projection of an image exhibitingperiodic features, such as a railroad track. More \distant"parts of the image will appear in the projection smaller

than \closer" parts. Thus a periodic or harmonic featureof certain frequency will be mapped such that it exhibits amonotonic increasing frequency. Under certain conditions,this increase can be assumed linear so that the harmonicfunction is mapped to a chirp function. Since fractionalFourier transforms are known to map harmonic functionsto chirp functions, we expect that perspective projectionscan be modelled in terms of fractional Fourier transforms.The purpose of this paper is to formulate this relationship.In the next section we are going to present the perspec-tive model we use and examine the e�ect of the perspec-tive projection on the Wigner distribution. In the follow-ing section, we will discuss the relation between the frac-tional Fourier transform and perspective projections basedon their e�ects on the Wigner distribution. We will discusshow perspective projections can be modelled as shifted andfractional Fourier transformation. The last section is de-voted to an analysis of the errors and the region of validityof the approximations.2. PERSPECTIVE TRANSFORMATIONThe perspective model we use is shown in �gure 1. Initiallywe consider perspective projections for one-dimensional sig-nals, since this signi�cantly simpli�es the presentation. Thehorizontal axis, labeled x, represents the original objectspace. The vertical axis, labeled xp, represents the per-spective projection space. The point A with coordinates(�x0; xpo) is the perspective center or the focus point. Wedenote the original signal (object) by f(x) and its perspec-tive projection by g(xp). We assume that most of the energyof f(x) is con�ned to the interval [�x��x=2; �x+�x=2]. Inthe frequency domain, we assume that most of the energyof F (�x), the Fourier transform of f(x), is con�ned to theinterval [��x � ��x=2; ��x + ��x=2]. The value of f(x) ateach x is mapped to the point xp, which is the projectionof the point x: xp = xxpox+ x0 ; (1)x = x0xpxpo � xp ; (2)which can be derived by simple geometry. Thus, the pro-jection g(xp) is expressed as follows:g(xp) = f � x0xpxpo � xp� : (3)
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Figure 1: Perspective model: f(x) represents the input dis-tribution on the x axis, g(xp) represents its perspective pro-jection onto the xp axis. The point A with coordinates(�x0; xpo) is the perspective center or the focus point.The interval to which most of the energy of g(xp) is approx-imately con�ned can be determined using 1.In order to see the e�ect of perspective projections in thespace-frequency plane, we decompose f(x) into harmonicsas follows: f(x) = Z F (�x) exp[i2�x�x] d�x: (4)where F (�x) is the Fourier transform of f(x). Using (3)and linearity we obtain the following expression for g(xp):g(xp) = Z F (�x)h(xp; �x) d�x; (5)where h(xp; �x) = exp�i2��x� x0xpxpo � xp�� d�x: (6)We will initially concentrate on a single exponential withfrequency ��x and study the e�ect of perspective projectionin the space-frequency plane. Then, we will construct g(xp)by �rst decomposing f(x) in terms of exponentials and us-ing (5).The Wigner distribution of h(xp; ��x) cannot be explic-itly obtained. Therefore, to continue our analytical develop-ment, we expand the phase of h(xp; ��x) in a Taylor series.We will expand the phase of h(xp; ��x) around the pointwhich �x is mapped to: �x�x+ x0 xpo (7)which we express as �xpo where � = �x�x+x0 . Expanding thephase of h(xp; ��x) around �xpo we obtain the following aftersome algebra: h(xp; ��x) =exp�i2��xx0� x2p(1� �)3x2po + xp(1� 3�)(1� �)3xpo + �3(1� �)3 + :::�� : (8)Ignoring terms higher than the second order, the projectionof a harmonic is seen to be a chirp function. The validityof this approximation requires the third order term to bemuch smaller than the second order term:j�+ 2j � j2xpo(�� 1)j: (9)
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(1�3d)��x(1�d)3xpo(3d�1)xpo2Figure 2: (a) Wigner distribution of the original exponen-tial. (b) Wigner distribution of the approximate perspectiveprojection: a chirp.This approximation is more accurate for larger values ofxpo. This is expected since larger xpo correspond to lessdeep perspective projections. The Wigner distribution ofthe chirp given in (8) is a line delta given by���x + 2��x(1� �)3x2poxp + ��x(1� 3�)(1� �)3xpo� ; (10)and is shown in �gure 2b.Having obtained an approximate analytical form for theperspective projection of a harmonic, as well as its Wignerdistribution, we now move on to our discussion of perspec-tive projections in the space-frequency plane, as well as itsrelation to the fractional Fourier transform.3. RELATION BETWEEN PERSPECTIVETRANSFORMATION AND FRACTIONALFOURIER TRANSFORMIn the previous section we obtained an approximate expres-sion for the Wigner distribution of the perspective projec-tion of a single exponential. The Wigner distribution ofa typical exponential and the Wigner distribution of theapproximate perspective projection of the exponential areshown in �gure 2. The angle the line delta makes with the xaxis is arctan� 2��x(1�d)3x2po�, which depends on ��x. The factthat the oblique line delta is a rotated version of the hor-izontal line delta suggests a role for the fractional Fouriertransform since this operation corresponds to rotation inthe space-frequency plane.We will now show how the perspective projection ofa signal can be approximately expressed in terms of thefractional Fourier transform. We claim that the perspectiveprojection of a signal can be obtained from, or modelled by,the following steps:1. Shift the signal by �x in the negative x direction andby ��x in the negative �x direction. This translatesthe Wigner distribution of the signal to the origin ofthe space-frequency plane.2. Take the fractional Fourier transform with the or-der a = �2� arctan� 2��x(�x+x0)3x2pox20 �. This rotates theWigner distribution by an angle a�=2.3. Shift the result by �xxpo�x+x0 in the positive x directionand by ��x(�x+x0)2x0xpo in the positive �x direction.



3These steps represent a decomposition of the overall e�ectof the perspective projection, from which we see that thesubstance of perspective projection is essentially to e�ect arotation in the space-frequency plane. However, this rota-tion is enacted on the space-frequency content of the signalreferred to the origin of the space-frequency plane.Di�erent frequency components of the signal require dif-ferent fractional Fourier orders, because the order a givenin step 3 depends on ��x. However, as we will see, undercertain conditions, a satisfactory approximation can be ob-tained by using a uniform order corresponding to the centralfrequency of the signal.We now demonstrate our claim that perspective projec-tion can be decomposed into the three steps given above.We start by decomposing f(x) into harmonics:f(x) = Z F (�x) exp[2i�x�x] d�x; (11)We will concentrate on a single harmonic component exp[i2�x�x]and the result for general f(x) will follow by linearity. Ap-plying step 1 to a single harmonic we obtainexp[i2��x�x]: (12)Now, we apply step 2 and step 3 to this result to obtainr1 + i2�x�x+ x0x2pox30 exp[i2��x�x] � exp��i2�x2�x �x+ x0x2pox30 ��(13)Finally, we apply step 4 and obtain our �nal result:r1 + i2�x(�x+ x0)3x2pox30 exp[i2��x�x]� exp�i2��x �x� �xxpo�x+ x0�2� �x+ x0x2pox30 ��� exp�i4��x� �x+ x20x20xpo �� : (14)Multiplying this with F (�x) and integrating over �x yieldsthe desired approximate expression for the perspective pro-jection of f(x), which is the mathematical expression of thefour steps outlined above.To see that this expression is indeed an approximation ofthe perspective projection, we again concentrate on a singleharmonic component whose exact perspective projection isexp�2i��x x0xpxpo � xp� (15)Using the taylor series expansion we obtainexp�i2��xx0� x2p(1� �)3x2po + xp(1� 3�)(1� �)3xpo + �3(1� �)3�� ;(16)which we see di�ers from (14) only by a constant factor.As far as a single harmonic component is concerned, theonly approximation that is involved is the binomial expan-sion in the exponent. When the harmonic components aresuperposed to obtain the original function f(x), we make
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 p Figure 3: a) Original signal. b) Exact perspective projec-tion superimposed with the fractional Fourier approxima-tion.the additional approximation of using the order correspond-ing to the center frequency for all harmonic components.Thus our three-step procedure will deviate from the exactperspective projection more and more as the bandwidth off(x) is increased. The limitations associated with this ap-proximation will be discussed in the next section.As an example we consider the narrowband signal shownin �gure 3. Again, the exact perspective projection and thefractional Fourier approximation are superimposed in part bof the same �gure. We observe that the approximation isquite satisfactory except very near the edges, which shouldbe avoided. 4. ERROR ANALYSISIn this section we examine the conditions under which thefractional Fourier transform approximation to the perspec-tive projection is valid. We �rst examine the modi�cationsthe Wigner distribution undergoes corresponding to the ap-proximation. Since we know that the approximation can bedecomposed into the four steps given in section 3, it is aneasy matter to �nd the resulting changes in the Wignerdistribution. To estimate the error inherent in our approx-imation, we will think of the original Wigner distributionto consist of horizontal strips of narrow frequency compo-nents. The major approximation we make is to replacethe fractional orders required by these di�erent frequencycomponents by a single order corresponding to the centralfrequency. To determine the error introduced by this ap-proximation, we will determine how the highest and lowestfrequency strips would be mapped had their individual fre-quencies been used instead of the center frequency. Letus assume that most of the energy of the Wigner distribu-tion of a signal is concentrated in a rectangular region inthe space-frequency plane (�gure 4a). Part b of the same�gure shows the Wigner distribution corresponding to thefractional Fourier approximation (solid lines). The dashedlines, on the other hand, show the Wigner contour obtainedby using the individual frequencies for the highest and low-est frequency strips.Our error criteria will be the deviations of the corners ofthe two superimposed Wigner contours in �gure 4b. Therewill be one spatial deviation and one frequency deviation foreach of the four corners of the contours. We will normalize



4
−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

−1 0 1 2 3 4 5
−1

0

1

2

3

4

5

(a) (b) 

space space  

frequency  frequency  

Figure 4: (a) Wigner distribution of the original signal.(b) Comparison of Wigner distributions underlying erroranalysis.
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center point  center point  center point  Figure 5: The dark regions represent the parameter combi-nations whose normalized error is less than 10%. See textfor explanation.the spatial deviation by �x and the frequency deviationsby ��x and take the maximum of the resulting eight nor-malized deviations as our �nal error measure. Expressionfor the eight normalized deviations can be derived easily.It does not seem possible to analytically derive conclu-sions using these formulae so that we will resort to numeri-cally obtained plots. The approximation will be assumed tobe acceptable if the maximum normalized error is less than10%. The error criteria we use give the error as a functionof six variables: x0; xpo; �x; ��x;�x;��x. However, normal-izing all variables by x0, the number of variables can bereduced to �ve. Figure 5 shows the region where the max-imum normalized error is less than 10% as darker regions,whereas the lighter regions are where the error is large. Thehorizontal axis in each of the 75 plots represents the valueof �x=x0 and the vertical axis represents ��x=x0. Both ofthese variables range from 101=30 to 10100=30 in these log-logplots..Each member of the 5� 5 matrices of plots correspondsto di�erent values of �x=x0 (horizontal) ��x=x0 (vertical).The �ve seperate values of �x=x0 are10�1=2; 100=2; 101=2; 102=2; 103=2 and the �ve seperate valuesof ��x=x0 are10�1=2; 100=2; 101=2; 102=2; 103=2. The three groups of 25plots each correspond to di�erent values of the perspec-tive point. Figure 5a: xpo=x0 = 0:1, �gure 5b: xpo=x0 = 1,Figure 5c: xpo=x0 = 10.This set of plots covering a broad range of the param-eter values allows us to determine whether the approxima-tion developed is acceptable for a certain range of param-eters. Generally speaking, we have larger acceptable re-
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