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ABSTRACT

We analyse perspective projections in the space-frequency
plane and show that under certain conditions they can be
approximately modelled in terms of the fractional Fourier
transform. The region of validity of the approximation is
examined. Numerical examples are presented.

1. INTRODUCTION

Perspective projections are used in many applications in im-
age and video processing, especially when confronted with
natural or artificial scenes with depth (for instance, in robot
vision applications). Perspective projection can be consid-
ered as a geometric or pointwise transformation, in the sense
that each point of the input is mapped to another point in
the output [1, 2]. In this paper we will examine the per-
spective projection in the space-frequency plane and show
that its effect on the input can be modelled in terms of the
fractional Fourier transform.

A widely employed space-frequency representation is
the Wigner distribution is going to be used in this paper.
The Wigner distribution provides information regarding the
distribution of the signal energy over space and frequency.
A discussion and properties of the Wigner distribution may
be found in [3].

The fractional Fourier transform is a generalization of
the ordinary Fourier transform with a fractional order pa-
rameter a. It has found many applications in optics and
signal processing [4-9]. We refer the reader to [4] for a com-
prehensive treatment and further references, and to [6] for
a shorter introduction. The zeroth order fractional Fourier
transform corresponds to the identity operation and the
first order fractional Fourier transform corresponds to the
ordinary Fourier transform. Furthermore, the fractional
Fourier transform is index additive; that is, the aith or-
der fractional Fourier transform of the asth order fractional
Fourier transform is equal to the (a1 + a2)th order frac-
tional Fourier transform. The ath order fractional Fourier
transform corresponds to a clockwise rotation of the Wigner
distribution by an angle @ = ax/2 in the space-frequency
plane: The fractional Fourier transform has a fast imple-
mentation with compexity O(N log N) [4, 6].

To understand why the fractional Fourier transform is
expected to play a role in perspective projections, let us
consider the perspective projection of an image exhibiting
periodic features, such as a railroad track. More “distant”
parts of the image will appear in the projection smaller

than “closer” parts. Thus a periodic or harmonic feature
of certain frequency will be mapped such that it exhibits a
monotonic increasing frequency. Under certain conditions,
this increase can be assumed linear so that the harmonic
function is mapped to a chirp function. Since fractional
Fourier transforms are known to map harmonic functions
to chirp functions, we expect that perspective projections
can be modelled in terms of fractional Fourier transforms.
The purpose of this paper is to formulate this relationship.

In the next section we are going to present the perspec-
tive model we use and examine the effect of the perspec-
tive projection on the Wigner distribution. In the follow-
ing section, we will discuss the relation between the frac-
tional Fourier transform and perspective projections based
on their effects on the Wigner distribution. We will discuss
how perspective projections can be modelled as shifted and
fractional Fourier transformation. The last section is de-
voted to an analysis of the errors and the region of validity
of the approximations.

2. PERSPECTIVE TRANSFORMATION

The perspective model we use is shown in figure 1. Initially
we consider perspective projections for one-dimensional sig-
nals, since this significantly simplifies the presentation. The
horizontal axis, labeled x, represents the original object
space. The vertical axis, labeled z,, represents the per-
spective projection space. The point A with coordinates
(—z0, Tpo) is the perspective center or the focus point. We
denote the original signal (object) by f(x) and its perspec-
tive projection by g(xp). We assume that most of the energy
of f(z) is confined to the interval [z — Az/2,Z + Az/2]. In
the frequency domain, we assume that most of the energy
of F(o,), the Fourier transform of f(z), is confined to the
interval [7, — Aoz/2,0, + Ao, /2]. The value of f(z) at
each z is mapped to the point z,, which is the projection
of the point z:

TTpo
— _Z7po 1
Tp T+ 10 (1)
ZoTp
= 2
o= 2)

which can be derived by simple geometry. Thus, the pro-
jection g(zp) is expressed as follows:
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Figure 1: Perspective model: f(x) represents the input dis-
tribution on the x axis, g(z,) represents its perspective pro-
jection onto the z, axis. The point A with coordinates
(—z0, Tpo) is the perspective center or the focus point.

The interval to which most of the energy of g(z,) is approx-
imately confined can be determined using 1.

In order to see the effect of perspective projections in the
space-frequency plane, we decompose f(z) into harmonics
as follows:

flx) = /F(Uz)exp[ﬂﬂ'xaz]daz. (4)
where F(o;) is the Fourier transform of f(z). Using (3)
and linearity we obtain the following expression for g(z,):

o(ay) = / F(0s)h(xp, o) dos, (5)

where
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We will initially concentrate on a single exponential with
frequency 7, and study the effect of perspective projection
in the space-frequency plane. Then, we will construct g(zp)
by first decomposing f(x) in terms of exponentials and us-
ing (5).

The Wigner distribution of h(zp,d,) cannot be explic-
itly obtained. Therefore, to continue our analytical develop-
ment, we expand the phase of h(zp,5,) in a Taylor series.
We will expand the phase of h(zp,d,) around the point
which Z is mapped to:
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phase of h(zp,7,) around kz,, we obtain the following after
some algebra:

which we express as kz,, where Kk = . Expanding the
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Ignoring terms higher than the second order, the projection
of a harmonic is seen to be a chirp function. The validity
of this approximation requires the third order term to be
much smaller than the second order term:
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Figure 2: (a) Wigner distribution of the original exponen-
tial. (b) Wigner distribution of the approximate perspective
projection: a chirp.

This approximation is more accurate for larger values of
Tpo. This is expected since larger xp, correspond to less
deep perspective projections. The Wigner distribution of
the chirp given in (8) is a line delta given by
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and is shown in figure 2b.

Having obtained an approximate analytical form for the
perspective projection of a harmonic, as well as its Wigner
distribution, we now move on to our discussion of perspec-
tive projections in the space-frequency plane, as well as its
relation to the fractional Fourier transform.
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3. RELATION BETWEEN PERSPECTIVE
TRANSFORMATION AND FRACTIONAL
FOURIER TRANSFORM

In the previous section we obtained an approximate expres-
sion for the Wigner distribution of the perspective projec-
tion of a single exponential. The Wigner distribution of
a typical exponential and the Wigner distribution of the
approximate perspective projection of the exponential are
shown in figure 2. The angle the line delta makes with the z

axis is arctan ), which depends on .. The fact

that the oblique line delta is a rotated version of the hor-
izontal line delta suggests a role for the fractional Fourier
transform since this operation corresponds to rotation in
the space-frequency plane.

We will now show how the perspective projection of
a signal can be approximately expressed in terms of the
fractional Fourier transform. We claim that the perspective
projection of a signal can be obtained from, or modelled by,
the following steps:

1. Shift the signal by Z in the negative x direction and
by &, in the negative o, direction. This translates
the Wigner distribution of the signal to the origin of
the space-frequency plane.

(8)

2. Take the fractional Fourier transform with the or-
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Wigner distribution by an angle aw/2.
3. Shift the result by
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in the positive = direction

and by in the positive o, direction.



These steps represent a decomposition of the overall effect
of the perspective projection, from which we see that the
substance of perspective projection is essentially to effect a
rotation in the space-frequency plane. However, this rota-
tion is enacted on the space-frequency content of the signal
referred to the origin of the space-frequency plane.

Different frequency components of the signal require dif-
ferent fractional Fourier orders, because the order a given
in step 3 depends on &,. However, as we will see, under
certain conditions, a satisfactory approximation can be ob-
tained by using a uniform order corresponding to the central
frequency of the signal.

We now demonstrate our claim that perspective projec-
tion can be decomposed into the three steps given above.
We start by decomposing f(z) into harmonics:

f(x) =/F(oz)exp[2i7rmoz]dam, (11)

We will concentrate on a single harmonic component exp[i2rzos]

and the result for general f(z) will follow by linearity. Ap-
plying step 1 to a single harmonic we obtain

exp[i2nZTo,]. (12)

Now, we apply step 2 and step 3 to this result to obtain
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Finally, we apply step 4 and obtain our final result:
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Multiplying this with F(o,) and integrating over o, yields
the desired approximate expression for the perspective pro-
jection of f(x), which is the mathematical expression of the
four steps outlined above.

To see that this expression is indeed an approximation of
the perspective projection, we again concentrate on a single
harmonic component whose exact perspective projection is

ﬂ] (15)
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Using the taylor series expansion we obtain
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which we see differs from (14) only by a constant factor.
As far as a single harmonic component is concerned, the
only approximation that is involved is the binomial expan-
sion in the exponent. When the harmonic components are
superposed to obtain the original function f(z), we make

Figure 3: a) Original signal. b) Exact perspective projec-
tion superimposed with the fractional Fourier approxima-
tion.

the additional approximation of using the order correspond-
ing to the center frequency for all harmonic components.
Thus our three-step procedure will deviate from the exact
perspective projection more and more as the bandwidth of
f(z) is increased. The limitations associated with this ap-
proximation will be discussed in the next section.

As an example we consider the narrowband signal shown
in figure 3. Again, the exact perspective projection and the
fractional Fourier approximation are superimposed in part b
of the same figure. We observe that the approximation is
quite satisfactory except very near the edges, which should
be avoided.

4. ERROR ANALYSIS

In this section we examine the conditions under which the
fractional Fourier transform approximation to the perspec-
tive projection is valid. We first examine the modifications
the Wigner distribution undergoes corresponding to the ap-
proximation. Since we know that the approximation can be
decomposed into the four steps given in section 3, it is an
easy matter to find the resulting changes in the Wigner
distribution. To estimate the error inherent in our approx-
imation, we will think of the original Wigner distribution
to consist of horizontal strips of narrow frequency compo-
nents. The major approximation we make is to replace
the fractional orders required by these different frequency
components by a single order corresponding to the central
frequency. To determine the error introduced by this ap-
proximation, we will determine how the highest and lowest
frequency strips would be mapped had their individual fre-
quencies been used instead of the center frequency. Let
us assume that most of the energy of the Wigner distribu-
tion of a signal is concentrated in a rectangular region in
the space-frequency plane (figure 4a). Part b of the same
figure shows the Wigner distribution corresponding to the
fractional Fourier approximation (solid lines). The dashed
lines, on the other hand, show the Wigner contour obtained
by using the individual frequencies for the highest and low-
est frequency strips.

Our error criteria will be the deviations of the corners of
the two superimposed Wigner contours in figure 4b. There
will be one spatial deviation and one frequency deviation for
each of the four corners of the contours. We will normalize
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Figure 4: (a) Wigner distribution of the original signal.
(b) Comparison of Wigner distributions underlying error
analysis.

Figure 5: The dark regions represent the parameter combi-
nations whose normalized error is less than 10%. See text
for explanation.

the spatial deviation by Az and the frequency deviations
by Ao, and take the maximum of the resulting eight nor-
malized deviations as our final error measure. Expression
for the eight normalized deviations can be derived easily.

It does not seem possible to analytically derive conclu-
sions using these formulae so that we will resort to numeri-
cally obtained plots. The approximation will be assumed to
be acceptable if the maximum normalized error is less than
10%. The error criteria we use give the error as a function
of six variables: zo, Zpo, T, 0z, Ax, Ao,. However, normal-
izing all variables by xp, the number of variables can be
reduced to five. Figure 5 shows the region where the max-
imum normalized error is less than 10% as darker regions,
whereas the lighter regions are where the error is large. The
horizontal axis in each of the 75 plots represents the value
of Ax/xo and the vertical axis represents Ao, /zo. Both of
these variables range from 10/39 0 100730 i these log-log
plots.

Each member of the 5 x 5 matrices of plots corresponds
to different values of Z/xo (horizontal) ./zo (vertical).
The five seperate values of Z/x¢ are
107Y/2,10%2,10'/2,10%/2,10%/2 and the five seperate values
of 3, /xo are
107/2,10%2,10'/2,10%/2,10%/2. The three groups of 25
plots each correspond to different values of the perspec-
tive point. Figure ba: xpo/xo = 0.1, figure 5b: zpo/z0 = 1,
Figure 5¢: 2po/xo = 10.

This set of plots covering a broad range of the param-
eter values allows us to determine whether the approxima-
tion developed is acceptable for a certain range of param-
eters. Generally speaking, we have larger acceptable re-

gions for larger values of &,. Unsurprisingly, the approxi-
mation is strained as Az and Ao, increase, i.e. as the space-
bandwidth product of the signal increases.

5. CONCLUSION

In this paper we examined perspective transformations in
the space-frequency plane and showed how to approximate
the perspective projection in terms of the fractional Fourier
transform. Our main motivation was that the fractional
Fourier transform approximately captures the essence of the
warping characteristic of perspective transformations. We
observed that perspective projection approximately maps
harmonic components into chirps and therefore can be mod-
elled in terms of the fractional Fourier transform. We saw
that the substance of perspective projection is essentially to
effect a rotation in the space-frequency plane. However, this
rotation is enacted on the space-frequency content of the
signal referred to the origin of the space-frequency plane.
Elementary numerical examples for both one-dimensional
signals and two-dimensional images are presented. The er-
rors associated with the approximation and the region of
validity with respect to the approximations involved are
numerically discussed.
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