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Deterministic error modelling, calibration and model parameter esti-
mation of consumer-grade accelerometers is considered and improve-
ment to the traditionally used measurement model is proposed.
Calibration experiments on a flight motion simulator are performed
for experimental verification. Model parameters are estimated using
the Levenberg-Marquardt optimisation algorithm. Residual errors are
considerably reduced as a result of the improved measurement model.
Introduction: With developments in microelectromechanical systems,
the size, weight and cost of accelerometers have decreased considerably
during the last two decades, opening up new application areas for their
use [1].

An accelerometer detects specific force, which is proportionate to the
acceleration relative to an inertial reference frame along its axis/axes of
sensitivity. Accelerometer measurements often deviate from the ground
truth since they suffer from various error types, which can be constant or
time varying. As a result of double integrating their output to obtain
linear position estimates, even very small errors accumulate very
quickly and the output tends to drift. Proper characterisation, modelling
and calibration of consumer-grade accelerometers is essential to obtain
accurate position estimates and extend the time period over which these
devices can be used stand-alone or in aided mode. Deterministic and sto-
chastic modelling of inertial sensors are usually treated separately. Here,
we focus on the deterministic calibration of accelerometers and propose
an improvement to the traditional measurement model used in 1 g tests.
The effectiveness of the model is verified through calibration exper-
iments and the results are compared with those of the traditionally
used model.

The following notation is used throughout. Any vector v expressed
with respect to a coordinate frame f is denoted by v f, and the direction
cosine matrix, denoted by C f2

f1
, representing the rotational transformation

between two coordinate frames f1 and f2, transforms a vector v f1 from
frame f1 to f2 as v f2 = C

f2
f1
v f1 . Orthonormal basis vectors of the x, y

and z axes of a given frame f are, respectively, denoted by i f, j f and
k f. Several coordinate frames need to be defined:

North-east-down (NED) frame is the Earth’s frame of reference
whose unit vectors lie along the north, east and down directions.

Platform base frame (p) is an orthogonal frame fixed to the base of
the rotating platform onto which the accelerometers are mounted and
does not move together with the platform.

Sensor enclosure frame (q) corresponds to the orthogonal axes of the
sensor mechanical casing. Because of manufacturing tolerances and
packaging issues, it cannot be perfectly aligned with the sensitivity
axes of the sensor (the s frame) in practice. This frame moves together
with the platform onto which the accelerometers are attached.

Orthogonal sensor sensitivity frame (r) is the idealised, orthogonal
sensor sensitivity frame.

Non-orthogonal sensor sensitivity frame (s) represents the set of
actual sensitivity axes of the accelerometer. Deviation from orthogonal-
ity stems from manufacturing tolerances.

For the platform (a flight motion simulator [FMS]) that we use for the
calibration tests, the k unit vectors of the NED and p frames are coinci-
dent and their respective i and j unit vectors lie on the horizontal plane,
making an angle β with each other (Fig. 1). Thus, the two frames are
related by a rotational transformation C

p
NED about the k axis by β:

C
p
NED =

cosb sinb 0
− sinb cosb 0

0 0 1

⎡
⎣

⎤
⎦ (1)

The Cq
p represents the rotational transformation from frame p to q and

can be expressed mathematically by a sequence of basic rotations as
Cq
p = Rx(f)Ry(g)Rz(c), where ϕ, γ and ψ are the rotation angles about

the x, y and z axes of the p frame, respectively.
The Cr

q is the package misalignment matrix that describes the
rotational transformation from frame q to r that have imperfect align-
ment and is given by Cr

q = Rx(1x)Ry(1y)Rz(1z), where εx, εy and εz
are the mounting misalignment angles about the x, y and z axes of the
q frame, respectively.
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Fig. 1 ACUTRONIC FMS during calibration procedure

Inset: Fixture plate onto which two accelerometers are attached

The non-orthogonalisation matrix Ts
r describes the kinematic trans-

formation from frame r to s:

Ts
r =

1 0 0
sin (a1) cos (a1) 0
cos (a3) sin (a2) sin (a3) cos (a2) sin (a3)

⎡
⎣

⎤
⎦ (2)

where αi, i∈ {1, 2, 3} are the sensor-to-sensor axis misalignment angles.
We also introduce a scale factor error matrix S that scales the output

of each accelerometer axis by a different amount in general:

S =
Sx 0 0
0 Sy 0
0 0 Sz

⎡
⎣

⎤
⎦ (3)

When the input to the accelerometer is zero, the deviation of the output
from the zero level is the bias error b = [bx by bz]

T which may drift in
time and change with the operating temperature of the sensor.

Traditional accelerometer measurement model: The traditionally used
first-order measurement model of accelerometers is given by [2]:

am = (I + S)Ts
rC

r
qC

q
pa

p + b+ n (4)

The am is the acceleration measured along the sensitivity axes of the
accelerometer (the s frame), whereas the reference for the true value
of the excitation signal ap is the p frame. The composite matrix multi-
plying ap above represents a transformation from the p to the s frame
and corrects for the scale factor error. Here, I is the 3 × 3 identity
matrix and n is the additive stochastic measurement noise vector.

Improved accelerometer measurement model: We propose the follow-
ing improvement to the measurement model:

am = (I + S)Ts
rC

r
qC

q
pC

p
NEDa

NED + b+ n (5)

The reference for the true acceleration aNED is the NED frame. The com-
posite matrix multiplying aNED above represents a transformation from
the NED to the s frame and corrects for the scale factor error.

Note that in the traditional model, Cp
NED is not included and when the

FMS is at stationary angular positions, the true acceleration is taken as
gp instead of gNED. The following approximation is made when using
gp: given that the i–j planes of both p and NED frames lie on the hori-
zontal plane (perpendicular to g) with coincident k unit vectors, as
shown in Fig. 1 and described by (1), the main component of both gp

and gNED lies along the k direction and the much smaller components
along ip, jp, iNED and jNED can be neglected. Thus, in the traditional
model, the excitation signal gp is usually approximated by the third com-
ponent of gNED and used in multi-position tests, resulting in some error.

Calibration experiments: We use ACUTRONIC’s high-precision
3-DOF FMS (Fig. 1) to conduct multi-position tests for the deterministic
calibration of the tri-axial accelerometers of two widely used consumer-
grade inertial measurement units: the 3DM-GX2 of MicroStrain [3] and
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the MTx of Xsens [4]. Both units are attached side by side to the fixture
plate of the FMS, located on the shaft of the inner axis (Fig. 1 inset). A
trajectory for the axes of the FMS is determined and programmed into
the FMS controller computer. During the calibration procedure, both
accelerometer outputs are sampled uniformly at 100 Hz. We only con-
sider the measurements acquired while the FMS is stationary at different
angular positions to avoid additional disturbance on the measurements
that might occur while the FMS is in motion.

Accelerometer measurement model parameter estimation: We use the
model-based nonlinear Levenberg-Marquardt optimisation algorithm
(LMA) [5] to estimate the measurement model parameters.

† In accordance with the error components described previously, the
unknown parameter vector θ for the improved model is given by:

u = Sx Sy Sz a1 a2 a3 1x 1y 1z b bx by bz
[ ]T

(6)

† We form a single column vector of 3N elements based on the accel-
erometer measurements:

y = aTm[1] aTm[2] · · · aTm[N ]
[ ]T

(7)

Here, am[k], k = 1, …, N, denote the measurement vector of acceler-
ometers at time sample k.

† Parametric form of the accelerometer output, acquired from the first
two terms on the right-hand side of (5), is also represented as a vector
with 3N elements:

F(u) = FT
1 [g

NED, u] · · · FT
N [g

NED, u]
[ ]T

(8)

where FT
k [g

NED, u] are obtained by using Cq
p[k], k = 1, . . . , N , which

represent the FMS orientations when the FMS is stationary.

† The fitness function to be minimised by the LMA is ||y−F(θ)||.

For the ideal accelerometer that does not require any calibration
(without any misalignment, orthogonalisation, scale factor or bias
errors), the ideal calibration parameter vector θ° is given by:

uW = 0 0 0 0 0
p

2
0 0 0 0 0 0 0

[ ]T
(9)

with all its parameters being equal to zero, except for α3 = π/2.
Considering the centrifugal acceleration of the Earth, gNED at the

location where the experiments are conducted can be calculated from
[6]:

gNED = g− (R+ ℓ)‖vNED‖2
2

sin 2L 0 (1+ cos 2L)
[ ]T

(10)

where g = [0 0 9.80665]T is the standard gravity vector and ωNED, R, ℓ and
Λ denote the Earth’s turn rate vector with respect to the NED frame, the
radius of the Earth, altitude with respect to sea level and the latitude
angle that changes between −90° and 90°, respectively. The gNED

vector is calculated as gNED = [−0.0167 0 9.7782 ]T m/s2.
For the traditional model, the procedure is very similar. The only

difference is that θ and θ° are reduced by one dimension (β) and (4) is
used instead of (5) so that gNED in (8) is replaced by gp.

Table 1: Estimation errors of accelerometers without calibration
and with calibration using traditional and improved
measurement models
Units: m/s2

‖y− F(u

W
)‖

without

‖y− F(u∗)‖
traditional
ELECT
‖y− F(u∗)‖
improved
MicroStrain
x-axis
 19.02
 3.40
 2.87
y-axis
 20.24
 3.04
 2.67
z-axis
 19.92
 2.83
 2.12
Xsens
x-axis
 5.71
 2.46
 2.21
y-axis
 9.48
 2.76
 2.52
z-axis
 6.94
 2.31
 1.76
The error values without any calibration, and those with calibration
using the traditional and improved models, are provided in Table 1.
These correspond to the square root of the sum of the squared errors
for each accelerometer axis. The F(θ°) in the second column of Table 1
RONICS LETTE
is calculated by using the θ° in (9) (i.e. assuming an ideal accelerometer).
Since Fk[g

NED, θ°] = gNED for k = 1, …, N, the elements of F(θ°) in (8)
are simplified to (gNED)T in this case. The θ* in the third and fourth
columns of the Table is the parameter vector optimised using the LMA.
With the improved measurement model proposed here, the errors are
reduced by 18% for the MicroStrain and 14% for the Xsens acceler-
ometers at the expense of estimating an additional parameter β.

The estimated model parameters of the two accelerometers are pro-
vided in Table 2. The true value of β, measured by using a gyro-
theodolite, was 89° = 1.553 rad during the experiments. The estimated
β values given in the Table for the two accelerometers are close to the
true value. The difference between the two estimates is about 7°, indicat-
ing their consistency. We note that rotation by the angle β about
the z-axis of the NED frame does not affect the vertical component of
the gravity while the 600-times-smaller horizontal component
becomes affected. The value of the horizontal gravity component is
–0.0167 m/s2; thus comparable with the noise levels of the two
accelerometers with standard deviations of 0.013 m/s2 (for
MicroStrain) and 0.012 m/s2 (for Xsens). The low signal-to-noise
ratio makes estimation of β difficult. We have also run the LMA
using the true value of β and have found the error reduction to be
about the same and the remaining parameter estimates to be very
close to those reported in Table 2.

Table 2: Estimated calibration parameters of accelerometers
according to traditional and improved models
R

MicroStrain – traditional
S 1st April 2016 Vol
MicroStrain – improved
diag(S) = [0.0008 –0.0001 0.0008]
 diag(S) = [0.002 0.001 0.002]
α1 = 0.029° α2 = 0.123° α3 = 90.026°
 α1 = 0.030° α2 = 0.077° α3 = 89.98°
εx = 1.081° εy =−0.133° εz = 0.323°
 εx = 1.031° εy =− 0.181° εz = 0.308°
b = [ − 0.094 − 0.013 0.049]T (m/s2)
 b = [− 0.0937− 0.0133 0.0371]T (m/s2)
β = 1.7231 (rad)
Xsens – traditional
 Xsens – improved
diag(S) = [0.0008 0.0008 0.0008]
 diag(S) = [0.002 0.002 0.002]
α1 =−0.043° α2 = 0.093° α3 = 89.993°
 α1 =−0.043° α2 = 0.049° α3 = 89.95°
εx = 0.485° εy = 0.002° εz =−0.292°
 εx = 0.438° εy =−0.049° εz =−0.295°

b = [− 0.003 − 0.001 − 0.002]T (m/s2)
 b = [− 0.0028− 0.0008 0.0101]T (m/s2)
β = 1.6053 (rad)
Conclusion: We have addressed the deterministic error modelling, cali-
bration and parameter estimation of consumer-grade accelerometers. We
have proposed an improvement to the traditional deterministic model of
accelerometers and estimated the measurement model parameters using
the LMA, based on experimentally acquired data through multi-position
tests. Residual errors were considerably reduced compared with those
obtained with the traditional model. Substantial improvement in the
model fit makes the stand-alone and aided use of consumer-grade acceler-
ometers possible for longer durations.
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