

Human Localization Using Body-Worn Inertial/Magnetic Sensors

Kerem Altun and Billur Barshan

{kaltun@ee.bilkent.edu.tr, billur@ee.bilkent.edu.tr} **Department of Electrical and Electronics Engineering Bilkent University, Ankara, Turkey**

Introduction

- in many intelligent systems, the current location and activity context of the user can be helpful
- location is usually determined by externally-referenced sensors such as
 - satellites (GPS)
 - cellular networks (GSM)
 - local wireless networks (RFID, WiFi)
- here we determine location using body-worn inertial and magnetic sensors
- provide GPS-free localization in indoor environments and outdoor environments with GPS outages

Zero-Velocity Update

- it is required to determine ΔT accurately
 - then we can perform ZUPT at one point inside ΔT
- in the literature, there are methods to determine ΔT [2]
- we threshold the angular velocity magnitude

Experimental Results

- we mount Xsens MTx sensors [3] on both feet and the chest
- we perform the following experiments
 - walking on a rectangle with dimensions 9m x 6 m (for three laps)
 - walking on a rectilinear polygon

- emergency responders
- underground miners
- military applications

Methodology

- inertial sensors suffer from integration drift
- gyroscope signals are integrated once to find orientation, accelerometer signals are integrated twice to find position
- the slightest error in sensor signals causes unbounded error growth in orientation and position
- magnetometers are used to provide external reference for orientation

Gait Cycle

- walking on a circle with radius 3.6m (for three laps)
- we use ZUPT to find the traveled distance
- for the heading, we use three different methods, using the Kalman filter output of the MTx sensors

60 100 (figure taken from http://me.queensu.ca/people/deluzio/images/GaitCycle.jpg)

• human gait is periodic, and each period is divided into two phases, depending on whether the foot is in contact with the ground or not: the *stance phase* and the *swing phase*

• in some time interval ΔT during the stance phase, the foot velocity and acceleration are *exactly zero*

- so, the true values of velocity and acceleration are known
- the velocity and acceleration can be reset to the true value (zero) at one point in ΔT
- the error in one step is not accumulated to the next step

Discussion and Future Work

- the heading error contributes more to the overall error
- ZUPT is not applied to the heading data
- in our previous work on activity recognition [4], we use the same sensors and determine the activity with 99% accuracy
 - using activity recognition cues and a map, we can perform updates for the true position
 - provide localization without any external reference if a map of the environment is available

Acknowledgments

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant number EEEAG-109E059 that participates in MOVE (COST Action IC0903).

References

[1] L. Ojeda et al., "Non-GPS navigation for security personnel and first responders," *J. Navigation*, 60(3): 391–407, 2007. [2] I. Skog et al., "Zero-velocity detection – an algorithm evaluation," *IEEE T. Bio-med. Eng.*, 57(11): 2657–2666, 2010. [3] MTi and MTx User Manual and Technical Documentation, Xsens Technologies Inc., http://www.xsens.com

TEMPLATE DESIGN © 2007 WWW.PosterPresentations.com