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ABSTRACT

In this study, low-cost infrared emitters and detectors are
used for the recognition of surfaces with different proper-
ties in a location-invariant manner. The intensity readings
obtained with such sensors are highly dependent on the loca-
tion and properties of the surface in a way that cannot be
represented analytically in a simple manner, complicating
the differentiation and localization process. Our approach,
which models infrared intensity signals parametrically, can
distinguish different surfaces independently of their posi-
tions. Once the surface type is identified, its position can also
be estimated. The method is verified experimentally with
wood, styrofoam packaging material, white painted wall,
white and black clothes, and white, brown, and violet papers.
A correct differentiation rate of 73% is achieved over eight
surfaces and the surfaces are localized within absolute range
and azimuth errors of 0.8 cm and 1.1°, respectively. The
differentiation rate improves to 86% over seven surfaces and
100% over six surfaces. The method demonstrated shows
that simple infrared sensors, when coupled with appropri-
ate signal processing, can be used to extract a significantly
greater amount of information than they are commonly em-
ployed for.

1. INTRODUCTION

In this study, surfaces having different colors and textures
have been recognized by parametric modeling of infrared in-
tensity scan signals. The proposed approach can differentiate
a moderate number of surfaces and estimate their positions.
In this section, the interaction of light with surfaces is briefly
explained and some existing models are reviewed.

Light reflected from objects depends on the wavelength
and distance of the light source, the properties of the light
source (i.e., point or diffuse source), and the surface prop-
erties of the objects under consideration such as reflectivity,
absorbtivity, transmittivity, and orientation [1, 2]. Depend-
ing on the surface properties, reflectance can be modeled in
different ways:

Matte materials can be approximated as ideal Lamber-
tian surfaces which absorb no light and reflect all the inci-
dent light with equal intensities in all directions with respect
to the incidence angle [1, 3]. The intensity of the reflected
light depends on the angle v between the surface normal and
the incident light (Fig. 1). When a Lambertian surface is illu-
minated by a point source of irradiance E, then the reflection
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Figure 1: Diffuse reflection from an opaque surface.
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Figure 2: Specular reflection from an opaque surface.

function will be
1
R = —=FEcos(y), for >0, (1)
i

which is known as “cosine” or Lambert’s law of reflection
from matte surfaces [3].

In perfect or specular (mirror-like) reflection, the inci-
dent light is reflected in the plane defined by the incident
light and the surface normal, making an angle with the sur-
face normal, which is equal to the incidence angle (Fig. 2).

Phong illumination model [4], which is frequently used
in computer graphics applications, combines the three types
of reflection, which are ambient, diffuse, and specular reflec-
tion, in a single formula:

I = Iko+ Lilkq(L.N)] + Li[ks (R.V)"] ®)

where I, and I; are the intensities of ambient and incident
light, k,, k4, and k, are the coefficients of ambient light, dif-
fuse, and specular reflection for a given material, and E, N s
R, and V are the unit vectors representing light source, sur-
face normal, reflected light, and viewing direction, respec-
tively, as shown in Fig. 2. The ambient reflection component,
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Figure 3: Close-up view of the infrared sensor.

which is the first term in Equation (2), can be neglected with
respect to the other terms because the infrared filter, covering
the detector window, filters out this term.

In [5], the simple nonempirical mathematical model de-
scribed above is used to model reflections from planar sur-
faces located at known distances by fitting the reflectance
data to the model represented by Equation (2) and improve-
ments are made in the range estimates of infrared sensors.
Our approach differs from that in [5], in that it uses a sim-
pler model, takes distance as a variable, and does not require
prior knowledge of the distance. Another difference is that,
the study [5] concentrates mainly on range estimation for a
limited range interval rather than determination of the surface
type whereas in this study, we focus on the determination
of the surface type. We also note that the position-invariant
pattern recognition and position estimation achieved in this
paper is different from such operations performed on con-
ventional images [6] in that here we work not on direct “pho-
tographic” images of the surfaces obtained by some kind of
imaging system, but rather on intensity scan signals obtained
by rotating a point sensor. As such, position invariant differ-
entiation and localization is achieved with an approach quite
different than those employed in invariant pattern recognition
and localization in conventional images. In [7], the recogni-
tion capabilities of active infrared sensor arrays are analyzed
by simulation of infrared signal propagation using the model
represented by Equation (2). In our earlier work, we con-
sidered the differentiation and localization of objects with
different geometries such as plane, corner, edge, and cylin-
der with infrared sensors using nonparametric [8] and rule—
based [9] approaches. In [10], surfaces of different properties
are differentiated and localized with infrared sensors using
nonparametric approaches.

This paper is organized as follows: In Section 2, the para-
metric modeling of infrared intensity signals is discussed.
Section 3 provides experimental verification of the approach
presented in this paper. Concluding remarks are made in the
last section.

2. MODELING OF INFRARED INTENSITY
SIGNALS

The surface materials considered are wood, styrofoam pack-
aging material, white painted wall, white and black clothes,

planar surface

Figure 4: Top view of the experimental setup. The emitter
and detector windows are circular with 8 mm diameter and
center-to-center separation 12 mm. (The emitter is above the
detector.) Both the scan angle « and the target azimuth 6 are
measured counter-clockwise from the horizontal axis.

and white, brown, and violet papers. The infrared sensor [11]
(see Fig. 3) is mounted on a 12 inch rotary table [12] (Fig. 4)
to obtain angular intensity scan signals from these surfaces.
Reference intensity scan signals are collected for each sur-
face type by locating the surfaces with 2.5 cm distance in-
crements, ranging from 30 cm to 52.5 cm, at # = 0°. An ex-
ample of resulting reference scan signals is shown in Fig. 5
for styrofoam packaging material using dotted lines. These
intensity scans have been modeled by approximating the sur-
faces as ideal Lambertian surfaces. The received return sig-
nal intensity is modeled as

Cy cos(al
I= 020 (1 L 2 3)
(st +(eaaeay V)

which is a modified version of the second term in the model
represented by Equation (1). Here, Cy is a constant due to
the reflection coefficient of the surface, C'; is a term added
to compensate the change in the basewidth of the intensity
scans with respect to distance (Fig. 5), and C is the horizon-
tal distance between the rotary platform and the surface. A
similar dependency on (7 is used in sensor modeling in [13].
The denominator of 7 is the distance d between the infrared
sensor and the surface, which can be easily seen from Fig. 4.

Based on the model represented by Equation (3), parame-
terized curves have been fitted to the reference intensity scan
signals by using a nonlinear least-squares method [14]. Re-
sulting curves are shown in Fig. 5 in solid lines for the styro-
foam packaging material. The fitted curves for the other sur-
faces have similar characteristics. For the reference scans,
Cs is not taken as a parameter since we already know the
distance of the surface to the infrared sensing unit. The ini-
tial guesses must be made cleverly so that the algorithm does
not converge to local minima and curve fitting is achieved
in a smaller number of iterations. The initial guess for C
is made by evaluating 7 at o = 0°, which is the product of
7 with d? at a = 0°. Similarly, the initial guess for C; is
made by evaluating C'; from Equation (3) at a known angle
« other than zero, with the initial guess Cp and known range
d at a = 0°. While curve fitting, Cy value is allowed to vary
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Figure 5: Intensity scan signals of styrofoam packaging ma-
terial at different distances. Solid lines indicate the model fit
and the dotted lines indicate the actual data.

between + 2000 of its initial guess and C is restricted to be
positive. The variations of Cy, C, and C> (or d at a = 0°)
with respect to the maximum intensity of the reference scans
are shown in Figs. 6-8. As the distance d increases, Cy de-
creases and (] increases as expected from the model repre-
sented by Equation (3). The model fit is much better for scan
signals with smaller maximum intensities because the con-
tribution of the specular reflection components around the
maximum value of the intensity scans increases as the dis-
tance decreases and our model takes only diffuse reflections
into account. Therefore, the error between the actual data and
fitted curve increases beyond a certain distance as shown in
Fig. 5. This effect can be seen in the C coefficient (Fig. 6),
where Cj value begins to decrease beyond a certain range.
However, the same effect cannot be observed in the variation
of C'y (Fig. 7), which is critical in our decision process. The
operating range of our approach is extended at the expense
of the error in curve fitting at smaller ranges.

3. EXPERIMENTAL VERIFICATION AND
DISCUSSION

In this section, we experimentally verify the proposed
method. In the test process, the surfaces are randomly lo-
cated at azimuth angles varying from —45° to 45° and ranges
from 30 cm to 52.5 cm, where the return signal intensities do
not saturate. Firstly, the maximum intensity of the observed
intensity scan is found and the angular value, where this max-
imum occurs, is taken as the azimuth estimate of the surface.
If there are multiple maximum intensity values, the average
value of the minimum and maximum angular values, where
the maximum intensity values occur, is calculated to find the
azimuth estimate of the surface. The observed scan is shifted
by the azimuth estimate and the model represented by Equa-
tion (3) is fitted using nonlinear least-squares method. Initial
guesses for Cp and C; are made in the same way as explained
before for the reference scans. The initial guess for distance
C> is found by taking the average of the maximum possible
and the minimum possible range values corresponding to the
maximum value of the recorded intensity scan. These values
are found from Fig. 8§ by linear interpolation. This results in
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Figure 6: Variations of the parameter Cy with respect to the
maximum intensity of the scan signal.
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Figure 7: Variations of the parameter C'; with respect to the
maximum intensity of the scan signal.
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Figure 8: Variations of the parameter C (or d at a = 0°)
with respect to the maximum intensity of the scan signal.
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a maximum absolute range error of approximately 2.5 cm.
The parameter C is allowed to vary between £2.5 cm of
its initial guess. After nonlinear curve fitting to the observed
scan, we get three parameters Cjj, C}, and C3. In the de-
cision process, the maximum intensity of the observed scan
is used and a value of C'; is obtained by linear interpolation
on Fig. 7 for each surface type. Decisions are taken based
on the absolute difference of C'; — C} because of the distinc-
tive nature of the C'y variation with respect to the maximum
intensity. The surface type giving the minimum error is cho-
sen as the correct surface type. This might be also done by
comparing the parameters with those at the estimated range.
However, this does not give better results because of the error
and uncertainty in the range estimates C'y.

The surface recognition results are tabulated in Table 1.
An overall correct differentiation rate of 73% over eight dif-
ferent surfaces is achieved and surfaces are located with ab-
solute range and azimuth errors of 0.8 cm and 1.1, re-
spectively. Four of these surface types, which are styro-
foam, white painted wall, and brown and violet paper, can
be correctly classified with 100% accuracy. White and black
clothes are confused with each other. Similarly, wood and
white paper are confused with each other with only one ex-
ception. We can reduce the number of surfaces differentiated
and get higher differentiation rates. For example, if we ex-
clude black cloth from our test set, we get a correct differ-
entiation rate of 86%. Similarly, if we form a set of surfaces
excluding wood and white cloth or wood and black cloth, we
get a correct differentiation rate of 100% for the remaining
six surfaces, and the surfaces are located with absolute range
and azimuth errors of 0.2 cm and 1.1° and 0.3 cm and 1.1°,
respectively.

Table 1: Surface confusion matrix: C-based recognition.
(WO: wood, ST: styrofoam, WW: white wall, WC: white
cloth, BC: black cloth, WP: white paper, BR: brown paper,
VI: violet paper).

surface recognition result total
WO ST WW WC BC WP BR VI
WO 4 — — — — 7 — I 12
ST 12 — — — — 12
WAY - - 12 - - - - 12
wC - — - 7 5 - - - 12
BC — 9 3 — 12
WP 4 — — — — [ — — 12
BR — — — — — 12 — 12
VI — — — — — — — 12 12
total 8 12 12 16 8 15 12 13 96

4. CONCLUSION

In this study, we achieve location-invariant surface recogni-
tion by processing and modeling the intensity scan signals
obtained with simple, low-cost infrared sensors. The pro-
posed approach can differentiate six different surfaces with
100% accuracy. In [10], where we considered differentiation
and localization of surfaces by nonparametric approaches, a
maximum correct differentiation rate of 87% over four sur-
faces was achieved. Comparing this rate with that obtained in
this study, we can conclude that parametric approach is supe-
rior to nonparametric one, in terms of the accuracy, number
of surfaces considered, and memory requirements, where the
latter one requires the storage of reference scan signals.

The proposed method can be used in industrial applica-
tions where different surfaces must be identified and sepa-
rated in a cost effective way and in mobile robot applications
for recognition of the surfaces at nearby ranges.

Current and future work involves modeling of saturated
scans, hence extending the operating range of our approach
and extension of the model by including specular reflections.
We also plan to consider surface recognition by the use of
artificial neural networks in order to improve the accuracy of
the system.
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