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ABSTRACT
We propose the use of angular intensity signals obtained with
low-cost infrared (IR) sensors and present an algorithm to si-
multaneously extract the geometry and surface properties of
commonly encountered features or targets in indoor environ-
ments. The method is verified experimentally with planes,
90◦ corners, and 90◦ edges covered with aluminum, white
cloth, and Styrofoam packaging material. An average correct
classification rate of 80% of both geometry and surface over
all target types is achieved and targets are localized within
absolute range and azimuth errors of 1.5 cm and 1.1◦, re-
spectively. Taken separately, the geometry and surface type
of targets can be correctly classified with rates of 99% and
81%, respectively, which shows that the geometrical proper-
ties of the targets are more distinctive than their surface prop-
erties, and surface determination is the limiting factor. The
method demonstrated shows that simple IR sensors, when
coupled with appropriate signal processing, can be used to
extract substantially more information than such devices are
commonly employed for.

1. INTRODUCTION

Target differentiation and localization is of considerable in-
terest for intelligent systems where it is necessary to identify
targets and their positions for autonomous operation. Dif-
ferentiation is also important in industrial applications where
different materials must be identified and separated. In this
paper, we consider the use of a simple IR sensing system con-
sisting of one emitter and one detector for the purpose of dif-
ferentiation and localization. These devices are inexpensive,
practical, and widely available. The emitted light is reflected
from the target and its intensity is measured at the detector.
However, it is often not possible to make reliable distance
estimates based on the value of a single intensity return be-
cause the return depends on both the geometry and surface
properties of the reflecting target. Likewise, the properties
of the target cannot be deduced from simple intensity returns
without knowing its distance and angular location. In this pa-
per, we propose a scanning technique and an algorithm that
can simultaneously determine the geometry and the surface
type of the target, in a manner that is invariant to its location.

IR sensors are used in robotics and automation, process
control, remote sensing, and safety and security systems.
More specifically, they have been used in simple object and
proximity detection, counting, distance and depth monitor-
ing, floor sensing, position measurement and control, obsta-
cle/collision avoidance, and map building. IR sensors are
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Figure 1: (a) The IR sensor and (b) the experimental setup.

used in door detection and mapping of openings in walls [2],
as well as monitoring doors/windows of buildings and vehi-
cles, and “light curtains” for protecting an area. In [3], the
properties of a planar surface at a known distance were de-
termined using the Phong model and the IR sensor was mod-
eled as an accurate range finder for surfaces at short ranges.
(A short survey on the use of infrared sensors can be found
in [1]). In [4], we considered targets with different geometri-
cal properties but made of the same surface material (wood).
In [5], targets made of different surface materials but of the
same planar geometry were differentiated. In this paper, we
deal with the problem of differentiating and localizing targets
whose geometry and surface properties both vary, generaliz-
ing and unifying the results of [4] and [5].

2. TARGET DIFFERENTIATION AND
LOCALIZATION

The IR sensor [6] used in this study [see Fig. 1(a)] consists
of an emitter and detector and provides analog output voltage
proportional to the measured intensity reflected off the target.
The detector window is covered with an IR filter to minimize
the effect of ambient light on the intensity measurements.

The targets employed are a plane, a 90◦ corner, and a 90◦
edge, each with a height of 120 cm. They are covered with
aluminum, white cloth, and Styrofoam packaging material.
Our method is based on angularly scanning each target over a
certain angular range. The IR sensor is mounted on a 12 inch
rotary table [7] to obtain angular scans from these targets. A
photograph of the experimental setup and its schematics can
be seen in Figs. 1(b) and 2, respectively. Reference data sets
are collected for each target with 2.5 cm distance increments,
from their nearest to their maximum observable ranges, at
θ=0◦.

The resulting reference scans for the plane, the corner,
and the edge covered with materials of different surface
properties are shown in Fig. 3. The intensity scans are θ -
invariant but not r-invariant; changes in r result in varia-
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Figure 2: Top view of the experimental setup. Both the scan
angle α and the azimuth θ are measured counter-clockwise
from the horizontal axis.

tions in both the magnitude and the basewidth of the inten-
sity scans. Scans of corners covered with white cloth and
Styrofoam packaging material have a triple-humped pattern
(with a much smaller middle hump) corresponding to the two
orthogonal constituent planes and their intersection. The in-
tensity scans for corners covered with aluminum [Fig. 3(d)]
have three distinct saturated humps.

For an arbitrarily located target whose intensity scan is
acquired, first, we check for saturation by examining the cen-
tral intensity value of the observed scan I(α). This situation
is treated separately as will be explained later in Section 2.3.
Note that a corner scan is considered saturated when its cen-
tral intensity enters the saturation region, not the humps,
since the former value is relevant for our method.

Two alternative approaches, employed in performing the
comparisons with the reference scans, are discussed below.

2.1 Least-Squares (LS) Approach
First, we estimate the angular position of the target. As-
suming the observed scan pattern is not saturated, we check
whether or not it has two major humps. If so, it is a corner
and we find the angular location of the corner by taking the
average of the angular locations of the peaks of the two ma-
jor humps of the intensity scan. If not, we find the angular
location of the peak of the single hump. This angular value
can be directly taken as an estimate of the angular position
of the target. Alternatively, the angular position can be esti-
mated by finding the center of gravity (COG) of the scan as
follows:

θCOG =
∑n

i=1 αi I(αi)

∑n
i=1 I(αi)

(1)

Ideally, these two angular position estimates would be equal,
but in practice they differ by a small amount. We consider
the use of both alternatives when tabulating our results. From
now on, we refer to either estimate as the “center angle” of
the scan.

Plots of the intensity at the center angle of each scan in
Fig. 3 as a function of the distance at which that scan was
obtained, play an important role in our method. Fig. 4 shows
these plots for the intensity value at the COG for planes, cor-
ners, and edges.

In this approach, we compare the intensity scan of the
observed target with the nine reference scans by computing
their LS differences after aligning their centers with each
other. The mean-square difference between the observed
scan and the nine scans is computed as follows:

E j =
1
n

n

∑
i=1

[I(αi −αalign)− I j(αi)]
2 (2)
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Figure 3: Intensity scans for targets at different distances:
planes covered with (a) aluminum, (b) white cloth, (c) Sty-
rofoam; corners covered with (d) aluminum, (e) white cloth,
(f) Styrofoam; edges covered with (f) aluminum, (g) white
cloth, (c) Styrofoam.

where I j, j = 1, . . . ,9, denotes the nine scans. Here, αalign
is the angular shift that is necessary to align both patterns.
The geometry-surface combination resulting in the smallest
value of E j is declared as the observed target. Once the ge-
ometry and surface type are determined, the range can be es-
timated by using linear interpolation on the appropriate curve
in Fig. 4 so that the accuracy of the method is not limited by
the 2.5 cm spacing used in collecting the reference scans.

2.2 Matched Filtering (MF) Approach
As an alternative, we also considered the use of MF to com-
pare the observed and reference scans. The output of the
matched filter is the cross-correlation between the observed
intensity pattern and the jth reference scan normalized by the
square root of its total energy:

y j(l) =
∑k I(αk) I j(αk−l)
√

∑n
i=1 [I j(αi)]2

(3)

where l = 1, . . . ,2n − 1 and j = 1, . . . ,9. The geometry-
surface combination corresponding to the maximum cross-
correlation peak is declared as the correct target type, and
the angular position of the correlation peak directly provides
an estimate of θ . Then, the distance is estimated by using
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Figure 4: Central intensity (COG) versus distance curves for
different targets: (a) plane; (b) corner; (c) edge.



linear interpolation on the appropriate curve in Fig. 4 using
the intensity value at the θ estimate.

2.3 Saturated Scans
If saturation is detected in the observed scan, special treat-
ment is necessary. Comparisons are made between the ob-
served scan and all the saturated reference scans. The range
estimate of the target is taken as the distance corresponding
to the scan resulting in the minimum mean-square difference
in the LS approach and the distance corresponding to the best
matching scan for the MF approach.

3. EXPERIMENTAL VERIFICATION AND
DISCUSSION

In this section, we experimentally verify the proposed
method by situating targets at randomly selected distances r
and azimuth angles θ and collecting a total of 194 test scans.
The targets are randomly located at azimuth angles varying
from –45◦ to 45◦ from their nearest to their maximum ob-
servable ranges in Fig. 3.

The results of LS based target differentiation are dis-
played in Table 1, which gives the results obtained using
the maximum intensity (or the middle-of-two-maxima inten-
sity for corner) values (numbers before the parentheses) and
those obtained using the intensity value at the COG of the
scans (numbers in the parentheses). The average accuracy
over all target types can be found by summing the correct de-
cisions given along the diagonal of the confusion matrix and
dividing this sum by the total number of test trials (194). The
same average correct classification rate is achieved by using
the maximum and the COG variations of the LS approach,
which is 77%.

MF differentiation results are presented in Table 2. The
average accuracy of differentiation over all target types is
80%, which is better than that obtained with the LS approach.

Planes and corners covered with aluminum are correctly
classified with all the approaches employed due to their dis-
tinctive features. Planes of different surface properties are
better classified than the others, with a correct differentiation
rate of 91% for the MF approach. For corners, the highest
correct differentiation rate of 83% is achieved with the COG
variation of the LS approach. The greatest difficulty is en-
countered in the differentiation of edges of different surfaces,
which have the most similar intensity patterns. The highest
correct differentiation rate of 60% for edges is achieved with
the maximum intensity variation of the LS approach. Taken
separately, the geometry and surface type of targets can be
correctly classified with rates of 99% and 81%, which shows
that the geometrical properties of the targets are more distinc-
tive than their surface properties, and surface determination
is the limiting factor.

The average absolute position estimation errors for the
different approaches are presented in Table 3 for all test tar-
gets. Using the maximum and COG variations of the LS ap-
proach, the target ranges are estimated with average absolute
range errors of 1.8 and 1.7 cm, respectively. MF results in
an average absolute range error of 1.5 cm, which is better
than the LS approach. The greatest contribution to the range
errors comes from targets which are incorrectly differenti-
ated and/or whose intensity scans are saturated. If we aver-
age over only correctly differentiated targets (regardless of
whether they lead to saturation), the average absolute range

Table 1: Confusion matrix: least-squares (AL: aluminum,
WC: white cloth, ST: Styrofoam, P: plane, C: corner, E:
edge).

d e t e c t e d

P C E
AL WC ST AL WC ST AL WC ST

AL 24(24) – – – – – – – –
a P WC – 25(25) 4(4) – – – – – –
c ST – 9(9) 20(20) – – – – – –

t AL – – – 22(22) – – – – –
u C WC – – – – 10(13) 12(9) – – –
a ST – – – – (2) 20(18) – – –

l AL – – (1) – – – 9(7) – 1(2)
E WC – – – – – – – 11(14) 9(6)

ST – (1) 1(1) – – – – 8(10) 9(6)

Table 2: Confusion matrix: matched filter.
d e t e c t e d

P C E
AL WC ST AL WC ST AL WC ST

AL 24 – – – – – – – –
a P WC – 27 2 – – – – – –
c ST – 5 24 – – – – – –

t AL – – – 22 – – – – –
u C WC – – – – 14 8 – – –
a ST – – – – 4 16 – – –

l AL – – – – – – 9 1 –
E WC – – – – – – – 11 9

ST – – 2 – – – – 8 8

errors are reduced to 1.2, 1.0, and 0.7 cm for the maximum
and COG variations of the LS and the MF approaches, re-
spectively. As for azimuth estimation, the respective average
absolute errors for the maximum and COG variations of the
LS and the MF approaches are 1.6◦, 1.5◦, and 1.1◦, with MF
resulting in the smallest error. When we average over only
correctly differentiated targets, these errors are reduced to
1.5◦, 1.2◦, and 0.9◦.

To explore the boundaries of system performance and to
assess the robustness of the system, we also tested the sys-
tem with targets of either unfamiliar geometry, unfamiliar
surface, or both, whose scans are not included in the refer-
ence data sets. Therefore, these targets are new to the system.
First, tests were done for planes, corners, and edges covered
with five new surfaces: brown, violet, black, and white pa-
per, and wood. Planes are classified as planes 100% of the
time using both variations of the LS method and 99.3% of
the time using the MF approach. Corners are classified as
corners 100% of the time using any of the three approaches.
Edges are correctly classified 89.1% of the time using the
maximum variation of the LS approach, 88.2% of the time
using the COG variation of the LS approach, and 87.3% of
the time using the MF approach. In these tests, no target type
is mistakenly classified as a corner due to the unique charac-
teristics of the corner scans. Similarly, corners of the preced-

Table 3: Absolute position estimation errors for all targets.
P C E avg.

method AL WC ST AL WC ST AL WC ST error

LS-max r(cm) 2.2 2.3 1.0 2.1 0.8 0.5 2.4 1.9 2.7 1.8
θ (deg) 0.9 2.3 0.8 2.4 1.7 1.3 1.1 2.0 1.7 1.6

LS-COG r(cm) 2.2 0.6 1.0 2.1 0.6 0.6 3.8 1.4 3.2 1.7
θ (deg) 0.9 1.0 0.8 2.4 1.4 1.1 1.2 2.2 2.3 1.5

MF r(cm) 1.7 0.5 0.7 1.5 0.6 0.6 2.2 1.7 4.2 1.5
θ (deg) 0.8 0.9 0.7 1.0 1.1 1.0 1.1 2.6 0.9 1.1
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Figure 5: Intensity scans for a wooden (a) corner at 65 cm,
(b) edge at 35 cm for orientations between 0◦ and 35◦ with
2.5◦ increments. The curves with the dotted lines indicate 0◦
orientation.

ing five surfaces are never classified as planes or edges. The
position errors are comparable or slightly larger than before.

We also tested the system with cylinders, which were not
among the three geometries in the original data sets, with the
same surface types as used in the reference data sets and dif-
ferent surface types (see Ref. [1] for detailed results). Cylin-
ders are most likely to be classified as edges. In these two
cases, average range estimation error increases to about 9–
11 cm, but the azimuth error is of the same order of magni-
tude as before, since our azimuth estimation method is inde-
pendent of target type.

In the remainder of this section, we discuss the effect of
varying the orientation of the targets from their head-on po-
sitions. Varying the orientation for planes and cylinders does
not make any difference since a complete scan is acquired.
Change of orientation will make a difference when the target
geometry is a corner or an edge, leading to scans not exist-
ing in the reference set. Unlike with the case of planes and
cylinders, varying the orientation of corners and edges leads
to asymmetric scans. If the scan is symmetric, it is either
a plane or a cylinder, or a corner or an edge with nearly 0◦
orientation, and the described algorithm can handle it. If the
scan is asymmetric, we know that the target is either a cor-
ner or an edge with nonzero orientation. While it is possible
to deal with this case by extending the reference set to in-
clude targets with nonzero orientation, the introduction of a
simple rule allows us to handle such cases with only minor
modification of the already presented algorithm. We can de-
termine whether the asymmetric scan comes from a corner or
an edge by checking whether or not it has two humps. Thus,
even with arbitrary orientations, the target geometry can be
determined. Furthermore, we observe that variations in ori-
entation have very little effect on the central intensity of the
asymmetric scans (see Fig. 5). This means that the central
intensity value can be used to determine the distance in the
same manner as before by using linear interpolation on the
central intensity versus distance curves for a particular target
type.

To demonstrate this, we performed additional experi-
ments with corners and edges. These targets were placed at
random orientation angles at randomly selected distances. A
total of 100 test scans were collected. Using the orientation-
invariant approach already described, 100% correct differen-
tiation and absolute mean range errors of 1.02 and 1.47 cm
for corners and edges were achieved.

We also tested the case where reference scans corre-
sponding to different orientations are acquired. Reference
data sets were collected for both targets with 5 cm distance

increments at θ=0◦, where the orientation of the targets are
varied between –35◦ to 35◦ with 2.5◦ increments. A total of
489 reference scans were collected. For each test scan, the
best-fitting reference scan was found by MF. This method
also resulted in 100% correct differentiation rate. Absolute
mean range and orientation errors for corners and edges were
1.13 and 1.26 cm and 4.48◦ and 5.53◦.

4. CONCLUSION

In this study, differentiation and localization of commonly
encountered indoor features or targets such as planes, cor-
ners, and edges with different surfaces was achieved using an
inexpensive IR sensor. Different approaches were compared
in terms of differentiation and localization accuracy. The MF
approach in general gave better results for both tasks. The
robustness of the methods was investigated by presenting the
system with targets of either unfamiliar geometry, unfamiliar
surface type, or both.

Current and future work involves designing a more intel-
ligent system whose operating range is adjustable based on
the return signal intensity. This will eliminate saturation and
allow the system to accurately and faster differentiate and
localize targets over a wider operating range. We are also
working on the differentiation of targets through the use of
artificial neural networks in order to improve the accuracy.
Parametric modeling and representation of intensity scans of
different geometries (such as corner, edge, and cylinder) as
in [8] is also being considered to employ the proposed ap-
proach in the simultaneous determination of the geometry
and the surface type of targets.
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