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ABSTRACT

Active snake contours and Kohonen’s self-organizing feature maps
(SOM) are considered for efficient representation and evaluation
of the maps of an environment obtained with different ultrasonic
arc map (UAM) processing techniques. The mapping results are
compared with a reference map acquired with a very accurate laser
system. Both approaches are convenient ways of representing and
comparing the map points obtained with different techniques among
themselves, as well as with an absolute reference. Snake curve fit-
ting results in more accurate maps than SOM since it is more robust
to outliers. The two methods are sufficiently general that they can
be applied to discrete point maps acquired with other mapping tech-
niques and other sensing modalities as well.

1. INTRODUCTION

Ultrasonic sensing is widely used in many range finding applica-
tions, such as bathymetry and mapping in robotics. Many mapping
systems employ ultrasonic sensors due to their low cost as opposed
to more expensive and complicated laser and camera systems. De-
spite their accurate range finding capabilities, the angular resolution
of these sensors is poor because of their large beamwidth. Further-
more, multiple and higher-order reflections and crosstalk are known
problems associated with ultrasonic transducers, which may cause
erroneous readings in the raw ultrasonic data. Thus, signal process-
ing techniques and algorithms must be employed in order to rep-
resent the sensor data in an intelligent manner and eliminate these
weaknesses inherent to ultrasonic sensors.

In earlier work, there have been two main approaches to the rep-
resentation of ultrasonic data: feature-based and grid-based. Grid-
based approaches do not attempt to make difficult geometric de-
cisions early in the interpretation process unlike feature-based ap-
proaches that extract the geometry of the sensor data as the first step.
As a first attempt to feature-based mapping, several researchers
have fitted line segments to ultrasonic data as features that crudely
approximate the room geometry [1, 2, 3]. This approach proved to
be difficult and brittle because straight lines fitted to time-of-flight
(TOF) data do not necessarily match or align with the world model,
and may yield many erroneous line segments. Improving the algo-
rithms for detecting line segments and including heuristics does not
really solve the problem. A more physically meaningful represen-
tation is the use of regions of constant depth (RCDs) as features.
RCDs are circular arcs which are natural features of the raw ultra-
sonic TOF data from specularly reflecting surfaces, first reported
in [4], and further elaborated on in [5]. They are obtained by plac-
ing a small mark along the line-of-sight at the range corresponding
to the measured TOF value. In specularly reflecting environments,
the accumulation of such marks usually produces arc-like features.

As a more general approach which is not limited to specularly
reflecting surfaces, the angular uncertainty in the range measure-
ments has been represented by ultrasonic arc maps (UAMs) [6] that
preserve more information (see Fig. 1(c) for a sample UAM). Note
that the arcs in the UAM are different than the arcs corresponding
to RCDs. The UAMs are obtained by drawing arcs spanning the
beamwidth of the sensor at the measured range, representing the

angular uncertainty of the object location and indicating that the
echo-producing object can lie anywhere on the arc. Thus, when
the same transducer transmits and receives, all that is known is that
the reflection point lies on a circular arc of radius r. More generally,
when one transducer transmits and another receives, it is known that
the reflection point lies on the arc of an ellipse whose focal points
are the transmitting and receiving elements. The arcs are tangent
to the reflecting surface at the actual point(s) of reflection. Con-
struction of UAMs is more general in that they can be generated for
environments comprised of both specularly and diffusely reflecting
(Lambertian) surfaces. On the other hand, construction of RCDs are
limited to specularly reflecting environments only. In earlier work,
techniques based on the Hough transform have been applied to de-
tect line and point features from these arcs for both air-borne and
underwater ultrasonic data [7].

Previously, several techniques have been proposed to process
UAMs (Table 1) that reduce the angular uncertainty in the sensor
data and eliminate most of the artifacts resulting from multiple and
higher-order reflections and crosstalk. All of these techniques result
in more accurate maps than the raw UAM. Descriptions of these
techniques can be found in [8, 9], or respective references indicated
in Table 1. They will not be reviewed here due to space limitations.
For the purposes of this paper, we consider each processed UAM as
a collection of (usually a large number of) data points, represented
as a black-on-white image. In this paper, active snake contours and
Kohonen’s self-organizing maps (SOM) will be employed for com-
pact representation and evaluation of the results of processing the
UAM by each technique and a comparison with a very accurate
laser map (considered as absolute reference) will be provided.

Table 1: Different UAM processing techniques.

1 point marking (PM) [4]

2 triangulation-based fusion (TBF) [10]

3 voting and thresholding (VT) [11]

4 directional maximum (DM) [8]

5 morphological processing (MP) [6]

6 Bayesian update (BU) [12]

7 arc transversal median (ATM-org) [13]

8 modified ATM (ATM-mod) [8]

2. FITTING ACTIVE SNAKE CONTOURS TO UAMS

A snake, or an active contour, first introduced by Kass et al. [14],
can be described as a continuous deformable closed curve. In the
literature, snake curves have been commonly used in image process-
ing for edge detection and segmentation [14, 15, 16]. We define a
snake as a parametrized closed curve v(s) = (x(s),y(s)),s ∈ [0,1],
where x(s) and y(s) are functions representing the x and y coor-
dinates of the snake and s is the normalized arc length parameter
of the snake curve. The deformation of the snake is controlled by



internal and external forces. Internal forces impose elasticity and
rigidity constraints on the curve, whereas external forces depend on
the image and they try to stretch or shrink the curve to fit to the data.
The total energy of the snake curve is given by the functional
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where α is the elasticity parameter and β is the rigidity parameter,
taken as constants, and ‖·‖ denotes the 2-norm. The first derivative
term in Eqn. (1) penalizes long curves, whereas the second deriva-
tive term penalizes sharp curvatures.

The external energy component is denoted by U(v), where U
is a potential function that depends on the image data. In general,
the selection of the potential function varies depending on the ap-
plication. However, it must be minimum on the image edges if the
snake is to be used for edge detection, segmentation, or finding the
boundaries of an environment. Kass et al. suggest using the neg-
ative of the image gradient magnitude as a potential function [14].
However, this is only feasible if the snake is initialized close to the
image boundaries. Otherwise, the snake curve would be stuck in
local minima or in a flat region of the potential function. Filtering
the image with a Gaussian low-pass filter is also suggested in [14]
to increase the capture range of the snake, but this causes the edges
to become blurry, thus reducing the accuracy. Another solution pro-
posed in [16] is using a distance map as a potential function to in-
crease the capture range of the contour, which is the approach used
in this study. In the literature, using force balance equations rather
than the energy-based approach has also been reported [17]. In this
work, we chose to use a potential function for the external energy
term. To find the curve that minimizes the energy functional in
Eqn. (1), calculus of variations can be used. The minimizing curve
should satisfy the following Euler-Lagrange equation [14]:

α
d2v(s)

ds2
−β

d4v(s)

ds4
−∇U(v(s)) = 0 (2)

Although it may be possible to solve this equation analytically
for some special cases, a general analytical solution does not exist.
The common practice is to initialize an arbitrary time-dependent
snake curve v(s, t). Eqn. (2) is then set equal to the time derivative
of the snake, where a solution will be found when the time deriva-
tive vanishes. That is,
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These equations are then discretized to find a numerical solu-
tion. The snake is treated as a collection of discrete points joined
by straight lines and is initialized on the image. Approximating
the derivatives by finite differences, the evolution equations of the
snake reduce to the following [15]:
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Here, n is the current time (or iteration) step, x(n) and y(n) rep-
resent the coordinates of the discrete points on the snake at time
n, γ is the Euler step size, and κ is the external force weight. I is
the identity matrix of appropriate size and A is a penta-diagonal
banded matrix that depends on α and β . The dimensions of A and
I are determined by the number of points on the snake, which may
change as the algorithm is executed.

3. FITTING SELF-ORGANIZING MAPS TO UAMS

Another method used in map representation and evaluation of the
different techniques is the self-organizing map introduced by Ko-
honen [18]. This neural network utilizes a form of unsupervised
learning, and is used in applications where the topology of the data
is to be learned. SOMs for curve and surface reconstruction have
been used in applications such as CAD modeling of objects having
irregular shape. In this paper, we use the SOM for fitting curves to
the ultrasonic map points obtained with the different UAM process-
ing techniques.

A SOM is an artificial neural network with two layers. The two
neurons at the input layer represent the x and y coordinates of an
extracted point on the map, and the output layer is arranged as a 1-D
array, representing the points on the curve to be fitted to the map.
The two weights associated with each output neuron represent the
x and y coordinates of the corresponding point on the fitted curve.
For each input map point, the winning neuron is determined as the
closest point on the curve to that input. Thus, for the input map point
(x,y), output neuron weights (w1i,w2i), and a total of N points on
the curve, the index c of the winning neuron is given by:

c = argmin
i=1,...,N

√

(x−w1i)2 +(y−w2i)2 (6)

Through the use of a Gaussian function g0,σ(n)(·), updating the

weights is done such that the weight update of one neuron also af-
fects the neighboring neurons. Then, for all neurons i = 1, . . . ,N,
the weight update rule is

wi(n + 1) = wi(n)+ α(n) g0,σ(n)(|i− c|)(d(n)−wi(n)) (7)

where n is the iteration step, wi(n) is the 2× 1 weight vector of
neuron i, d(n) is the vector with the x and y coordinates of the input
point on the map, α(n) is the time-dependent learning rate, and
g0,σ(n)(·) is a 1-D Gaussian function with zero mean and standard

deviation σ(n). The Gaussian has a value of one at its peak point
that occurs for i = c, and decreases gradually.

4. EXPERIMENTS

To demonstrate our methodology, the mapping results of different
UAM processing techniques, listed in Table 1 and described in de-
tail in [8], are used. Each of these techniques results in a different
set of map points to which both a snake curve and a SOM are fitted.

To define a potential function suitable for our purposes, we use
distance functions and distance transforms in the following sections.
Therefore, let us introduce a generic distance function at this stage.

Let P ⊂R2 be a finite set of arbitrary points of the plane. We define

a distance function DP(x,y) :R2 →R
≥0 for each point (x,y) on the

plane as the minimum of the Euclidean distances of that point to all
the points in the set P:

DP(x,y) = min
p∈P

√

(x− px)2 +(y− py)2 (8)

where (px, py) are the coordinates of a point in the set P. The Eu-
clidean distance transform is computationally costly, and a number
of algorithms and other distance transforms have been proposed in
the literature to approximate it [20]. In this study, the Euclidean
distance transform is implemented in its original form.

4.1 Results of snake fitting

The potential function used in this study is based on the Euclidean
distance transform, as suggested in [16]. As stated before, we rep-
resent the processed UAMs and the reference laser data as black
pixels on white background. Euclidean distance map is defined for
all points on the image as the Euclidean distance to the nearest black
pixel. Let each set of processed UAM data points be denoted as Mk,
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Figure 1: (a) Original laser map, (b) distance map with respect to
the laser data, (c) and the raw UAM.

where k corresponds to one of the UAM processing techniques in-
dexed in Table 1. For compatibility, let the set of laser data points

be denoted as M0. Then, for the laser map (k = 0) and for the kth ul-
trasonic map (k = 1, . . . ,8), the potential function used in the fitting

of the kth snake is selected as

Uk(x,y) = DMk
(x,y) k = 0,1, . . . ,8 (9)

for all points (x,y) on the image. Note that the value of the potential
function is zero for those points on the image corresponding to the
extracted map and increases gradually with increasing distance of
the point (x,y) from the map points.

An example map of a room acquired with a structured-light
laser system is shown in Fig. 1(a). This is the original laser data
which is quite accurate, and is used as the absolute reference to com-
pare the methods given in Table 1. The corresponding Euclidean
distance map is shown in Fig. 1(b), which is drawn by rescaling the
values of the potential function to be between 0 and 255. In the
distance map, the darkest points of value 0 correspond to a distance
of 0 and, after normalization, the lightest points correspond to the
value 255.

The values for the parameters in Eqns. (4) and (5) are selected
as α = γ = 1, β = 0.1 and κ = 2.5. Selecting β = 0.1 enforces
the second derivative in the energy term to have less weight, thus
allowing sharp corners in the snake. The snake curves fitted to the
laser data and the processed UAMs are illustrated in Fig. 2. In the
different parts of the figure, the black features correspond to map
points obtained with a particular UAM processing technique. The
blue curves are the snakes fitted to these map points. The red curve
is the snake fitted to the laser data, which is the same in each part of
the figure and is included as a reference for visual comparison. As
a note, there was an opening on the lower-left corner of the room
from which no ultrasonic data were collected. Therefore, the part
of the snake curve in that region is not drawn in the figure and is not
included in the error calculations.

The snake is initialized as a circle whose center is at (30, 55)
having a radius of 185 units so that it encompasses the room bound-
ary. Then, the snake is evolved for 250 iterations. After each iter-
ation, the points on the snake are checked for uniformity. The dis-
tance between any two neighboring points is maintained between
2–4 units, determined experimentally. That is, after each iteration,
the points are deleted or created as required by this constraint. We
allow the snake to converge to outlier points caused by multiple and
higher-order reflections or crosstalk to provide a fair evaluation of
the different techniques.
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Figure 2: Results of snake fitting for (a) PM, (b) TBF, (c) VT,
(d) DM, (e) MP, (f) BU, (g) ATM-org, and (h) ATM-mod.

We define the error of the fit as the average value of the snake
points on the corresponding distance map, i.e.,

E (n) =
1

Nk(n)

Nk(n)

∑
j=1

DMk

(

x jk(n),y jk(n)
)

k = 0, . . . ,8 (10)

where n is the iteration step,
(

x jk(n),y jk(n)
)

are the coordinates

of point j on snake k at iteration n, and Nk(n) is the number of
points on snake k at step n. We calculate and store this error at
each iteration. Then, the snake curve which results in the minimum
error is determined and selected as the snake that best represents the
corresponding map points.

In this paper, we used a fixed number of iterations (250) and
selected the snake that gives the minimum error. Our observations
reveal that the error decreases to a certain value between iterations



100 and 150 and then oscillates around that value, which does not
affect the results significantly. In a practical application, it is also
possible to take the error at the end of a fixed number of iterations
or to set an error threshold to stop the iterations when the error goes
below the threshold. The error values at the end of 100 iterations
are reported in [21].

Let the set of points on the snake curve fitted to the map points

obtained with the kth UAM processing technique be denoted as

Sk. That is, the kth snake is represented as a collection of points
(x jk,y jk), j = 1, . . . ,Nk, where Nk is the total number of points on
snake Sk. The set of points of the snake fitted to the original laser
data is denoted as S0.

We define an error measure that determines the closeness be-
tween the processed UAM snake Sk and the laser snake S0. It is cal-
culated by finding the distance of every point on the snake Sk to the
nearest point on the snake S0 and averaging these distances. Using
the notation in the beginning of this section, the minimum distance
of point j on snake Sk to the laser snake is given by DS0

(x jk,y jk).
Then, the error is given as:

Ek =
1

Nk

Nk

∑
j=1

DS0

(

x jk,y jk

)

k = 0, . . . ,8 (11)

Note that E0 = 0 by definition. The errors for the different meth-
ods are tabulated in Table 2. According to the results, ATM-mod
and DM techniques have the smallest errors, and MP and BU per-
form the worst. The remaining techniques are comparable to the
PM method.

Table 2: Error values for snake curve fitting and SOM.

method snake error SOM error

PM 4.11 19.23

TBF 4.18 8.72

VT 3.77 6.55

DM 3.22 4.29

MP 7.00 20.96

BU 6.23 29.35

ATM-org 4.26 20.88

ATM-mod 3.20 6.89

The snake curves in this study are initialized outside the bound-
aries of the room. Initializing the snake within the boundaries of the
room is also a possibility. In this case, the spurious points outside
the boundaries would not affect the snake curve as much, allow-
ing it to follow the boundaries of the room more closely. However,
this would not result in a fair comparison between the techniques
in terms of the amount of spurious points left after UAM process-
ing. Because of the first derivative term in the energy expression,
the snake curve tends to shrink rather than expand. This fact should
also be taken into account in determining the initial location of the
snake curve. In addition, in some mapping applications, one may
not be that free in choosing the initial location. For example, in a
room with many obstacles close to the room boundaries, it would be
essential to initialize the snake curve outside in order to represent
the boundaries of the room correctly. However, if the detection of
the obstacles is of more importance, one could choose to initialize
the snake inside the boundaries. In fact, some applications may re-
quire both. The choice for the initial location should depend on the
configuration of obstacles and the free space.

4.2 Results of fitting self-organizing maps

We initialize a SOM with 160 neurons as a circle outside the bound-
aries of the room, with center at (30,55), and having a radius of 185
pixels. The center and the radius are chosen the same as in the snake
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Figure 3: Results of fitting SOMs for (a) PM, (b) TBF, (c) VT,
(d) DM, (e) MP, (f) BU, (g) ATM-org, and (h) ATM-mod.

curve fitting procedure. The learning rate is initialized as 0.5, and
the Gaussian is initialized with zero mean and standard deviation 8.

The learning rate and the standard deviation are adaptive; we
reduce the learning rate to 90% at each epoch and the standard de-
viation is reduced to about 80% every two epochs. The network
converges in 25 epochs. Similar to the case with the snake curve,
the distance between neighboring points on the curve is maintained
between 10–16 units. The curves fitted to the processed UAMs can
be seen in Fig. 3.

The error criterion defined in the previous subsection is consid-
ered for this case as well, with the same definition, using the curves
fitted by SOM method. The results are given in Table 2 where SOM
errors are, in general, larger than the snake curve fitting errors. It
can also be observed that the SOM curve fitted to the map obtained
by the ATM-org technique is highly affected by the outlier points,
unlike the snake curve fitted for that technique. Curves generated



by fitting SOM are not constrained by length or curvature like the
snake curves, thus, they are more likely to fit to the outlier points.
This results in larger error values. Note that these error measures
only take into account the statistical error. Other error measures that
take topology into account have been studied in the literature [19].
However, in our work, such error measures are not considered. That
is because our primary aim in using SOMs in evaluation is to also
consider the outlier points in the map, which may not have been
taken into account if topological error is used.

5. DISCUSSION

Looking at the error values and observing Figs. 2 and 3, it is seen
that VT, DM and ATM-mod methods eliminate most of the artifacts
in the ultrasonic data resulting from multiple and higher-order re-
flections, crosstalk, and erroneous measurements. PM, MP, BU and
ATM-org methods cannot eliminate those artifacts as much, result-
ing in larger errors. This can be observed more clearly in Fig. 3.

The two methods used for map representation differ in many
aspects, as can be observed in Figs. 2 and 3. Snake curves try to
minimize their internal energy (basically length and curvature) and
a potential function that is minimum on the data points simulta-
neously. SOMs, on the other hand, try to fit a curve considering
all data points and they are not constrained by length or curvature.
Snake curves are more sensitive to changes in the initialization than
SOMs, but SOMs are sensitive to the order in which the data points
are input to the neural network. In our implementation of SOM, the
points were input randomly. In snake curve fitting, the evolution
equations (4) and (5) are used to update the position of the snake.

In our experiments, we also recorded computation times for fit-
ting both curves. In snake fitting, the time to compute the distance
map varies approximately linearly with the data size. It takes 0.01
seconds per data point to form the distance map. Once the distance
map is formed, the time to fit the snake is roughly constant. The
computation time for fitting SOMs varies roughly linearly with the
number of data points, being about 0.1 seconds per data point. Thus,
for maps with few data points (TBF and ATM-mod), fitting a SOM
takes less time than fitting a snake curve. For other maps, fitting a
SOM takes longer.

6. CONCLUSION

We have presented two approaches to compactly and efficiently rep-
resent the maps obtained by processing the UAMs with different
techniques. The representation of the map points with snake curves
or SOM makes it possible to compare maps obtained with differ-
ent techniques among themselves, as well as with an absolute ref-
erence. The results of our work suggest that using active snake
contours is a better way of representing ultrasonic maps than SOM,
due to their relative robustness and insensitivity to the outlier map
points. Our purpose in this paper was efficient representation of ul-
trasonic maps and the performance evaluation of UAM processing
techniques through the use of a demonstrative example. The two
approaches are capable of fitting accurately to features with high
curvature, such as edges and corners, as well as smoother features,
such as planar walls, in typical indoor environments. They can be
employed to fill the erroneous gaps in discrete point maps. The two
methods are sufficiently general that they can be applied to map
data points acquired with other mapping techniques and other sens-
ing modalities as well. The results can be extended to 3-D data by
fitting 3-D shapes. Another possible extension of this work would
be the automatic determination of the appropriate number of curves
or shapes to be fitted to a given set of extracted map points using
clustering techniques. Determining whether the curves should be
open or closed, or the shapes convex or concave, and the initializa-
tion of the multiple curve parameters are other challenging issues.
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[6] D. Başkent and B. Barshan, “Surface profile determination
from multiple sonar data using morphological processing,”
Int. J. Robot. Res., 18(8):788–808, Aug. 1999.

[7] J. D. Tardós, J. Neira, P. M. Newman and J. J. Leonard, “Ro-
bust mapping and localization in indoor environments using
sonar data,” Int. J. Robot. Res., 21(4):311–330, Apr. 2002.

[8] B. Barshan, “Directional processing of ultrasonic arc maps
and its comparison with existing techniques,” Int. J. Robot.
Res., 26(8):797–820, Aug. 2007.

[9] B. Barshan, “A comparative study on the processing of ultra-
sonic arc maps,” Proc. EUSIPCO’08, Aug. 2008.

[10] O. Wijk and H. I. Christensen, “Triangulation-based fusion
of sonar data with application in robot pose tracking,” IEEE
Trans. Robot. Automat., 16(6):740–752, Dec. 2000.

[11] B. Barshan, “Ultrasonic surface profile determination by spa-
tial voting,” Electron. Lett., 35(25):2232–2234, 9 Dec. 1999.

[12] A. Elfes, “Sonar based real-world mapping and navigation,”
IEEE Trans. Robot. Automat., RA-3(3):249–265, Jun. 1987.

[13] H. Choset, K. Nagatani, and N. Lazar, “The arc-transversal
median algorithm: a geometric approach to increasing ultra-
sonic sensor azimuth accuracy,” IEEE Trans. Robot. Automat.,
19(3):513–522, Jun. 2003.

[14] M. Kass, A. Witkin, and D. Tersopoulos, “Snakes: Active con-
tour models,” Int. J. Comput. Vision, 1(4):321–331, Jan. 1988.

[15] S. Menet, P. Saint-Marc, and G. Medioni, “Active contour
models: Overview, implementation and applications,” Proc.
IEEE Int. Conf. Syst. Man Cybern., pp. 194–199, Nov. 1990.

[16] L. D. Cohen and I. Cohen, “Finite element methods for active
contour models and balloons for 2-D and 3-D images,” IEEE
Trans. Pattern Anal. Mach. Intell., 15(11):1131–1147, Nov.
1993.

[17] C. Xu and J. L. Prince, “Snakes, shapes and gradient vector
flow,” IEEE Trans. Image Process., 7(3):359–369, Mar. 1998.

[18] T. Kohonen, “Self-organized formation of topologically cor-
rect feature maps,” Biol. Cybern., 43(1):59–69, Jan. 1982.

[19] G. S. Kumar, P. K. Kalra and S. G. Dhande, “Curve and sur-
face reconstruction from points: an approach based on self-
organizing maps,” Appl. Soft Comput., 5(1):55–66, Dec. 2004.

[20] G. Borgefors, “Distance transformations in digital images,”
CVGIP, 34(3):344–371, Jun. 1986.

[21] K. Altun and B. Barshan, “Performance evaluation of ultra-
sonic arc map processing techniques by active snake con-
tours,” in Springer Tracts in Advanced Robotics, H. Bruyn-
inckx, L. Preucil, M. Kulich (eds.), European Robot. Symp.
2008, 44:185–194, Springer, Berlin, Heidelberg, Feb. 2008.


