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ABSTRACT
Modeling and representing 3-D environments require the
transmission and storage of vast amount of measurements
that need to be compressed efficiently. We propose a novel
compression technique based on compressive sensing for
3-D range measurements that are found to be correlated with
each other. The main issue here is finding a highly sparse
representation of the range measurements, since they do not
have highly sparse representations in common domains, such
as the frequency domain. To solve this problem, we gener-
ate sparse innovations between consecutive range measure-
ments along the axis of the sensor’s motion. We obtain highly
sparse innovations compared with other possible ones gener-
ated by estimation and filtering. Being a lossy technique, the
proposed method performs reasonably well compared with
widely used compression techniques.

1. INTRODUCTION

Many techniques have been developed for extracting the 3-D
model of an environment that allow us to describe objects
with undefined shapes or patterns [1]. Although using 3-D
models are computationally expensive, they provide richer
information than 2-D models, thus they are used in many
fields varying from robot navigation [1] to art and architec-
ture [2]. One approach in constructing 3-D models is using
laser range finders that measure the range between the sen-
sor and the objects within their field of view. The acquisition
of the model is achieved by using either a conventional 3-D
laser scanner, which is an expensive device, or a number of
translating and/or rotating 2-D laser scanners [3].

In this study, we consider an indoor environment scanned
in 3-D with a 2-D single laser range finder rotating around a
horizontal axis above the ground level. The device used in
this study is SICK LMS200, depicted in Figure 1(a), with
maximum range 80 m, field of view 180◦(Figure 1(b)), range
resolution 1 mm, and angular resolution 0.5◦ [4]. This is the
most widely used laser range finder in mobile robot applica-
tions today, both indoors and outdoors. Since the 3-D model
is composed of a considerable number of 2-D scans that in-
clude a vast amount of measurements in total, the measure-
ments should be compressed when they need to be transmit-
ted or stored.

The compression ratio (CR), which is the ratio of the size
of the compressed output to the size of the original data, the
distortion (D), which is the difference between the original
data and its reconstruction, and the speed are the important
criteria for measuring compression performance. In terms of
the CR, an encoder is considered to be successful if it can
reduce the size of the original data by more than one half, so

(a) (b)

Figure 1: (a) SICK LMS200 and (b) its 180◦ field of view.

that the capacity of the communication channel or the stor-
age medium is at least doubled for transmitting or storing
the original data [5]. In this study, D is measured as the root
mean squared error (RMSE) between the original data and its
reconstruction; and it should be sufficiently low for accurate
compression.

The proposed method is capable of generating highly
sparse representations for range measurement sequences as
they are being acquired. These representations are then com-
pressed based on compressive sensing. The method is similar
to difference encoding and is a causal system. Therefore, it
can compress even an infinite number of range measurement
sequences, in theory.

The rest of this paper is organized as follows: Compres-
sive sensing is reviewed in Section 2. The proposed method
is described in Section 3 and compared with widely used
compression techniques in Section 4. Conclusions and di-
rections for future work are provided in the last section.

2. REVIEW OF COMPRESSIVE SENSING

Compressive sensing enables signals to be successfully re-
constructed with fewer samples than Shannon/Nyquist sam-
pling theorem requires. Unlike classical sampling, compres-
sive sensing uses a linear sampling model with an optimiza-
tion procedure for reconstructing the sampled signal [6].

The sampling model is composed of the sparsifying ba-
sis and the measurement model that satisfy sparsity and in-
coherence properties, respectively. Assume that the sig-
nals are represented by N samples, where N is very large.
In the sparsifying domain Ψ, sparsity requires the signals
to have sparse representations in which only a small num-
ber of the coefficients denoted by K will have large values,
whereas the majority denoted by (N−K) will be close to
zero. For linear operations, Ψ can be chosen as an orthonor-
mal basis denoted by Ψ = [ψ1, . . . ,ψN ] which is spanned by
{ψi}N

i=1. Thus, the sampled signal denoted by x can be
represented as x = ∑

N
i=1 siψi = Ψs, where s = [s1, . . . ,sN ]T
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in which si =< x,ψi >. Notice that, x and s are differ-
ent representations of the same signal in time and Ψ do-
mains, respectively. The measurement model determines
M measurements, where M � N, using a linear operator
Φ = [φ T

1 , . . . ,φ T
M]T composed of {φi}M

i=1, each of which is
in ℜN . The measurement model should be chosen so that
{φi}M

i=1 cannot sparsely represent Ψ, which is a requirement
of the incoherence property. Baraniuk suggests in [6] that the
measurement model, in which each matrix element is chosen
from a Gaussian distribution with zero mean and 1

N variance,
is incoherent with any sparsifying basis with high probabil-
ity. Given N and K, the lower bound on M is determined by:

M ≥ cK log
(

N
K

)
(1)

where c is a small positive constant [6]. Eventually, the
measurement vector denoted by y = [y1, . . . ,yM]T , where
yi =< x,φi >, is obtained such that y = Φx = ΦΨs = Θs.
The signal is then reconstructed at first by determining s,
given y and Θ. Since Θ is M×N matrix with M < N, there
is no unique solution to y = Θs. Therefore, the optimal so-
lution is found by [7]:

ŝ = argmin‖s̃‖1 such that y = Θs̃ (2)

Finally, the original signal is approximated by x̂ = Ψŝ with
little distortion.

3. THE PROPOSED METHOD

Compressive sensing can be applied to compress any signal
using a suitable sparsifying basis and an incoherent measure-
ment model. Although forming the measurement model is
a straightforward process, forming the sparsifying basis is
a more challenging problem. The signals considered in this
study are range measurement sequences taken within the sen-
sor’s field of view, as column vectors in ℜN . Our aim is to
find a representation of the signal which contains sufficiently
sparse critical information to recover the signal with small
error.

Two different experimental data sets [8] are used as
benchmarks in this study. There are 29 and 82 3-D scans
in the first and the second data set, respectively. Different
features are observed in these scans as illustrated in Figure 2,
where gray levels are directly proportional to the range mea-
surements. Each 3-D scan is comprised of numerous 2-D
scans that are sequentially acquired, while the sensor is ro-
tated (in 471 and 225 steps for the first and the second data
set, respectively) around a horizontal axis. Each 2-D scan is
a range measurement vector in ℜ361 (i.e., N = 361).

Before applying the sampling model described in Sec-
tion 2, we seek possible sparse representations of the 2-D
scans using well-known sparsifying bases. Thus, for the
sample 3-D scan illustrated in Figure 2(a), we project the
corresponding 2-D scans one at a time onto N ×N sparsi-
fying bases formed by using Fourier, Gabor, and Haar [9]
dictionaries. The average percentages of the number of non-
zero values to the total number of values in these projections
are 74.7%, 61.3%, and 88.7%, respectively. To obtain more
sparse representations, we attempted to sparsify the acquired
range data by considering the innovations between:

(i) two consecutive scans,
(ii) each scan and its estimate using linear regres-
sion [10] based on the last two scans,

(a) (b) (c)

(d) (e)

Figure 2: Sample 3-D scans from (a)–(c): the first and (d)–
(e): the second data set.

(iii) each scan and its estimate using a linear Kalman
filter with the constant velocity kinematic state
model [11],

(iv) each scan and its estimate adding the previous
scan to a difference estimate using a 2nd-order Wiener
filter [10],

(v) each scan and its estimate adding the previous scan
to a difference estimate using a 1-D random walk on
the previous difference, such that n(t) = αn(t−1)+
w(t) where n(t) is the current difference at time t,
α is correlation coefficient between consecutive dif-
ferences, which is estimated as −0.4 by using all the
scans in both data sets, and w(t) is white Gaussian
noise.

The average percentages of the number of non-zero values
to the total number of values in these innovations are 43.7%,
92.5%, 50.9%, 71.5%, and 27.3%, respectively.

Compared to the above percentages, the proposed
method provides much more sparse innovations (6.5% for
the same 3-D scan). The proposed method is composed of
encoder and decoder modules, where the encoder consists
of sparsifying, measurement, reconstruction stages, and the
decoder involves only the reconstruction stage, as depicted
in Figure 3. The sparsifying module generates sparse inno-
vations for each scan, and the measurement module samples
the innovations with the minimum number of samples. Fi-
nally, the reconstruction module rebuilds each scan from the
samples encoded by the measurement module. The follow-
ing subsections provide more detail on these three modules.

3.1 The Sparsifying Module
During the process of data acquisition, scans acquired con-
secutively have some similarities as well as differences. The
differences may be caused by the motion of the sensor, as
well as changes taking place in a dynamic environment.
The sparsifying module uses the correlation between two
scans acquired consecutively as the orientation of the sen-
sor changes slightly. Because of the motion of the sensor,
amplitude and phase differences between consecutive scans
arise. Consequently, the sparsifying module generates an in-
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Figure 3: The operation scheme of the proposed method.

novation for the currently acquired nth scan rn by subtracting
its approximation r̂n from itself. The module makes the re-
construction of the previously acquired scan rn−1 similar to
rn. At first, rn−1 is generated at the encoder employing the
reconstruction procedure the decoder follows. Then, r̂n is
obtained by shifting rn−1 along vertical and horizontal axes
by amplitude (ε) and phase (δ ) shifts, respectively.

Assume that the individual range measurements in
rn and rn−1 are denoted by rn[i] and rn−1[i], respec-
tively, where i = 1,2, . . . ,N. We define an error func-
tion E 2 = ∑

N
i=1 [rn[i]− (rn−1[i+δ ]+ ε)]2 and set its partial

derivatives with respect to ε and δ to zero to find the optimal
values of ε and δ . Ignoring the δ term in ∂E 2

∂ε
, ε becomes:

ε =
1
N

N

∑
i=1

(rn[i]− rn−1[i]) (3)

where ε corresponds to the average amplitude difference be-
tween rn and rn−1. Since δ is assumed to be very small com-
pared to N, rn−1[i + δ ] is expanded with the first two terms
of its Taylor series expansion around i. Then, δ becomes:

δ =
∑

N
i=1 r′n−1[i] (rn[i]− rn−1[i]− ε)

∑
N
i=1 r′n−1[i]2

(4)

where r′n−1[i] is the first-order derivative of rn−1 at i.
After obtaining r̂n, the difference sequence is computed

as ṽn = rn− r̂n, which is a sparse signal representing discon-
tinuities in the scanned environment. If there is any remain-
ing offset level in ṽn, ṽn is further shifted to the zero level
either in the positive or the negative vertical direction by the
offset value ∆ to improve the sparsity. Here, ∆ is the most
frequently appearing value in ṽn. After this step, we obtain
a highly sparse innovation vn, such that 70% of the values
in the representations are zero when we compress every 3-D
scan in the first data set. It is shown in [12] that vn is a white
sequence in time.

At the output of the sparsifying module, rn is represented
with ε , δ , ∆, and vn. When rn and rn−1 are highly corre-
lated, such that the RMSE between rn and rn−1 is less than
an experimentally determined threshold (20 cm), vn becomes
very small. If this is the case, rn is represented without vn.
When rn and rn−1 are not sufficiently correlated, such that
the RMSE between rn and rn−1 is larger than another experi-
mentally determined threshold (200 cm), vn does not become
a sparse signal, so rn is not encoded.

The performance of the sparsifying module is observed
under additive white Gaussian noise with different standard
deviations (σ ). The 2-D scans from the 3-D scan illustrated

Figure 4: The measurement size M in SC and CS with respect
to the number of non-zero components of a signal in ℜ361.

in Figure 2(a) are sparsified after adding zero mean white
Gaussian noise with different standard deviations. When σ

is up to 3 cm, the module can sparsify the scans as much as
when the scans are not contaminated with noise. When σ

is 10 cm, the average percentage of the number of non-zero
values in vn to the total number of values in vn increases to
20%. When σ is greater than 10 cm, vn does not become
sparse.

3.2 The Measurement Module
The measurement module obtains the minimum number of
samples from vn by using either Simple Coding (SC) or
Compressive Sampling (CS). SC encodes vn with the pairs
of location and amplitude of the non-zero components. The
measurement size (M), therefore, increases linearly as the
number of non-zero components (K) increases. Despite this,
the reconstruction error is zero when vn is rebuilt from the
measurements taken with SC. CS measures arbitrary linear
combinations of the components in vn as it is multiplied by
the measurement model described in Section 2. In this case,
M is determined using Equation (1) by assigning the value
one to c. Furthermore, the resulting reconstruction error,
which arises when vn is rebuilt from the measurements taken
with CS, increases with K.

The measurement size M for the measurement vector m
taken using both SC and CS is illustrated in Figure 4. Ac-
cording to the figure, using SC seems to be advantageous
over using CS in terms of M and the reconstruction error,
when K is below the level indicated by K∗ in the figure. Con-
sequently, we apply SC when K ≤ K∗, and apply CS, other-
wise. We include a special character (i.e., π) at the beginning
of m when SC is applied, to inform the decoder about using
SC instead of CS. Besides that, when K > N

2 , vn cannot be
considered as sparse, since the reconstruction error would be
very high if vn were sampled using CS. In this case, rn is not
encoded.

At the output of the measurement module, rn is repre-
sented with {ε,δ ,∆,m} if it is encoded. Otherwise, rn is left
as it is.

3.3 The Reconstruction Module
The reconstruction module rebuilds rn from the output gen-
erated by the encoder. When rn is encoded, the output is
composed of {ε,δ ,∆,m}, and its length is (M + 3) that is
less than N. Otherwise, the output is rn with length N. There-
fore, the reconstruction procedure starts with determining the
length of the encoder output. If the length is N, the output is
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stored directly as the reconstruction of rn. Otherwise, the
output is decomposed into ε , δ , ∆, and m. After this step,
rn−1 is shifted along the vertical and horizontal axes by ε and
δ , respectively, to obtain r̂n. Afterwards, vn is rebuilt from
m and ∆. In this step, if the first value of m is π , then vn is
rebuilt decoding the rest of m with respect to the SC scheme,
which involves filling an empty signal in ℜN with the values
of location and amplitude pairs given in the measurements.
Otherwise, vn is rebuilt decoding m with respect to the CS
scheme, which involves solving Equation (2) by following
the procedure in [7]. As soon as m is decoded, the ampli-
tude of vn is shifted by −∆ to obtain ṽn. Eventually, rn is
reconstructed by adding ṽn to r̂n.

The reconstruction module is used at the decoder, as well
as at the encoder to estimate the reconstructions generated by
the decoder.

4. COMPARISON OF THE COMPRESSION
PERFORMANCE OF THE PROPOSED METHOD

WITH SOME OF THE WELL-KNOWN
COMPRESSION TECHNIQUES

In this section, we compare the compression performance
of the proposed method with some of the well-known and
widely used lossless and lossy compression techniques that
are applied to every 2-D scan independently in all of the 3-D
scans in the data sets described in Section 3. Thus, for each
technique in the comparison, we compare CR, D , and the
time required for encoding (tenc) and decoding (tdec). These
values are calculated by averaging over the values obtained
for the two data sets, separately.

We first compress the data sets using four of the lossless
techniques, which are Huffman, arithmetic, ZLIB, and GZIP
coding techniques. Huffman coding, which maps every char-
acter to distinct binary patterns based on the frequency of the
appearance of the characters, is the optimal lossless coding
technique. Similarly, arithmetic coding maps blocks of char-
acters, instead of single characters, to distinct binary patterns
based on the frequency of appearance of the blocks. Arith-
metic coding is sometimes more efficient than Huffman cod-
ing, depending on the signal to be encoded [13]. ZLIB and
GZIP are two popular compression techniques used in UNIX
operating systems.

Besides lossless compression techniques, we apply two
well-known lossy compression methods to the data sets.
Since a 2-D scan can be considered as an image slice, we
first apply JPEG compression [13]. Besides JPEG, 3-level
wavelet transform using the Haar dictionary is applied to
each 2-D scan, which is decomposed into six frequency com-
ponents ranging from low to high frequencies. Only the
lowest frequency components are used in reconstructing the
scans. Finally, the data sets are encoded using the proposed
method. In this method, small fluctuations in the compres-
sion performance are observed (±2% in CR), since the mea-
surement model in CS is determined arbitrarily in each trial.
Therefore, CR, D , tenc, and tdec are averaged, after the data
sets are encoded 10 times using the proposed method.

The average compression performances of the methods
described so far are summarized in Tables 1 and 2, for the
first and the second data set, respectively. For the perfor-
mances of the lossless methods, arithmetic coding can be
considered to be efficient in terms of the CR for both data
sets, however, it is slow compared to ZLIB and GZIP. On
the other hand, these methods compress less than arithmetic

method CR (%) D (cm) tenc (s) tdec (s)

lo
ss

le
ss Huffman coding 41.7 0 165.6 610.6

arithmetic coding 11.1 0 37.6 48.9
ZLIB 65.3 0 0.4 0.2
GZIP 76.7 0 0.5 0.3

lo
ss

y JPEG 9.0 164.6 4.2 7.3
3-level wavelet transform 12.7 37.3 0.8 0.9
proposed method 10.9 12.9 15.3 14.5

Table 1: CR, D , tenc, and tdec when the first data set is com-
pressed by different lossless and lossy methods.

method CR (%) D (cm) tenc (s) tdec (s)

lo
ss

le
ss Huffman coding 683.3 0 101.8 363.1

arithmetic coding 27.1 0 21.8 25.7
ZLIB 140.8 0 0.3 0.1
GZIP 143.8 0 0.3 0.2

lo
ss

y JPEG 10.0 743.6 1.5 3.6
3-level wavelet transform 12.7 353.8 0.5 0.5
proposed method 32.0 4.8 1.9 1.7

Table 2: CR, D , tenc, and tdec when the second data set is
compressed with different lossless and lossy methods.

coding. For the performances of the lossy methods, JPEG
and 3-level wavelet transform can be considered as fast and
efficient techniques in terms of the CR, however they re-
sult in high distortions. When the proposed method is com-
pared with the lossless methods considered here, the pro-
posed method is faster than Huffman and arithmetic coding,
but slower than ZLIB and GZIP. On the other hand, the pro-
posed method compresses much more than ZLIB and GZIP.
The performance of the proposed method is remarkable for
the second data set that the lossless methods except arith-
metic coding fail in compressing because the range of the
values used in the second data set is broader than that of the
first data set. When the proposed method is compared with
the lossy methods, the proposed method is slower than the
rest of the methods. However, it results in the least amount of
distortion among them. For lossy compression, there always
exists a trade-off between reducing the size of the input data,
and minimizing the distortion on the reconstructions [13].
Consequently, being a lossy method, the proposed method
provides a reasonably good compromise between the CR,
accuracy of the reconstructions, and speed when its perfor-
mance is compared with the performances of the well-known
techniques considered in this study.

It is observed that the methods mentioned above com-
press the data sets at different rates because the complexity
of the scenes in the second data set is higher, so the similar-
ity between consecutive 2-D scans in the second data set is
less than in the first. This is mathematically shown in [12]
by computing average correlation coefficients between con-
secutive 2-D scans in the first and the second data sets. The
performance of the proposed method is affected by this dif-
ference such that 57% of the 2-D scans in the first data set is
encoded with {ε,δ ,∆}, whereas 64% of the 2-D scans in the
second data set is not encoded. Therefore, the size of the first
data set is reduced more than the size of the second data set.
On the other hand, the error on the reconstructions of the first
data set is larger than that of the second data set as illustrated
in Figure 6, where gray levels are directly proportional to the
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(a) (b) (c)

(d) (e)

Figure 5: Reconstructions of the sample 3-D scans illustrated
in Figure 2, respectively, using the proposed method.

amount of distortion.
In the literature, there are also some other compression

techniques dedicated to 3-D range measurements. For in-
stance, Kaushik and Xiao [14] encode 3-D scans with the
union of planar patches fitted to the data. They achieve re-
ducing the size of a 3-D scan comprised of 150,000 measure-
ments by 94.65% within 18.67 s on the average.

5. CONCLUSION

In this study, we consider a 3-D model of an indoor environ-
ment acquiring with the commonly used SICK LMS200 laser
range finder. The 2-D range scans forming the 3-D model are
compressed as they are acquired, so that they can be stored or
transmitted efficiently. From this perspective, we propose a
compression technique based on compressive sensing, which
focuses on sampling sparse signals efficiently, for sequen-
tially acquired 2-D scans.

According to the criteria described in Section 1, the pro-
posed method is fast and efficient in terms of the CR. Its
performance seems reasonably acceptable compared with the
performances of the well-known lossless and lossy methods
considered in this paper. The proposed method is capable
of compressing noisy scan data with a minimum SNR of
23 dB, which is also the limit for the proposed sparsifying
module. The proposed method is recommended for appli-
cations where both the CR and speed are crucial. However,
a lossless compression technique, such as arithmetic coding,
can be used in applications where the accuracy of the range
measurements is more important.

In summary, the proposed method provides acceptable
CR among the compression techniques that we have consid-
ered, and as it provides a reasonably good balance between
reconstruction accuracy and speed [13], it can be suitably
used with 3-D scans. Our future work involves extending its
application to other types of sequential measurements.

REFERENCES
[1] C. Brenneke, O. Wulf, B. Wagner, “Using 3-D laser

range data for SLAM in outdoor environments,” Proc.
IEEE/RSJ Int. Conf. Intelligent Robots Syst., pp. 188–
193, 2003.

[2] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,

(a) (b) (c)

(d) (e)

Figure 6: Illustrations of the error between the sample 3-D
scans illustrated in Figure 2 and their reconstructions illus-
trated in Figure 5, respectively.

J. Davis, J. Ginsberg, J. Shade, D. Fulk, “The digital
Michelangelo project: 3-D scanning of large statues,”
Comput. Graphics Annual Conf., pp. 131–144, 2000.

[3] D. Borrman, J. Elseberg, K. Lingemann, A. Nüchter,
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