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Abstract 
 
In this study, low-cost infrared sensors are used for 
the recognition of surfaces with different properties 
in a location-invariant manner. The intensity readings 
obtained with such sensors are highly dependent on 
the location and properties of the surface in a way 
which cannot be represented in a simple manner, 
complicating the recognition and localization process. 
We propose the use of angular intensity scans and 
present an algorithm to process them. This approach 
can differentiate different surfaces independent of 
their positions. Once the surface is identified, its 
position can also be estimated. The method is verified 
experimentally with the surfaces aluminum, white 
painted wall, brown craft paper, and styrofoam 
packaging material. A correct differentiate rate of 
87% is achieved and the surfaces are localized within 
absolute range and azimuth errors of 1.2 cm and 

�

0.1 , respectively. The method demonstrated shows 
that simple infrared sensors, when coupled with 
appropriate processing, can be used in mobile robot 
applications for differentiation and localization 
beyond their common usage as simple proximity 
sensors for object detection and collision avoidance. 
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1. Introduction 
 
In this work, we consider the use of a simple infrared 
sensing system consisting of one emitter and one 
detector, for the purpose of surface recognition and 
localization. This paper complements our earlier 
work where we considered the differentiation and 
localization of objects with different geometries such 
as plane, corner, edge, and cylinder [1, 2]. Both tasks 
are of considerable interest for intelligent systems 
where there is need to distinguish objects for 
autonomous operation.  
 
Infrared sensors are inexpensive, practical and widely  
available. The emitted light is reflected from the 

surface and its intensity is measured at the detector. 
However, it is often not possible to make reliable 
distance estimates based on the value of a single 
intensity return because the return depends on both 
the surface and other properties of the reflecting 
object. Likewise, the properties of the surface cannot 
be deduced from simple intensity returns without 
knowing its distance and angular location. In this 
paper, we propose a scanning technique and 
algorithm that can differentiate surfaces in a manner 
which is invariant to their location. Once the surface 
properties are determined, its position (r, ��FDQ�DOVR�
be estimated.  
 
The method we propose is scalable in the sense that 
the accuracy can be increased by increasing the 
number of reference scans without increasing the 
computational complexity of the differentiation and 
localization process. Position-invariant recognition 
and position estimation achieved in this paper differs 
from conventional pattern recognition techniques 
performed on conventional images in that here we 
work not on direct “photographic” images obtained 
by some kind of imaging system, but rather on 
angular intensity scans obtained by rotating a point 
sensor. What we differentiate are not patterns in a 
two-dimensional image whose coordinates we try to 
determine, but rather different kinds of surfaces, 
whose position with respect to the sensing system we 
need to estimate.  
 
Typical use of infrared sensors in robotics 
applications include floor sensing, navigational 
referencing, and collision avoidance at short ranges 
[3]. They are used in door detection and mapping of 
openings in walls [4], as well as monitoring 
doors/windows of buildings and vehicles, and as 
“light curtains” for protecting an area. In [5], the 
properties of a planar surface at a known distance 
have been determined using the Phong illumination 
model, and using this information, the infrared sensor 
employed has been modeled as an accurate range 
finder for surfaces at short ranges. In [6], a number of 
commercially available light-based sensors are 
evaluated for robotic applications in outer space. In 
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[7], system and implementation issues in infrared 
proximity sensing in robot manipulator motion 
planning are discussed. Following this work, [8] 
describes a teleoperated whole-sensitive robot arm 
manipulator whose whole body is covered with a 
sensitive infrared skin sensor to detect nearby objects. 
Infrared sensors are used in door detection processes 
in [9]. However, to the best of our knowledge, no 
attempt has been made to simultaneously 
differentiate and estimate the position of several 
kinds of surfaces using a small number of simple, 
low-cost, point sensors. 
 
2. Surface Recognition and Localization  
 
The infrared sensor [10] used in this study consists of  
an emitter and detector, and provides analog output 
voltage proportional to the measured intensity. The 
detector window is covered with an infrared filter to 
minimize the effect of ambient light on the 
measurements. Indeed, when the emitter is turned off, 
the detector reading is essentially zero. The 
sensitivity of the device can be adjusted with a 
potentiometer to set the operating range of the system.  
 

  
 
Figure 1: Top view of the experimental setup. Both 
the scan angle � DQG� WKH� VXUIDFH� D]LPXWK� � DUH�
measured counter-clockwise from the horizontal axis.  
 
The surfaces employed in this study are aluminum, 
white painted wall, brown craft paper, and styrofoam 
packaging material. Our method is based on 
angularly scanning the surfaces over a certain angular 
range. The infrared sensor is mounted on a 12 inch 
rotary table [11] (Fig. 1) to obtain angular scans I� ��
from the surfaces. Reference data sets are collected 
for each surface type with 2.5 cm distance increments, 

ranging fURP� ����� FP� WR� ����� FP�� DW�  �

0 . The 
resulting reference scans for the four surfaces are 
shown in Figs. 2-5. The intensity scans are          
�LQYDULDQW� EXW� QRW� U�LQYDULDQW�� FKDQJHV� LQ� U� GR� QRW�

result in any simple scaling. As we will see, these 
scans contain sufficient information to identify and 
localize different surfaces with a good degree of 
accuracy. Notice that the return signal intensities 
saturate at an intensity corresponding to about 11 V 
output voltage.  
 

 
 
Figure 2: Intensity scans for aluminum at different 
distances.  

 
 
Figure 3: Intensity scans for white painted wall at different 
distances.   

 
 
Figure 4: Intensity scans for brown craft paper at different 
distances.  
 
We now describe how to recognize and determine the 
position of an arbitrarily located surface whose 
intensity scan has been observed. First, we check 
whether the observed scan I� ��H[KLELWV�VDWXUDWLRQ�RU�
not. This situation is treated separately as explained 
later in Section 2.3.  
 
We start by identifying the surface. Unfortunately, 
direct comparison with the corresponding curves in 
Figs. 2-5 is not possible since we do not yet know the 



 
           
Figure 5: Intensity scans for styrofoam packaging material 
at different distances.  
 
distance to the surface, and comparing with all the 
curves at all distances would be computationally very 
expensive. Therefore, we exploit the fact that the 
successive curves in Figs. 2-5 exhibit a monotonic 
dependence on distance. Furthermore, when an 
observed scan is compared to the several successive 
curves in any of Figs. 2-5, the two measures of 
difference between them described in Sections 2.1 
and 2.2 below also exhibit a monotonic fall and rise 
around a single minimum. Therefore, we are assured 
that we will not be settling at a suboptimal point if 
we compare the observed scan not with all scans at 
all distances but only with the four scans (one for 
each surface type) whose central intensities are 
closest to that of the observed scan. Therefore, for 
unsaturated scans, only four comparisons need to be 
made. This remains the case even if the 2.5 cm 
increments are reduced to smaller values. This has 
the advantage that the accuracy of the system can be 
increased without increasing the cost of computation 
(although a greater number of scans do have to be 
stored). As a test, we also ran a version of the method 
where eight comparisons were made using the scans 
with the nearest central intensities both above and 
below the observed central intensity, and also using 
all of the scans shown in Figs. 2-5. These 
computationally more expensive approaches, 
exceedingly more so in the latter case, did not 
improve the results with respect to comparison with 
only four scans. In fact, since the systematic 
elimination of a priori suboptimal scans eliminates 
the small possibility that they will mistakenly be 
chosen as the best matching scan due to noise and 
other errors, results obtained by using all scans are 
found to be inferior to those obtained by using four 
scans.  
 
Two alternative approaches, discussed below, are 
employed in performing the four comparisons.  
 
 

 
2.1 Least-Squares Approach 
  
)LUVW�� ZH� HVWLPDWH� WKH� DQJXODU� SRVLWLRQ� � RI� WKH�
surface as follows: Assuming the observed scan 
pattern is not saturated, we find the angular location 
of its maximum and the corresponding intensity 
value. This angular value, denoted MAXT , can be 

directly taken as an estimate of the angular position 
of the plane. Alternatively, the angular position can 
be estimated by finding the center-of-gravity (COG) 
of the scan as follows:  
 

¦
¦

�

� 
n

i i

n

i ii
COG

I

I

1

1

)(

)(

D

DD
T       (1)      

 
where n is the number of samples in the angular scan. 
Ideally, these estimates would be equal, but in 
practice they differ by a small amount. We will 
consider the use of both alternatives when tabulating 
our results. From now on, we will refer to either 
estimate as the “ center angle”  of the scan.  
 
Plots of the intensity at the center angle of each scan 
in Figs. 2-5 as a function of the distance at which that 
scan was obtained, play an important role in our 
method. Fig. 6 shows these plots for the maximum 
intensity case.  
 
In this approach, we compare the intensity scan of the 
observed surface with the four reference scans by 
computing their least-squares differences after 
aligning their centers with each other. The 
mean-square difference between the observed scan 
and the four reference scans, one for each possible 
surface, is computed as follows:  
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where jI , j = 1, 2, 3, 4 denote the four reference 

scans. Here, alignD  is the angular shift which is 

necessary to align both patterns. The reference scan 
UHVXOWLQJ�LQ�WKH�VPDOOHVW�YDOXH�RI� �LV�GHFODUHG�DV�WKH�
observed surface. Once the type of the surface is 
determined, the range can be estimated by using 
linear interpolation on Fig. 6. Note that, this way, the 
accuracy of the method is not limited by the 2.5 cm 
spacing used in collecting the reference scans. 
 
2.2 Matched Filtering Approach 
 
As an alternative, we have also considered the use of 
matched filtering [12] to compare the observed and 
reference scans. The output of the matched filter is  



 
 
Figure 6: Central intensity versus distance curves for the 
different surfaces.  
 
the cross-correlation between the observed intensity 
pattern and the jth reference scan normalized by the 
square root of its total energy:  
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The surface corresponding to the maximum 
cross-correlation peak is declared as the observed 
surface type, and the angular position of the 
correlation peak directly provides an estimate of the 
azimuth angle of the surface. Then, the distance is 
estimated by using linear interpolation on Fig. 6 with 
the intensity value at the azimuth estimate.  
 
2.3 Saturated Scans 
 
If saturation is detected in the observed scan, special 
treatment is necessary. In the least-squares approach, 
the mean-square difference between the aligned 
observed scan and all the saturated reference scans 
are computed and the reference scan with the 
minimum mean-square difference is chosen. The 
range estimate of the surface is taken as the distance 
corresponding to the scan resulting in the minimum 
mean-square difference. Similarly, for the matched 
filter, correlation between the observed scan and all 
the stored saturated reference scans is computed and 
the reference scan resulting in the highest correlation 
peak is selected. The range estimate is again taken as 
that of the best matching scan.  
 
It should be noted that, in the saturated case, range 
estimation accuracy is limited by the 2.5 cm interval 
at which the reference scans were taken. If this 
accuracy is not satisfactory, it can be improved by 
reducing the 2.5 cm intervals. We underline that the 
2.5 cm interval does not limit the range estimation 
accuracy in the unsaturated case, where accurate 
interpolation is possible from Fig. 6.  
 

In the unsaturated case, the azimuth could be 
estimated by taking the angular value corresponding 
to either  the maximum value of the intensity curve 
or its COG. In the case of saturated scans, a single 
maximum may not be observed but the COG can still 
be used to reliably estimate the azimuth. Even when 
the maximum intensity is used for the unsaturated 
scans, the COG approach is used for the saturated 
scans. 
 
3. Experimental Verification and Discussion 
 
In this section, we experimentally verify the proposed 
method by locating the surfaces at randomly selected 
GLVWDQFHV�U�DQG�D]LPXWK�DQJOHV� �DQG�FROOHFWLQJ�D�WRWDO�
of 100 test scans. The surfaces are randomly located 
at ranges from 12.5 cm up to 57.5 cm and azimuths 

from 
�

� 45  to 
�

45 .  
 
The results of least-squares based surface 
differentiation are displayed in Tables 1 and 2 in the 
form of surface confusion matrices. Table 1 gives the 
results obtained using the maximum intensity values, 
and Table 2 gives those obtained using the intensity 
value at the COG of the scans. The average correct 
classification rates obtained by using the maximum 
intensity and the COG variations of the least-squares 
approach are 81% and 82%, respectively.  
 
Matched filter differentiation results are presented in 
Table 3. The average accuracy of differentiation over 
all surfaces is 87%, which is better than that obtained 
with the least-squares approach. In [1], where we 
dealt with the differentiation of targets with different 
geometries as opposed to different surfaces treated 
here, the least-squares approach resulted in a 
differentiation accuracy of 93% and 89% and the 
matched filtering approach resulted in an accuracy of 
97%. Based on these results, we conclude that 
differentiating targets with different surfaces is 
considerably more difficult than differentiating 
targets with different geometries.  
 
As shown in the tables, aluminum is always correctly 
identified regardless of which method is used, due to 
its distinctive signature. The remaining surfaces are 
comparable in terms of their correct identification 
percentages. Brown craft paper is the surface most 
confused with others, especially styrofoam. Although 
the intensity scans of these two surfaces do not 
resemble each other in the unsaturated region, their 
saturated scans are similar, contributing to the 
misclassification rate. Nearly all misclassified 
surfaces are located at nearby ranges where the return 
signal intensities are saturated. This means that the 
misclassification rate can be reduced by increasing 
the lower limit of the range interval at the cost of 
reducing the operating range.  
 



Table 1: Surface confusion matrix: least-squares based 
recognition (maximum intensity variation). (AL: aluminum, 
WW: white wall, BP: brown paper, ST: styrofoam).  
 

surface recognition result total 
 AL WW BP ST  

AL 25 - - - 25 
WW - 20 3 2 25 
BP - 5 17 3 25 
ST - - 6 19 25 

total 25 25 26 24 100 
 
Table 2: Surface confusion matrix: least-squares based 
recognition (COG variation).  
 

surface recognition result total 
 AL WW BP ST  

AL 25 - - - 25 
WW - 20 3 2 25 
BP - 4 18 3 25 
ST - - 6 19 25 

total 25 24 27 24 100 
 
Table 3: Surface confusion matrix: matched filter based 
recognition.  
 

surface recognition result total 
 AL WW BP ST  

AL 25 - - - 25 
WW - 21 3 1 25 
BP - 1 21 3 25 
ST - - 5 20 25 

total 25 22 29 24 100 
 
Table 4: Absolute range and azimuth estimation errors over 
all surfaces.  
 

method AL WW BP ST 
ave. 
err. 

r (cm) 2.4 1.3 1.3 0.9 1.5 least-squares 
(max) (deg)

�
 0.8 1.9 1.6 0.8 1.3 

r (cm) 2.4 1.3 1.3 0.9 1.5 least-squares 
(COG) (deg)

�
 0.8 1.0 1.6 0.8 1.1 

r (cm) 1.7 1.2 1.0 0.8 1.2 matched 
filter (deg)

�
 0.8 1.1 1.6 0.7 1.0 

 
The average absolute range and azimuth estimation 
errors for the different approaches are presented in 
Table 4 over all surface types. As seen in the table, 
using the maximum intensity and COG variations of 
the least-squares approach, the surface ranges are 
estimated with average absolute range error of 1.5 cm  
in both cases. Matched filtering results in an average 
absolute range error of 1.2 cm which is better than 
that obtained with the least-squares approach. The 
greatest contribution to the range errors comes from 
surfaces which are incorrectly recognized. If we 
average over only correctly recognized surfaces, the 
average absolute range errors become 1.0 cm, 1.1 cm,  
and 1.2 cm for the maximum intensity and COG 

variations of least-squares and the matched filter 
approaches, respectively. Since these three numbers 
are relatively closer than the corresponding numbers 
in Table 4, we may conclude that the superior range 
accuracy of matched filtering is mostly a 
consequence of its superior differentiation accuracy.  
 
The major contribution to range errors comes from 
saturated scans where linear interpolation from Fig. 6 
cannot be employed to obtain better range estimates. 
Consequently, surfaces for which saturation occurs 
over a greater portion of the operating range exhibit 
greater range estimation errors, with aluminum being 
the worst.  
 
As for azimuth estimation, matched filtering results 

in an average absolute estimation error of 
�

0.1 , 
which is the best among the approaches compared. 
Averaging the azimuth errors over only correctly 
differentiated surfaces does not result in significant 
changes. This is due to the fact that azimuth 
estimation is not dependent on correct differentiation. 
The COG variation is, on the average, better than the 
maximum intensity variation in azimuth estimation 
due to the fact that COG based calculations average 
out the noise in the return signal intensities.  
 
We have also considered expanding the range of 
operation of the system. As an example, changing the 
operating range from [12.5 cm, 57.5 cm] to [5 cm, 60 
cm], results in a reduction of the correct 
differentiation percentage from 87% to 80%. This 
reduction in performance is mostly a consequence of 
highly saturated scans and scans with very low 
intensities, both of which are prone to greater errors.  
 
Light reflected from a surface consists of specular 
and diffuse components. The specular component is 
concentrated where the reflection angle equals the 
incidence angle, whereas the diffuse component is 
spread in all directions with a cosine factor. For 
different types of surfaces, the contribution of these 
two components and the rate of decrease of intensity 
ZLWK�WKH�VFDQ�DQJOH� �LV�GLIIHUHQW��,W�LV�WKLV�GLIIHUHQFH�
which results in a characteristic intensity scan pattern 
(signature) for each surface, enabling us to 
distinguish them without knowing their positions. In 
contrast, a system relying only on reflected energy 
could not distinguish between a highly reflecting 
distant object and a less reflecting nearby one. 
Occasionally, two very distinct surfaces may have 
LQWHQVLW\�VFDQV�ZLWK�YHU\�VLPLODU�GHSHQGHQFH�RQ� ���LQ�
which case they cannot be reliably differentiated with 
the present method.  
 
4. Conclusions 
 
In this study, differentiation and localization of four 
types of surfaces is achieved using an inexpensive 



infrared emitter and detector pair. Different 
approaches are compared in terms of correct 
differentiation, and range and azimuth estimation 
accuracy. The method demonstrated shows that 
simple infrared sensors, when coupled with 
appropriate processing, can be used to extract a 
significantly greater amount of information than they 
are commonly employed for in robotics applications. 
A typical use of the demonstrated system would be in 
mobile robotics in surveying an unknown 
environment composed of several different types of 
surfaces, or industrial applications where different 
materials must be identified and separated.  
 
The main accomplishment of this study is that even 
though the intensity patterns are highly dependent on 
surface location and properties, and this dependence 
cannot be represented by a simple relationship, we 
achieve position-invariant differentiation of different 
types of surfaces. A correct differentiation rate of 
87% over all surface types is achieved and surfaces 
are localized within absolute range and azimuth 

errors of 1.2 cm and 
�

0.1 , respectively. The method 
we propose is scalable in the sense that the accuracy 
can be increased by increasing the number of 
reference scans without increasing the computational 
cost.  
 
In earlier work, we had considered differentiation and 
localization of objects having different geometries 
such as plane, corner, edge, and cylinder [1, 2], as 
opposed to the differentiation and localization of 
different surfaces considered in this paper. 97% and 
91.3% correct differentiation rates were achieved in 
[1] and [2], respectively. Comparing these with the 
87% correct differentiation achieved in this paper, we 
conclude that specular/diffuse reflection 
characteristics are not as distinctive as geometric 
reflection characteristics.  
 
Current work investigates the deduction of both the 
surface type and also the geometry of the target from 
its intensity scan without knowing its location. 
Preliminary results indicate that the method of the 
present paper can be applied to this case by treating 
the combination of a particular geometry and 
particular surface as a generalized target type. Also 
being considered is the parametric modeling and 
representation of intensity scans rather than the use of 
the intensity scan vectors themselves. 
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