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Location and Curvature Estimation
of Spherical Targets Using Multiple
Sonar Time-of-Flight Measurements

Billur Barshan

Abstract— A novel, flexible, three-dimensional multisensor
sonar system is described to localize the center of a generalized
spherical target and estimate its radius of curvature. Point,
line, and planar targets are included as limiting cases which
are important for the characterization of a mobile robot’s
environment. Sensitivity analysis of the curvature estimate
with respect to measurement errors and some of the system
parameters is provided. The analysis is verified experimentally
for specularly reflecting cylindrical and planar targets. Typical
accuracies in range and azimuth are 0.17 mm and 0.1�,
respectively. Accuracy of the curvature estimate depends on
the target type and system parameters such as transducer
separation and operating range.

Index Terms—Cylinders, data acquisition, distance measure-
ment, intelligent sensors, radius of curvature estimation, robot
sensing systems, sonar measurements, sonar position measure-
ment, spheres, time-of-flight measurement.

I. INTRODUCTION

I N this paper, we present a sonar system capable of esti-
mating the radius of curvature and position of generalized

spherical targets. Such systems have applications for intelli-
gent systems, in particular for mobile robots. Although most
of today’s mobile robots operate in two-dimensional (2-D)
environments, three-dimensional (3-D) target recognition and
discrimination has potential significance for robots operating
in 3-D environments such as airborne or underwater robots.
Several researchers have investigated the limitations of sonar
for 3-D target recognition and tracking. In [8], an analytical
approach to surface curvature extraction is described which
employs differential geometry. An acoustic imaging system
which combines holography with neural networks for the
recognition of 3-D objects is described in [21]. Peremanset al.
[17] and Sabatini [19] have both investigated curved reflectors
using linear sensor configurations. In [11], the minimum
amount of information and actuation needed to track a ball in
3-D has been determined and implemented using qualitative
methods only. Kleeman and Akbarally have classified and
discriminated the target primitives commonly occurring in 3-D
space [10]. Hong and Kleeman treat the classification and
localization of 3-D room features using maximum likelihood
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Fig. 1. Sensing system.

estimation and a low-sample rate equilateral triangular sonar
configuration [9]. Kuc reports differentiation of O-rings and
coins in 3-D using an adaptive sonar configuration [13], [14].

The aim of this paper is to estimate the unknown parameters
of spherical targets in 3-D. In the next section, the sensing
system is described. In Section III, the geometry of reflection
from spherical targets is considered and analyzed. The impor-
tant limiting cases of point and planar targets are highlighted.
Sensitivity analysis of curvature estimation with respect to
measurement errors and some system parameters is provided
in Section IV. Experimental results which verify the analysis
are presented in Section V.

II. SENSING DEVICE

The sensing device used in this investigation was precision
constructed for 3-D sonar applications. The unit, illustrated in
Fig. 1, consists of five Polaroid 6500 series acoustic transduc-
ers, each operating at a resonance frequency of
kHz [18]. A central transducer is flanked by four transducers
symmetrically. The position of the central transducer is fixed
but the separation of each surrounding transducer from the
center can be manually adjusted between 7.5 to 12.0 cm.
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Fig. 2. Geometry of the coordinate system used, illustrating the target range
r, azimuth�, and elevation�. The five transducers are on thex andz axes,
one being at the origin and the others symmetrically located around it.

When operated in the pulse-echo mode [18], these devices
offer complete flexibility in the firing sequence and timing
at which the individual transducers can be fired. In the firing
pattern used here, each transducer registers only the echo of the
signal transmitted by itself. Assuming the target is stationary,
the firing is done sequentially to avoid crosstalk between
the transducers. This is geometrically simpler to analyze as
compared to firing patterns where transducers simultaneously
detect signals transmitted by each other. After each trans-
mission, the detected waveform is recorded and a round-trip
time-of-flight (TOF) reading is obtained by thresholding the
echo signal as described in [2].

III. T ARGET REFLECTION GEOMETRY

In the following analysis, a spherical target of radius
is assumed to be stationary at spherical coordinates .
The coordinate system used is illustrated in Fig. 2. Although
this is a nonstandard spherical coordinate system, it is more
convenient for explicitly representing the azimuth and eleva-
tion angles of the target, as conventionally done in sonar/radar
applications.

A. Spherical Target With Radius

According to the firing pattern described in Section II,
the geometry of Figs. 2 and 3 indicates that the distance
measurements at the transducers are

(1)

where are the TOF values obtained at the
middle, right, left, up and down transducers respectively, and

is the speed of sound in air.1 We will generally concentrate

1c = 331:4 T

273
m/s, whereT is the absolute temperature in Kelvin. At

room temperature,c = 343:3 m/s.

Fig. 3. Geometry of the target position fordr = dl = d.

Fig. 4. Indeterminacy of curvature with only two measurements. The un-
known target can have any curvature from zero to infinity. Here,dr = dl = d.

on the case . However, distinguishing
the four transducer separations will be important in the sensi-
tivity analysis. Each measurement confines the possible target
locations to a sphere centered at the corresponding transducer.
At least three measurements are necessary to identify the
curvature of the target both in 2-D and 3-D. This is illustrated
in Figs. 4 and 5. Assuming is exactly
known, from the previous equations, can be solved and
expressed in different forms

(2)

(3)

(4)

Note that (2) and (3) both require three measurements and the
knowledge of , whereas (4) involves four measurements, and
not the value of .

Although the above geometry involves five measurements to
determine the four unknowns of the 3-D curvature
estimation and localization problem, it should be clear that, in
principle, four measurements should be sufficient to determine
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(a)

(b)

(c)

Fig. 5. Measurement geometry for (a) point, (b) spherical, and (c) planar
targets fordr = dl = d. Three measurements uniquely identify the curvature
of the unknown target both in 2-D and 3-D.

these four unknowns. (In 2-D, three measurements are suffi-
cient to determine the three unknowns.) Since by equating any
two of (2)–(4), one of the TOF measurements can be expressed
in terms of the other four, one of the five TOF measurements is
redundant. It is possible to find an algebraic solution in terms
of only four measurements when the transducers are co-planar
and symmetrically located at the corners of a square (see the

Appendix) [20]; however, this solution is quite complicated,
computationally expensive to evaluate, and prone to rounding
error. Addition of the (nominally redundant) fifth measurement
leads to the following simpler solution which also exhibits a
certain amount of robustness

(5)

B. Point Target: The Limit

In the limit , a point target is obtained. Point-target
localization in 2-D has been considered in [3] and two methods
of estimating the location have been presented using a linear
array of transducers. The equations in 3-D derived above for
finite become simpler in the limit :

(6)

In this case, since the measured signal amplitude decreases
as the target gets smaller (that is, asdecreases), the region
in which the target can be detected is smaller. Characterizing
the point-target response of a sensor is important not only
for its application to point or edge-like targets, but also to
assess its performance on extended targets. There are different
approaches to model extended targets [1], [15], [17]. If the
approach is one of hypothesis testing or one of parameterizing
the extended target, then sensor performance may not be easily
related to its point-target response. On the other hand, for
extended targets of unknown shape with possible roughness,
point-target analysis can be extremely useful [7].

C. Planar Target: The Limit

For the limiting case , the target becomes a plane.
Both the distance to the center of the target and its radius
of curvature become infinity. In this case, either the limits
of the above equations can be taken, or more simply, the
perpendicular distances of the transducers to the plane can
be directly derived from the geometry as

(7)
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The solution is

(8)

The distance to the surface of the plane is simplyand the
shape of the planar patch that effectively contributes to the
signal is approximately a disk of radius .

IV. SENSITIVITY ANALYSIS

A. Sensitivity to TOF Measurement Errors

A sensitivity analysis has been performed to determine how
much variation would result in the radius of curvature estimate

as a result of measurement errors and variation in certain
system parameters. Since and are both close to

, the denominators in (2)–(4) are very small, and the value
of computed from these expressions is extremely sensitive
to errors in the TOF measurements. This is an intrinsic feature
of triangulation with relatively closely-spaced detectors.

By evaluating the partial derivatives of (2) with respect to
and , the total error due to TOF measurement errors

can be found as

(9)

In Fig. 6(a), has been plotted for between 0–1.5 m. A
spherical target with radius 75 mm is assumed to be stationary
at . Error sensitivity is greatest for smaller
transducer separations as discussed below. Thus, to consider
the worst case, we set the transducer separation to
cm which is the smallest possible separation in our system.
For fixed transducer separation, error in radius of curvature
increases nonlinearly with increasing. The typical range-
measurement-error standard deviation in the current system,
limited by our A/D converter resolution, is approximately 0.17
mm. At a target range of cm and radius mm,
an error of mm on corresponds to an error of

mm on , which represents about a 20% error.
At 1.0 m, the same error on corresponds to
mm, representing 81% error. If is increased to 15 cm, the
error for m is reduced to 20%, and for a further
increase of to 20 cm, the error would be reduced to 11%.

The fact that always takes positive values means that
a measurement error o+n will cause an error on

, having the same sign as the measurement error. This can
be explained as follows. Assuming that the target has convex
curvature, increasing while keeping and constant
corresponds to an increase in the radius of curvature(or
a decrease in curvature ). Similarly, decreasing while
keeping and constant corresponds to a decrease in.
Since the value of increases with range, for a fixed

will be larger further away from the measurement system.
Since the curvature equation is symmetric with respect to

and , the sensitivity of curvature with respect to these two

(a)

(b)

Fig. 6. Partial derivative ofR with respect to distance measurements (a)h�
(b) hr or hl, as a function ofr. For both parts,R = 75 mm, d = 7:5 cm,
� = � = 0�.

measurements will be the same. In other words, the second
and third terms in (9) are identical. In Fig. 6(b), has been
plotted for the same parameters used in generating Fig. 6(a).
Note that, in this case, always takes negative values and
that a measurement error will cause an error , having
the opposite sign as the measurement error. This again can
be explained by the geometry of Fig. 3. A positive (negative)
error on the right and left measurements, with constant,
causes a reduction (increase) in the radius of curvature.

Next, the sensitivity of curvature to measurement errors has
been investigated for different curvature and azimuth values. In
the first case, it is observed that for a fixed increases
with the radius of curvature of the target, as illustrated in
Fig. 7(a). In Fig. 7(b), is varied from 20 to 20 while

cm. It can be observed that the dependence of the
sensitivity on is weak. Corresponding plots for are
presented in Fig. 8(a) and (b). We observe that apart from a
sign change, the general dependence of and on the
various parameters are similar.

Fig. 7(c) illustrates the effect of varyingon the sensitivity
of the radius of curvature estimate to measurement errors.
For between 0–1.5 m, has been plotted for transducer
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(a)

(b)

(c)

Fig. 7. Partial derivative ofR with respect toh� versus (a)R andh� when
d = 7:5 cm and� = � = 0�, (b) � andr whend = 7:5 cm, R = 75 mm,
and� = 0�, (c) d andr whenR = 75 mm, � = � = 0�.

separations between 4.0–60 cm. Corresponding plot for
(or equivalently ) is presented in Fig. 8(c). In both figures,
it is observed that the ratio is a significant parameter in the
curvature estimation process. This ratio should be set as large
as possible for better resolution. If is not sufficiently large,
the resolution provided by the differential TOF information
between the central and flanking transducers will not be large
enough to estimate the curvature reliably. This is verified
by the experimental results in the next section. Hence, as
the operating range increases, the transducer separation must

(a)

(b)

(c)

Fig. 8. Partial derivative ofR with respect tohr versus (a)R andh� when
d = 7:5 cm and� = � = 0�, (b) � andr whend = 7:5 cm, R = 75 mm,
and� = 0�, (c) d and r whenR = 75 mm, � = � = 0�.

be increased accordingly to maintain the same accuracy in
curvature estimation. On the other hand, there is a practical
limit to how large the ratio can be set: The directional
sensitivity patterns of the transducers are limited to a cone with
half angle (in the current system, [18]). If
is too large, the sensitivity patterns of the transducers will not
overlap at the location of the target so that targets nearer than

will not be detected by the system [4] as
illustrated in Fig. 9. (Here, is the transducer aperture radius.
For the current system with mm and mm,
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Fig. 9. Minimum distance at which a target is detectable by all three
transducers is approximatelyhmin =

d�a

tan �
+

a

�
where �� ' 12�. This

corresponds to the distance between the central transducer and the start of the
joint sensitivity region. The system cannot detect targets outside the hatched
area.

in mm.) Thus, we conclude that a sensor
system which is to operate over widely varying target ranges
must have the capability of adapting the transducer separation.
The information provided by Figs. 7(c), 8(c), and the formula
for can be combined to formulate a rule for choosing
a suitable transducer separationfor a given range . Thus,
we can envisage a two-step curvature estimation process: The
range estimate obtained in the first step is used to adjust the
transducer separation, allowing a more accurate curvature
estimate in the second step. For example, an initial setting of

cm for a target of radius mm at
m would give 81% error when mm. Based on
the above considerations, and applying a suitable tolerance,
the initial estimate of and suggest that cm would
be a more suitable separation. With this value of, the target
surface would still be detectable by all transducers and the
error would reduce to 11%. However,cannot be increased
much further since in this case the target would be too near to
be detected by all transducers, as explained above.

Under certain circumstances, the above calculations may
give a pessimistic account of the actual errors. Let us consider
the hypothetical situation where all measurement errors are
equal: . Then, (9) becomes

(10)

Evaluating the partial derivatives from (2) and summing them,
we obtain the remarkably simple result:

(11)

Notice that whereas the partial derivatives themselves may
have very large values, they add up to1. The same result is
also obtained from (3) or (4) when partial derivatives of these
equations with respect to the corresponding measurements are
evaluated and summed up. (This result is geometrically evident
upon noting that an equal deviation in all measurements to
the surface corresponds to an exactly opposite change in the
estimate of .) Therefore, any systematic source of error af-
fecting all measurements in the same way will have negligible
contribution to , which will be dominated by the sources
of error which affect the measurements independently. An

example of a source of systematic errors is the approximately
constant bias error often encountered in the detection circuitry
of TOF measurement systems [2]. In certain cases, partial
rather than complete cancellation may still reduce the error
considerably, as with errors caused by a change in the speed
of sound due to variations in the ambient conditions.

B. Sensitivity to Transducer Separation

It is also important to consider the effect of errors in setting
(or measuring) the transducer separation, on the radius of
curvature estimation. The radius of curvaturecan be found
from (2), (3), or (4). Suppose the transducers are positioned
along the and axes of the coordinate system as before, but
their locations have been set incorrectly around some nominal
value of . Let and be the actual,
erroneously set separations of the right and left transducers.
Substituting these in the first three members of (1), solving
for the radius of curvature, and comparing the result with the
true value of , we obtain

(12)

where is the -coordinate of the target center. It will be
more instructive to examine the deviation inwith respect to
symmetric and antisymmetric components of and ,
given by

(13)

with

(14)

The symmetric error component corresponds to an
error in the scaling of the array. On the other hand, the
antisymmetric component extends one arm and shortens
the other by the same amount.

With these definitions, and neglecting second-order error
terms, can be written in terms of and as
follows:

(15)

The sensitivity of curvature to symmetric and antisymmetric
error components in has been investigated in Fig. 10 for

mm and m. For the case of symmetrical
errors, a plot of as a function of is

provided in Fig. 10(a). Similarly, for antisymmetric errors,
is plotted in Fig. 10(b) as a function of

the -coordinate of the target. The-coordinate of the target
is varied by keeping m and varying between
and 20. Notice that is a sharply decreasing function of

, whereas increases roughly linearly with.
The results in Fig. 10 have been extended to other parame-

ters of interest in Figs. 11 and 12. Different curvature, azimuth,
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(a)

(b)

Fig. 10. Partial derivative ofR with respect todwhen the error in the
separation of the right and left transducers is (a) symmetric, (b) antisymmetric.
In part (a),R = 75 mm, r = 1:0 m, � = � = 0�, and in (b)R = 75 mm,
r = 1:0 m, d = 7:5 cm, and� varies between�20� and 20�.

and range values have been considered. In Fig. 11(a),has
been plotted as a function of and . In part (b) of the same
figure, has been varied between 0–1.5 m whilehas been
varied from 20 to 20 , with cm. In Fig. 11(c),

has been plotted for varying between 4–60 cm, and
between 0–1.5 m. Once again, we observe that the dependence
on is weak and the sensitivity increases rapidly for smaller
values of , so that the strategy of choosing larger values
of for larger remains viable and advantageous.

The corresponding plots for the sensitivity of to the
antisymmetric component of the errors on, as indicated by

, are given in Fig. 12. Whereas (a) and (c) of Figs. 11 and
12 are similar in form, the greatest difference is observed in (b)
due to the appearance of the-coordinate in the antisymmetric
case.

Now, we turn our attention to (4) and note that an estimate
of based on this equation does not depend onbeing
accurately set or measured. It is worth examining this point
more closely: Recall that (4) was derived assuming that

. Thus, if the error affecting all four
transducer separations is of the same amount, (4) will give

(a)

(b)

(c)

Fig. 11. Sensitivity ofR to symmetric error components: (a)h� andR when
d = 7:5 cm, � = � = 0�, (b) r and � whenR = 75 mm, d = 7:5 cm,
� = 0�, (c) r andd whenR = 75 mm, � = � = 0�.

an estimate of independent of this error. To see what
happens when errors are different for different branches, let

, and
be the actual, erroneously set separations of the flanking
transducers. Substituting these in the last four members of (1),
solving for the radius of curvature and comparing the result
with the true value of , we obtain (16), shown at the bottom
of the next page, where is the -coordinate of the target
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(a)

(b)

(c)

Fig. 12. Sensitivity ofR to antisymmetric error components: (a)h� andR
whend = 7:5 cm,� = 10�; � = 0�, (b) r and� whenR = 75 mm,d = 7:5

cm, � = 0�, (c) r andd whenR = 75 mm, � = 10�; � = 0�.

center. Using similar conventions as in (14), and neglecting
second-order error terms

(17)

As expected, the contribution to from errors affecting all
branches equally, completely cancels out. Thus, in situations
where the major source of error is of this type, as for instance
would be the case if the error was caused by the thermal
expansion of the metal chassis carrying the transducers, our
estimate of will be robust to these errors. Note that this
conclusion is not valid if we use (2) and (3) [see (15)]. Overall,
because of the general tendency of at least some components
of the errors to cancel out, we conclude that (4) is superior
to (2) or (3).

As will also be confirmed experimentally in the next section,
accuracy is much less of a problem with the localization
parameters so that we do not present a sensitivity analysis
for these parameters.

V. EXPERIMENTAL VERIFICATION

The analysis of the previous sections has been verified by
real sonar data from cylindrical and planar targets using a
12-bit 1 MHz PC A/D card. Echo signals were processed on an
IBM-PC 486. The experiments were conducted in 2-D to allow
accurate calibration. Transducer separation was kept constant
at cm except in the results presented in Table III where

cm. Real distances were ascertained accurately by
carrying out the whole set of experiments on large sheets of
millimetric paper.

Each transducer was made to transmit and receive in se-
quence to avoid crosstalk and to benefit maximally from the
high sampling rate of the A/D card. Starting at the transmit
time, 10 000 samples of each echo signal have been collected
and thresholded. Since the amplitude noise standard deviation
on the system is approximately 3.61 mV, the threshold level
was set to 36 mV which corresponds to ten times the noise
standard deviation and 1.5% of the maximum amplitude range
of the A/D card. The targets employed in this study are:
cylinders with radii 25 mm, 50 mm, 75 mm and a planar
target. The cylindrical target with radius 25 mm is considered
a good approximation to an edge type of target formed by the
intersection of two planes [12]. (Like edges, thin cylinders are
highly diffractive.)

Each target’s surface distance to the central transducer
was varied between 30 to 150 cm at 10 cm intervals. At each
distance, data was collected while the target was stationary
at . For the same target position, 1000 sets of
measurements were taken. Each set of measurements provides
a single estimate of target radius of curvature, range and
azimuth. The typical differential TOF between the central

(16)
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TABLE I
EXPERIMENTAL RESULTS FOR ACYLINDER OF R = 75 mm WHEN d = 7:5 cm

TABLE II
EXPERIMENTAL RESULTS FOR ACYLINDER OF R = 50 mm WHEN d = 7:5 cm

TABLE III
EXPERIMENTAL RESULTS FOR ACYLINDER OF R = 50 mm WITH d = 12:0 cm

transducer and the right/left transducers varies between 0–10
mm depending on the target curvature and distance, for

cm. As the range of the target increases, the
differential signal becomes less reliable to extract the curvature
information.

The means and standard deviations of and (or )
of each type of target considered are computed and tabulated
in Tables I–V. In all of the tables, results for and are
tabulated individually instead of itself, which is the sum
of these two components. In Table III, results for
mm and mm have not been presented since a very
thin cylinder at is not detectable by the right and left
transducers at the transducer separation of cm. For
the same reason, results for mm in Table IV are
excluded when was set equal to 7.5 cm. From the results, it
can be observed that the and estimates are quite accurate:
For a stationary target, the typical standard deviation of the

measurement is 0.17 mm. The typical standard deviation
of azimuth estimate is 0.08. Error on and are relatively
constant as the distance of the target is varied between 30–150
cm. However, for the curvature, typical error is around 7–9 mm
at 30 cm, but keeps increasing with range for a fixed transducer
separation. This is due to the reduction in the ratio which
provides poorer resolution in estimating curvature. To estimate
curvature of a cylindrical target reliably, it is necessary to
increase the transducer separation as the range is increased
as seen in Fig. 6(a). To illustrate the effect of transducer
separation, results for the maximum allowed separation in our
system ( cm) are included in Table III. Compared
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TABLE IV
EXPERIMENTAL RESULTS FOR ACYLINDER OF R = 25 mm WHEN d = 7:5 cm

to Table II where was 7.5 cm, we observe that errors in
the radius of curvature estimate are approximately reduced by
60%.

In the lower right corner of Table II, is within 10%
of the true value of , but . Since both
and were estimated over 1000 realizations, the error in the
calculated value of is expected to be . Therefore,

we obtain . This is indeed in
agreement with the fact that is obtained within 10%
of its correct value. This case represents one of the worst
considered in the experiments.

In Table V, results for a planar target are
illustrated. When a set of measurements indicates thatis
indistinguishable from infinity (i.e., the denominator in (2) is
experimentally indistinguishable from zero) the planar target
formulas derived in Section III-C are used instead of (2) and
(5). Since in this case the denominator of (2) is very small, it
is preferable to deal with curvature rather than the radius
of curvature .

In Table VI, results for the cylinder with mm are
provided for . It is observed that the accuracy
of range and azimuth estimates do not change significantly as
compared to the case when the target is along the line-of-sight

. For larger values of than considered in the table,
it is not possible to estimate the curvature since the target
will be outside the sensitivity pattern of either the right or the
left transducer and there will not be a sufficient number of
measurements.

TABLE V
EXPERIMENTAL RESULTS FOR APLANAR TARGET OFR =1 WHEN d = 7:5 cm

TABLE VI
EXPERIMENTAL RESULTS FOR A CYLINDER WITH

R = 25 mm FOR VARYING � WHEN d = 7:5 cm

The returned signal intensity from a cylindrical target is
, and from a sphere is , where
is the intensity of the incident wave, and

is the scattering cross section of the cylinder per unit length,
whereas is the scattering cross section of the sphere. For a
rigid cylinder of radius , geometrical (or ray) acoustics (i.e.,
the limit ) provides an approximate cross section of
per unit length of the cylinder, where is the acoustic
wavenumber [16]. For the cylinders used in the experiments,

ranges between 22 and 68 so that is valid.
For a rigid sphere of radius , the approximate scattering
cross section is for [16]. Substituting in for
the scattering cross sections, we obtain: and

. For example, considering a sphere of radius
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7.5 cm located at cm, the measured signal amplitude
from the sphere would be approximately a third

of that from the cylinder. However, such a reduction in the
signal amplitude does not result in a proportionate decrease
in TOF measurement accuracy, as long as the target is within
the sensitivity region and the amplitude remains above the
threshold [5]. Thus, the main difference between a cylinder
and a sphere of comparable radius is not accuracy but the size
of the region in which they can be detected, which is smaller
for the sphere.

VI. CONCLUSION

A sensing device capable of estimating the location and
radius of curvature of spherical and cylindrical targets has been
described. Two limiting cases are of special interest: the point
(in 3-D) or line (in 2-D) target and the planar target. Sensitivity
analysis of the curvature estimate with respect to various
types of measurement errors and some system parameters is
provided. Analytical results are verified by real sonar data
from cylindrical and planar targets. Typical accuracies in range
and azimuth are 0.17 mm and 0.1respectively. Accuracy of
the curvature estimate depends on the target type and system
parameters such as transducer separation and operating range.
For reliable curvature estimation, it is necessary to increase the
transducer separation as the range is increased. The transducer
separation in our system is relatively limited and not capable
of real-time dynamic adaptation.

Current and future work will focus on improving the robust-
ness of the radius of curvature estimation by using recursive
digital filtering techniques. This will reduce the variance
of the estimates and thus improve their reliability. More
efficient firing techniques involving cross firing patterns will
be considered to reduce the data acquisition time. In addition
to TOF information, incorporation of amplitude information or
the shape of the complete echo waveform in the current system
will provide additional information about the location and
curvature of the sonified target. Since the time this paper was
submitted, an alternative approach based on morphological
processing, that can handle surfaces with spatially varying
curvature which may become both concave and convex, has
also been developed [6].

APPENDIX

A solution using only four measurements (i.e., the last four
equations in equation set 1) has been obtained by Mathematica

[20] in Cartesian coordinates as follows:

(18)

and in (19)–(21), shown at the bottom of the page.
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[6] D. Başkent and B. Barshan, “Surface profile determination from multiple
sonar data using morphological processing,”Int. J. Robot. Res., vol. 18,
pp. 788–808, Aug. 1999.
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