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Perspective projections in the space-frequency
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1. INTRODUCTION
Perspective projections are used in many applications in
image and video processing, especially when one is con-
fronted with natural or artificial scenes with depth (for in-
stance, in robot vision applications). Perspective projec-
tion can be considered as a geometric or pointwise
transformation in the sense that each point of the object
is mapped to another point in the perspective
projection.1–3 In this paper we examine the perspective
projection in the space-frequency plane and show that its
effect on the object can be modeled in terms of the frac-
tional Fourier transform.

A widely employed space-frequency representation is
the Wigner distribution, defined as

Wf ~x, sx! 5 E f~x 1 x8/2!f* ~x 2 x8/2!

3 exp~2i2psxx8!dx8. (1)

The Wigner distribution provides information regarding
the distribution of the signal energy over space and fre-
quency. Especially important among its properties are
the following relations:

E Wf ~x, sx!dsx 5 uf~x !u2, (2)

E Wf ~x, sx!dx 5 uF~ sx!u2, (3)

EE Wf ~x, sx!dxdsx 5 if i2 5 En@f # 5 signal energy.

(4)

The Wigner distribution of an exponential function
exp(i2pj x) is a line delta lying parallel to the space axis:

Wf ~x, sx! 5 d ~ sx 2 j!, (5)

and the Wigner distribution of a chirp function
exp@ip (xx2 1 2j x 1 z)# is an oblique line delta:

Wf ~x, sx! 5 d ~ sx 2 xx 2 j!. (6)

Further discussion regarding the properties of the Wigner
distribution may be found in Ref. 4.
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The fractional Fourier transform is a generalization of
the ordinary Fourier transform with a fractional order pa-
rameter a. It has found many applications in optics and
signal processing.5–30 We refer the reader to Ref. 5 for a
comprehensive treatment and further references and to
Ref. 7 for a more concise introduction. Here we briefly
mention a few important properties. The ath-order frac-
tional Fourier transform fa(u) is a unitary transform de-
fined as

fa~x ! 5 E Ka~x, x8!f~x8!dx8,

Ka~x, x8! 5 Aa exp$ip@cot~ap/2!x2

2 2 csc~ap/2!xx8 1 cot~ap/2!x82#%, (7)

where Aa is a constant that depends on a. The zeroth-
order fractional Fourier transform corresponds to the
identity operation, and the first-order fractional Fourier
transform corresponds to the ordinary Fourier transform.
Furthermore, the fractional Fourier transform is index
additive; that is, the a1th-order fractional Fourier trans-
form of the a2th-order fractional Fourier transform is
equal to the (a1 1 a2)th-order fractional Fourier trans-
form. The ath-order fractional Fourier transform corre-
sponds to a clockwise rotation of the Wigner distribution
by an angle a 5 ap/2 in the space-frequency plane:

Wfa
~x, sx! 5 Wf ~x cos a 2 sx sin a, x sin a 1 sx cos a!.

(8)

The fractional Fourier transform has a fast implementa-
tion with complexity O(N log N).5,7

To understand why the fractional Fourier transform is
expected to play a role in perspective projections, let us
consider the perspective projection of an image exhibiting
periodic features, such as a railroad track. More distant
parts of the image will appear smaller in the projection
than closer parts will. Thus a periodic or harmonic fea-
ture of a certain frequency will be mapped such that it ex-
hibits a monotonically increasing frequency. Under cer-
tain conditions this increase can be assumed linear so
that the harmonic function is mapped to a chirp function.
Since fractional Fourier transforms are known to map
2000 Optical Society of America
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harmonic functions to chirp functions, we expect that per-
spective projections can be modeled in terms of fractional
Fourier transforms. The purpose of this paper is to for-
mulate this relationship.

In Section 2 we present the perspective model that we
use and examine the effect of the perspective projection
on the Wigner distribution. In Section 3 we discuss the
relationship between the fractional Fourier transform
and perspective projections based on their effects on the
Wigner distribution. We also discuss how perspective
projections can be modeled as shifted and fractional Fou-
rier transformations. Section 4 is devoted to an analysis
of the errors and the region of validity of the approxima-
tions.

2. PERSPECTIVE PROJECTION
The perspective model that we use is shown in Fig. 1.
Initially, we consider perspective projections for one-
dimensional (1D) signals, since this approach signifi-
cantly simplifies the presentation. The horizontal axis,
labeled x, represents the original object space. The ver-
tical axis, labeled xp , represents the perspective projec-
tion space. The point A with coordinates (2x0 , xp0

) is
the center of projection. We denote the original signal
(object) by f(x) and its perspective projection by g(xp).
We assume that most of the energy of f(x) is confined to
the interval [x̄ 2 Dx/2, x̄ 1 Dx/2]. In the frequency do-
main we assume that most of the energy of F( sx), the
Fourier transform of f(x), is confined to the interval [s̄x
2 Dsx/2, s̄x 1 Dsx/2]. The value of f(x) at each x is
mapped to the coordinate xp , which is the projection of
the point x:

xp 5
xxp0

x 1 x0
, (9)

x 5
x0xp

xp0
2 xp

, (10)

which can be derived by simple geometry. Thus the pro-
jection g(xp) is expressed as follows:

g~xp! 5 fS x0xp

xp0
2 xp

D . (11)

The interval to which most of the energy of g(xp) is ap-
proximately confined can be determined from Eq. (9).

Fig. 1. Perspective model: f(x) represents the object distribu-
tion on the x axis; g(xp) represents its perspective projection onto
the xp axis. The point A with coordinates (2x0 , xp0

) is the cen-
ter of projection.
To see the effect of perspective projections in the space-
frequency plane, we decompose f(x) into harmonics as fol-
lows:

f~x ! 5 E F~ sx!exp~i2pxsx!dsx , (12)

where F( sx) is the Fourier transform of f(x). Using Eq.
(11) and the rules of linearity, we obtain the following ex-
pression for g(xp):

g~xp! 5 E F~ sx!h~xp , sx!dsx , (13)

where

h~xp , sx! 5 expF i2psxS x0xp

xp0
2 xp

D Gdsx . (14)

We will initially concentrate on a single exponential with
frequency s̄x and study the effect of perspective projection
in the space-frequency plane. Then we will construct
g(xp) by first decomposing f(x) in terms of exponentials
and using Eq. (13).

The Wigner distribution of h(xp , s̄x) cannot be explic-
itly obtained. Therefore, to continue our analytical de-
velopment, we expand the phase of h(xp , s̄x) into a Tay-
lor series. We will expand the phase of h(xp , s̄x) around
the point to which x̄ is mapped:

x̄

x̄ 1 x0
xp0

, (15)

which we express as kxp0
, where k 5 x̄/( x̄ 1 x0). Ex-

panding the phase of h(xp , s̄x) around kxp0
, we obtain

the following equation after performing some algebra:

h~xp , s̃x! 5 expH i2psxx0F xp
2

~1 2 k!3xp0
2 1

xp~1 2 3k!

~1 2 k!3xp0

1
k3

~1 2 k!3 1 ...G J . (16)

Ignoring terms higher than the second order, we can see
that the projection of a harmonic is a chirp function. The
validity of this approximation requires that the third-
order term be much smaller than the second-order term:

uk 1 2u ! u2xp0
~k 2 1 !u. (17)

This approximation is more accurate for larger values of
xp0

. This is expected, since larger xp0
values correspond

to perspective projections that are not as deep. The
Wigner distribution of the chirp given in Eq. (16) is a line
delta given by

dFsx 1
2s̄x

~1 2 k!3xp0
2 xp 1

s̄x~1 2 3k!

~1 2 k!3xp0
G (18)

and is shown in Fig. 2(b) below.
Having obtained an approximate analytical form for

the perspective projection of a harmonic as well as an ap-
proximate expression for the perspective projection’s
Wigner distribution, we now move on to our discussion of
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perspective projections in the space-frequency plane and
of their relationship to the fractional Fourier transform.

3. RELATIONSHIP BETWEEN PERSPECTIVE
PROJECTIONS AND FRACTIONAL
FOURIER TRANSFORMS
In Section 2 we obtained an approximate expression for
the Wigner distribution of the perspective projection of a
single exponential. The Wigner distribution of a typical
exponential and the Wigner distribution of the approxi-
mate perspective projection of the exponential are shown
in Fig. 2. The angle that the line delta makes with the x
axis is arctan$2s̄x /@(1 2 k)3xp0

2#% which depends on s̄x .
The fact that the oblique line delta is a rotated version of
the horizontal line delta suggests a role for the fractional
Fourier transform, since this operation corresponds to ro-
tation in the space-frequency plane.

We will now show how the perspective projection of a
signal can be approximately expressed in terms of the
fractional Fourier transform. We claim that the perspec-
tive projection of a signal can be obtained from, or mod-
eled by, the following steps:

1. Shift the signal by x̄ in the negative x direction and
by s̄x in the negative sx direction. This translates the
Wigner distribution of the signal to the origin of the
space-frequency plane.

2. Take the fractional Fourier transform with the or-
der a 5 (22/p)arctan$@2s̄x(x̄ 1 x0)

3#/xp0
2x0

2%. This ro-
tates the Wigner distribution by an angle ap/2.

3. Shift the result by x̄xp0
/( x̄ 1 x0) in the positive x

direction and by @s̄x( x̄ 1 x0)2#/x0xp0
in the positive sx di-

rection.

These steps represent a decomposition of the overall ef-
fect of the perspective projection, from which we can see
that to perform perspective projection is essentially to ef-
fect a rotation in the space-frequency plane. However,
this rotation is enacted on the space-frequency content of
the signal that is referred to the origin of the space-
frequency plane. The above steps are illustrated in Fig.
3.

Different frequency components of the signal require
different fractional Fourier orders, because the order a
given in step 3 depends on s̄x . However, as we will
show, under certain conditions a satisfactory approxima-
tion can be obtained by use of a uniform order correspond-
ing to the central frequency of the signal.

We now demonstrate our claim that perspective projec-
tion can be decomposed into the three steps given above.
We start by decomposing f(x) into harmonics:

f~x ! 5 E F~ sx!exp~2ipxsx!dsx . (19)

We will concentrate on a single-harmonic component,
exp(i2pxsx), and the result for general f(x) will follow by
linearity. Applying step 1 to a single harmonic, we ob-
tain

exp~i2p x̄sx!. (20)

Now we apply steps 2 and 3 to this result to obtain
Fig. 2. (a) Wigner distribution of the original exponential. (b)
Wigner distribution of the approximate perspective projection:
a chirp.

Fig. 3. Illustration of the decomposition of the approximation
into elementary operations in the space-frequency plane: (a)
Original signal, (b) after step 1 (space and frequency shift), (c) af-
ter step 2 (fractional Fourier transform), (d) after step 3 (space
and frequency shift): approximate perspective projection.
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S 1 1 i
2sxx̄ 1 x0

xp0
2x0

3 D 1/2

exp~i2p x̄sx!

3 expF S i2px2sx

x̄ 1 x0

xp0
2x0

3D G . (21)

Last, we apply step 4 and obtain our final result:

F1 1 i
2sx~ x̄ 1 x0!3

xp0
2x0

3 G 1/2

exp~i2p x̄sx!

3 expF i2psxS x 2
x̄xp0

x̄ 1 x0
D 2S x̄ 1 x0

xp0
2x0

3D G
3 expF i4psxS x̄ 1 x0

2

x0
2xp0

D G . (22)

Multiplying this by F( sx) and integrating over sx yields
the desired approximate expression for the perspective
projection of f(x), which is the mathematical expression
of the four steps outlined above.

To see that this expression is indeed an approximation
of the perspective projection, we again concentrate on a
single-harmonic component whose exact perspective pro-
jection is

expS 2ipsx

x0xp

xp0
2 xp

D . (23)

Using the Taylor-series expansion, we obtain

expH i2psxx0F xp
2

~1 2 k!3xp0
2 1

xp~1 2 3k!

~1 2 k!3xp0

1
k3

~1 2 k!3G J , (24)

which differs from expression (22) only by a constant fac-
tor. As far as a single-harmonic component is concerned,
the only approximation that is involved is the binomial
expansion in the exponent. When the harmonic compo-
nents are superposed to yield the original function f(x),
we make the additional approximation of using the order
corresponding to the center frequency for all the harmonic
components. Thus our three-step procedure will deviate
from the exact perspective projection more and more as
the bandwidth of f(x) is increased. The limitations asso-
ciated with this approximation are discussed in Section 4.

Figure 4 shows the exact perspective projection of the
function

cos~4px !rectS x 2 4

6 D 5 Fexp~i4px ! 1 exp~2i4px !

2 G
3 rectS x 2 4

6 D (25)

superimposed upon the approximation given by expres-
sion (24). We chose x0 5 23, xp0

5 6 as the center of
projection. As a second example, we consider the
narrow-band signal shown in Fig. 5. Here, too, the exact
perspective projection and the fractional Fourier approxi-
mation are superimposed [see Fig. 5(b)]. We observe
that the approximation is quite satisfactory except for
very near the edges, which should be avoided.

Generalization of the proposed method to two dimen-
sions is possible if similar steps are followed. In our two-
dimensional (2D) perspective model we use a 2D image
with midpoints x̄, ȳ; center frequencies s̄x , s̄y ; and spa-
tial widths Dx, Dy. Our center of projection is located at
(x0 , xp0

, 0). The model described is shown in Fig. 6.
With this model, using simple geometry, we can obtain
the following mappings and reverse mappings for each xp
and yp :

Fig. 4. (a) Original signal. (b) Exact perspective projection
(solid curve) superimposed upon the fractional Fourier approxi-
mation (dashed curve).

Fig. 5. (a) Original signal. (b) Exact perspective projection
(solid curve) superimposed upon the fractional Fourier approxi-
mation (dashed curve).



2386 J. Opt. Soc. Am. A/Vol. 17, No. 12 /December 2000 Yetik et al.
Fig. 6. Perspective model: f(x, y) represents the object distribution on the x –y plane; g(xp , yp) represents the object distribution’s
perspective projection onto the xp –yp plane. The point A with coordinates (2x0 , xp0

, 0) is the center of projection.
xp 5
xxp0

x 1 x0
, (26)

x 5
x0xp

xp0
2 xp

, (27)

yp 5
xDy 1 2x0y

2~x 1 x0!
, (28)

y 5
ypxp0

xp0
2 xp

2
xpDy

2~x0 2 xp!
. (29)

As in the 1D case, we first decompose f(x, y) into harmon-
ics:

f~x, y ! 5 E F~ sx , sy!exp~i2psxx !exp~i2psyy !dsxdsy .

(30)

We proceed by writing an expression for the perspective
projection of a 2D harmonic, exp(i2ps̄x x)exp(i2ps̄y y):
expH i2ps̄xx0F xp
2

~1 2 k!3xp0
2 1

xp~1 2 3k!

~1 2 k!3xp0

1
k3

~1 2 k!3G J ,

3 expH 2ips̄yDyF xp
2

~1 2 k8!3x0
2 1

xp~1 2 3k8!

~1 2 k8!3x0

1
k83

~1 2 k8!3G J ,

3 expH i2ps̄yypF xp
2

xp0
2~1 2 k!3 1

xp~1 2 3k!

xp~1 2 k!3

1
3k2 2 3k 1 1

~k 2 1 !3 G J , (31)

where again the binomial approximation has been em-
ployed and k 5 x̄/( x̄ 1 x0) and k8 5 x̄/( x̄ 1 Dy). Close
examination of expression (31) reveals that we have the
product of a 1D chirp in the xp direction and a scaled har-
monic in the yp direction whose scaling factor depends on
xp . We are going to approximate the perspective projec-
tion by using 1D shifts and 1D fractional Fourier trans-
forms followed by scaling. We claim that the 2D perspec-
tive projection of a signal can be obtained from, or
modeled by, the following steps:
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1. Shift the signal by x̄ in the negative x direction and
by s̄x in the negative sx direction. This translates the
Wigner distribution of the signal to the origin of the
space-frequency plane.

2. Take the 1D fractional Fourier transforms in the
variable x with order

a 5
22

p
arctanF2s̄x~ x̄ 1 x0!3

xp0
2x0

2 2
~ x̄ 1 Dy !3s̄y

Dy2x0
2 G ,

treating y as a parameter. This rotates the Wigner dis-
tributions by an angle ap/2.

3. Shift the result by x̄xp0
/( x̄ 1 x0) in the positive x

direction and by

F s̄x~ x̄ 1 x0!3

xp0
x0

2
~ x̄ 1 Dy !3s̄y

Dy2x0
2 G

in the positive sx direction.
4. Scale each horizontal line of the perspective projec-

tion by

H s̄yF xp
2

xp0
2~1 2 k!3 1

xp~1 2 3k!

xp~1 2 k!3 1
3k2 2 3k 1 1

~k 2 1 !3 G J .

Fig. 7. (a) Original signal. (b) Exact perspective projection.
(c) Fractional Fourier approximation.
The mathematical combination of the above steps yields
the 2D perspective projection of a 2D harmonic, given by
expression (31). Multiplying this by F( sx , sy) and inte-
grating over sx and sy yields the desired approximate ex-
pression for the perspective projection of f(x, y), which is
the mathematical expression of the four steps outlined
above. An example is given in Fig. 7, where the
fractional-Fourier-transform-based result shown in Fig.
7(c) can be seen to be a reasonable approximation of the
actual perspective projection shown in Fig. 7(b).

4. ERROR ANALYSIS
In this section we examine the conditions under which the
fractional Fourier transform approximation to the per-
spective projection is valid. We first examine the modifi-
cations that the Wigner distribution undergoes corre-
sponding to the approximation. Since we know that the
approximation can be decomposed into the four steps
given in Section 3, it is easy to find the resulting changes
in the Wigner distribution. To estimate the error inher-
ent in our approximation, we will think of the original
Wigner distribution as consisting of horizontal strips of
narrow frequency components. The major approxima-
tion that we make is to replace the fractional orders re-
quired by these different frequency components with a
single order corresponding to the central frequency. To
determine the error introduced by this approximation, we
first determine how the highest- and the lowest-frequency
strips would be mapped had their individual frequencies
been used instead of the center frequency. Let us as-
sume that most of the energy of the Wigner distribution of
a signal is concentrated in a rectangular region in the
space-frequency plane [Fig. 8(a)]. Figure 8(b) shows the
Wigner distribution corresponding to the fractional Fou-
rier approximation (solid lines). The dashed lines, in
contrast, show the Wigner contour obtained by using the
individual frequencies for the highest- and the lowest-
frequency strips.

Our error criteria will be the deviations of the corners
of the two superimposed Wigner contours shown in [Fig.
8(b)]. There will be one spatial deviation and one fre-
quency deviation for each of the four corners of the con-
tours. We will normalize the spatial deviation by Dx and
the frequency deviations by Dsx and take the maximum
of the resulting eight normalized deviations as our final
error measure. Expressions for the eight normalized de-
viations are given below:

eup-left,space 5
Dsx

Dxx0
sinS ac 2 au

2 D F cosS ac 1 au

2 D
1

1

x0
sinS ac 1 au

2 D G , (32)

eup-right,space 5
Dsx

Dxx0
sinS ac 2 au

2 D F cosS ac 1 au

2 D
2

1

x0
sinS ac 1 au

2 D G , (33)
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e low-left,space 5 2
Dsx

Dxx0
sinS ac 2 ad

2 D F cosS ac 2 ad

2 D
1

1

x0
sinS ac 1 ad

2 D G , (34)

e low-right,space 5 2
Dsx

Dxx0
sinS ac 2 ad

2 D F cosS ac 1 ad

2 D
2

1

x0
sinS ac 1 ad

2 D G , (35)

Fig. 8. (a) Wigner distribution of the original signal. (b) Com-
parison of Wigner distributions underlying error analysis.
eup-left,freq. 5 2
1

x0
sinS ac 2 au

2 D F sinS ac 1 au

2 D
1

Dx

Dsxx0
cosS ac 1 au

2 D G , (36)

eup-right,freq. 5 2
1

x0
sinS ac 2 au

2 D F sinS ac 1 au

2 D
2

Dx

Dsxx0
cosS ac 1 au

2 D G , (37)

e low-left,freq. 5
1

x0
sinS ac 2 ad

2 D F sinS ac 1 ad

2 D
1

Dx

Dsxx0
cosS ac 1 ad

2 D G , (38)

e low-right,freq. 5
1

x0
sinS ac 2 ad

2 D F sinS ac 1 au

2 D
2

Dx

Dsxx0
cosS ac 1 ad

2 D G , (39)

where

ac 5 arctanF 2
s̄x

x0
S x̄ 1 x0

x0
D 3

S xp0

x0
D 2 G ,
Fig. 9. Dark shading: parameter combinations whose normalized error is less than 10%. Light shading: region in which the error
is large. See text for details.
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au 5 arctanF 2S s̄x

x0
1

Dsx

2x0
D S x̄ 1 x0

x0
D 3

S xp0

x0
D 2 G ,

ad 5 arctanF 2S s̄x

x0
2

Dsx

2x0
D S x̄ 1 x0

x0
D 3

S xp0

x0
D 2 G .

To reduce the number of parameters by one, we have ex-
pressed the above results so that all the free parameters
appear divided by x0 .

It does not seem possible to analytically derive conclu-
sions by use of these formulas, so we will resort to nu-
merically obtained plots. The approximation will be as-
sumed to be acceptable if the maximum normalized error
is less than 10%. The expressions given above yield the
error as a function of six variables: x0 , xp0

, x̄, s̄x ,
Dx, Dsx . However, normalizing all the variables by x0 ,
we can reduce the number of variables to five. In Fig. 9
we show as dark regions the region in which the maxi-
mum normalized error is less than 10%, whereas the light
regions indicate that in which the error is large. The
horizontal axis in each of the 75 plots represents the
value of Dx/x0 , and the vertical axis represents Dsx /x0 .
Both these variables range from 101/30 to 10100/30 in these
log–log plots.

Each member of the 5 3 5 matrices of plots corre-
sponds to different values of x̄/x0 (horizontal), s̄x /x0 (ver-
tical). The five separate values of x̄/x0 are 1021/2, 100/2,
101/2, 102/2, 103/2, and the five separate values of s̄x /x0 are
1021/2, 100/2, 101/2, 102/2, 103/2. The three groups of 25
plots each correspond to different values of the center of
projection: xp0

/x0 5 0.1 [Fig. 9(a)], xp0
/x0 5 1 [Fig.

9(b)], xp0
/x0 5 10 [Fig. 9(c)].

This set of plots covering a broad range of the param-
eter values allows us to determine whether the approxi-
mation developed is acceptable for a certain range of pa-
rameters. Generally speaking, we have larger acceptable
regions for larger values of s̄x . Not surprisingly, the ap-
proximation is strained as Dx and Dsx increase, i.e., as
the space–bandwidth product of the signal increases.

5. CONCLUSION
In this paper we examined perspective projections in the
space-frequency plane and showed how to approximate
the perspective projection in terms of the fractional Fou-
rier transform. Our main motivation was to show that
the fractional Fourier transform approximately captures
the essence of the warping characteristic of perspective
projections. We observed that perspective projection ap-
proximately maps harmonic components into chirps and
that it can therefore be modeled in terms of the fractional
Fourier transform. We saw that the substance of per-
spective projection is essentially to effect a rotation in the
space-frequency plane. However, this rotation is enacted
on the space-frequency content of the signal referred to
the origin of the space-frequency plane. Elementary nu-
merical examples for both one-dimensional signals and
two-dimensional images were presented. The errors as-
sociated with the approximation and the region of validity
with respect to the approximations involved were numeri-
cally discussed.

İ. Ş. Yetik can be reached by e-mail at
yetik@ee.bilkent.edu.tr.
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