EYLEMSİZLİK DUYUCU ÜNİTELERİNİN DETERMİNİSTİK HATALARININ MODELLENMESI

Görkem Seçer, Billur Barshan Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi

Problemin tanımı

•İki farklı düşük maliyetli eylemsizlik duyucu ünitesinin (bkz. Şekil 1) yalnız başına kullanıldığında yöngüdüm performansının artırılabilmesi için ölçümlerinde bulunan hataların karakterize edilmesi ve karşılaştırılması

Şekil 1. Microstrain 3DM-GX2 (solda) ve Xsens MTx (sağda) eylemsizlik duyucu üniteleri

Sensör hata modeli

•Duyucuların ölçümlerinde bulunan tipik hatalar: yanlılık hatası (b_{3x1}), ölçekleme katsayısı hatası (S_{3x3}) ve hizalama hatalarıdır ($C_{p_{3x3}}^{s}$ ve $C_{b_{3x3}}^{p}$) [1].

Şekil 3. İvmeölçerlere uygulanan sinyal setleri

Önerilen yöntem

•İvmeölçer:

 hata=∑ (ölçülmesi gereken yerçekimi ivmesi – kalibre edilmiş duyucu ölçümleri) •en küçükleme: Levenberg- Marquardt algoritması [3].

•Dönüölçer: Anlık açısal hız bilgisi bulunmadığı için farklı bir hata fonksiyonu ve en küçükleme algoritması hata=∑(gerçekleştirilen açısal pozisyon – kalibre edilmiş duyucu ölçümlerine göre hesaplanan açısal pozisyon)

•En küçükleme: parçacık sürü optimizasyonu [4]

Deneysel sonuçlar

Hata modellenmesinde kullanılan yöntemler

Klasik yöntemler [1]

•Gerçek uygulamadan önce

•Referans sinyaller uygulanması

•Yüksek maliyet

•Basit parametre tanıma algoritmaları

- Yeni nesil yöntemler [2]
- •Gerçek uygulama sırasında yada öncesinde
- •Duyucuların el ile hareket ettirilmesi

•Ucuz

•Karmaşık parametre tanıma algoritmaları

Yapılan testler

•Üniteler Acutronics firmasının 3 eksenli uçuş hareket simülatörüne (UHS) (bkz. Şekil 2) takılmış ve UHS belirli pozisyonlarda bir boyunca süre açısal konumlandırılarak veri toplanmıştır (bkz. Şekil 3).

	Microstrain		Xsens	
	İvmeölçer	Dönüölçer	İvmeölçer	Dönüölçer
Kalib. öncesi	60.17	12.09	22.34	16.91
Kalib. sonrası	9.30	0.64	7.56	0.68

Şekil 4. Örnek bir ivmeölçerin önce ve sonraki ölçümleri

Sonuç

•Referans açısal hız bilgisi olmadığı için önerilen algoritmanın başarılı olduğu görülmüştür. Bu algoritma yeni nesil yöntemlerle kullanılabilir.

•Karşılaştırma:

Şekil 2. UHS'ye monte edilmiş üniteler

BOĞAZİÇİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

•İvmeölçer: Xsens çok daha iyi

•Dönüölçer: Microstrain biraz daha iyi

Kaynakça

- IEEE, "IEEE Std. 952-1997 Standart Specification Format Guide and Test **Procedure for Single-Axis Interferometric Fiber Optic Gyros,**" 2008.
- Fong, W. T., Ong, S. K. and Nee, A. Y. C., "Methods for in-field user calibration of an inertial measurement unit without external equipment", Measurement Science and Technology, 19(8): 2980-2988, 2008.
- More, J. J., "The Levenberg-Marquardt algorithm: Implementation and 3. theory", Lecture Notes in Mathematics, 630: 105-116, 1978.
- Kennedy, J.. "Particle swarm optimization", IEEE International Conference 4. on Neural Networks, 4: 1942-1948, November/December 1995.

