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Abstract— This study compares the performances of various
statistical pattern recognition techniques for the differentiation
of commonly encountered features in indoor environments,
possibly with different surface properties, using simple infrared
(IR) sensors. The intensity measurements obtained from such
sensors are highly dependent on the location, geometry, and
surface properties of the reflecting feature in a way that
cannot be represented by a simple analytical relationship,
therefore complicating the differentiation process. We construct
feature vectors based on the parameters of angular IR intensity
scans from different targets to determine their geometry type.
Mixture of normals classifier with three components correctly
differentiates three types of geometries with different surface
properties, resulting in the best performance (100%) in geom-
etry differentiation. The results indicate that the geometrical
properties of the targets are more distinctive than their surface
properties, and surface recognition is the limiting factor in
differentiation. The results demonstrate that simple IR sensors,
when coupled with appropriate processing and recognition tech-
niques, can be used to extract substantially more information
than such devices are commonly employed for.

I. INTRODUCTION

Target differentiation is of considerable interest for the
autonomous operation of intelligent systems [1, 2, 3]. Dif-
ferentiation is also important in industrial applications where
different materials must be identified and separated. In this
study, we achieve differentiation of commonly encountered
features in indoor environments with a simple IR sensing
system consisting of one emitter and one detector. These
devices are inexpensive, practical, and widely available.
The emitted light is reflected from the target and its in-
tensity is measured at the detector. However, it is often
not possible to make reliable distance estimates based on
the value of a single intensity return because the return
depends on both the geometry and surface properties of
the reflecting target. Likewise, the properties of the target
cannot be deduced from simple intensity returns without
knowing its distance and angular location. In this paper, we
consider statistical pattern recognition techniques (parametric
density estimation, mixture of normals, kernel estimator, k-
nearest neighbor, artificial neural network, and support vector
machine classifiers) for target differentiation. We provide a
comparison of these approaches based on real data acquired
from simple IR sensors.

T. Aytaç and Ç. Yüzbaşıoǧlu are with Havelsan Inc., TR-06520, Ankara,
Turkey ryuzbasioglu@havelsan.com.tr
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Fig. 1. (a) The IR sensor and (b) the experimental setup used in this study.
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Fig. 2. Top view of the experimental setup.

II. IR SENSING

IR sensors are used in robotics and automation, process
control, remote sensing, and safety and security systems.
More specifically, they have been used in simple object
and proximity detection [4], counting, distance and depth
monitoring, floor sensing, position measurement and control,
obstacle/collision avoidance [5], and map building [6]. IR
sensors are used in door detection and mapping of open-
ings in walls [7], as well as monitoring doors/windows of
buildings and vehicles, and “light curtains” for protecting an
area.

The IR sensor [8] used in this study consists of an emitter
and detector. The detector window is covered with an IR filter
to minimize the effect of ambient light on the intensity mea-
surements. The maximum range of operation of the sensor is
about 60 cm. The IR sensor [see Fig. 1(a)] is mounted on a
12 inch rotary table [9] to obtain angular intensity scans from
these surfaces. A photograph of the experimental setup and
its schematics can be seen in Figs. 1(b) and 2, respectively.
Basically, the IR sensor, rotating on the platform, acquires
angular scans from targets positioned differently. The target
types employed are a plane, a 90◦ edge, and a cylinder of
radius 4.8 cm, each with a height of 120 cm. The horizontal
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(c) cylinder

Fig. 3. Example intensity scans for wooden targets. Solid lines indicate the model fit and the dotted lines indicate the actual data.
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Fig. 4. Variation of the parameters (a) C0, (b) C1, and (c) z with respect to maximum intensity (dashed, solid, and dotted lines are for planes, edges,
and cylinders, respectively).

extent of all targets other than the cylinder is large enough
that they can be considered infinite and thus edge effects
need not be considered.

III. MODELING OF IR SCANS

The parametric approach is based on modeling of IR
intensity scans [10]. Reference intensity scans are collected
for each target type by positioning the targets over their
observable ranges with 2.5 cm distance increments, at θ =
0◦. The geometries considered are plane, edge, and cylinder
made of unpolished oak wood. The surfaces are either left
uncovered (plain wood) or alternatively covered with Styro-
foam packaging material, white and black cloth, and white,
brown, and violet paper (matte). Example reference scans for
wooden targets are shown in Fig. 3 using dotted lines. These
intensity scans have been modeled by approximating the
targets as ideal Lambertian surfaces since all of the surface
materials involved were matte. The received return signal
intensity is proportional to the detector area and is inversely
proportional to the square of the distance to the target and
is modeled with three parameters as

I =
C0 cos(αC1)

[ z
cos α +R( 1

cos α−1)]2
(1)

In Eqn. (1), the product of the intensity of the light emitted,
the area of the detector, and the reflection coefficient of
the surface is lumped into the constant C0, and C1 is an
additional coefficient to compensate for the change in the
basewidth of the intensity scans with respect to distance

(Fig. 3). The z is the horizontal distance between the rotary
platform and the target as shown in Fig. 2. The denominator
of I is the square of the distance d between the IR sensor
and the target. From the geometry of Fig. 2, d + R = z+R

cos α ,
from which we obtain d as z

cos α +R( 1
cos α − 1), where R is

the radius of the rotary platform and α is the angle between
the IR sensor and the horizontal.

Using the model represented by Eqn. (1), parameterized
curves have been fitted to the reference intensity scans by
employing a nonlinear least-squares technique based on a
model-trust region method provided by MATLABTM [11].
Samples of resulting curves are shown in Fig. 3 in solid
lines. For the reference scans, z is not taken as a parameter
since the distance between the target and the IR sensing unit
is already known. The initial guesses of the parameters must
be made cleverly so that the algorithm does not converge
to local minima and curve fitting is achieved in a smaller
number of iterations. The initial guess for C0 is made by
evaluating I at α = 0◦, and corresponds to the product of
I with z2. Similarly, the initial guess for C1 is made by
evaluating C1 from Eqn. (1) at a known angle α different
than zero, with the initial guess of C0 and the known value of
z. While curve fitting, C0 value is allowed to vary between
± 2000 of its initial guess and C1 is restricted to be positive.
The variations of C0, C1, and z with respect to the maximum
intensity of the reference scans are shown in Fig. 4. As the
distance d decreases, the maximum intensity increases and
C0 first increases then decreases but C1 and z both decrease,
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as expected from the model represented by Eqn. (1).

IV. STATISTICAL PATTERN RECOGNITION TECHNIQUES

In this section, we propose the differentiation of the geom-
etry of the target types in parameter space, using statistical
pattern recognition techniques.The geometries considered are
plane, edge, and cylinder made of unpolished oak wood.
The surfaces are either left uncovered (plain wood) or alter-
natively covered with Styrofoam packaging material, white
and black cloth, and white, brown, and violet paper (matte).
PRTools [12] is used in the implementation.

After nonlinear curve fitting to the observed scan as in
Section III, we get three parameters C0, C1, and z. We begin
by constructing two alternative feature vector representations
based on the parametric representation of the IR scans. The
feature vector x is a 2×1 column vector comprised of either
the [C0, Imax]T or the [C1, Imax]T pair, illustrated in Figs. 4
(a) and (b), respectively. Therefore, the dimensionality d of
the feature vector representations is 2. We associate a class
wi with each target type (i = 1, . . . , c). An unknown target
is assigned to class wi if its feature vector x = [x1, . . . , xd]T

falls in the region Ωi. A rule which partitions the decision
space into regions Ωi, i = 1, . . . , c is called a decision rule.
Each one of these regions corresponds to a different target
type. Boundaries between these regions are called decision
surfaces. Let p(wi) be the a priori probability of a target
belonging to class wi. To classify a target with feature
vector x, a posteriori probabilities p(wi|x) are compared
and the target is classified into class wj if p(wj |x) >
p(wi|x) ∀i �= j. This is known as Bayes minimum
error rule. However, since these a posteriori probabilities are
rarely known, they need to be estimated. A more convenient
formulation of this rule can be obtained by using Bayes’
theorem: p(wi|x) = p(x|wi)p(wi)/p(x) which results in
p(x|wj)p(wj) > p(x|wi)p(wi) ∀i �= j =⇒ x ∈ Ωj

where p(x|wi) are the class-conditional probability density
functions (CCPDFs) which are also unknown and need to be
estimated in their turn based on the training set.

The training set consists of several sample feature vectors
xn, n = 1, . . . , Ni which all belong to the same class wi,
for a total of N1+N2+. . .+Nc = N sample feature vectors.
The test set is then used to evaluate the performance of the
decision rule used. This decision rule can be generalized as
qj(x) > qi(x) ∀i �= j =⇒ x ∈ Ωj where the function qi

is called a discriminant function.
The various statistical techniques for estimating the

CCPDFs based on the training set are often categorized as
non-parametric and parametric. In non-parametric methods,
no assumptions on the parametric form of the CCPDFs
are made; however, this requires large training sets. This is
because any non-parametric PDF estimate based on a finite
sample is biased [13]. In parametric methods, specific models
for the CCPDFs are assumed and then the parameters of
these models are estimated. These parametric methods can
be categorized as normal and non-normal models.

A. Determination of Geometry

1) Parametric Classifiers:
a) Parameterized Density Estimation (PDE): In this

method, the CCPDFs are assumed to be d-dimensional
normal:

p(x|wi) =
1

(2π)(d/2)|Σi|1/2
exp

[
− 1

2
(x − μi)

T
Σ

−1
i (x − μi)

]
, (2)

i = 1, . . . , c, where the μi’s denote the class means, and
the Σi’s denote the class-covariance matrices, both of which
must be estimated based on the training set. The most com-
monly used parameter estimation technique is the maximum
likelihood estimator (MLE) [14] which is also used in this
study.

In PDE, d-dimensional homoscedastic and heteroscedastic
normal models are used for the CCPDFs. In the homoscedas-
tic case, the covariance matrices for all classes are selected
equal, usually taken as a weighted (by a priori probabil-
ities) average of the individual class-covariance matrices:∑c

i=1
Ni

N Σ̂i. In the heteroscedastic case, they are individ-
ually calculated for each class.

In this study, both homoscedastic and heteroscedastic
normal models have been implemented to estimate the means
and the covariances of the CCPDF for each class (i.e., target
type) using the MLE, for each of the two feature vector
representations described above. The training set consists of
N = 175 data pairs for three classes: N1 = 50 cylinders,
N2 = 55 edges, and N3 = 70 planes. The test set consists
of 211 data pairs for three classes: 84 cylinders, 43 edges,
and 84 planes.

Since the feature vector size d is two and the number
of classes c is three, three 2-D normal functions are used
for classification. For the case when the [C0, Imax]T feature
vector is used for differentiation, overall correct differentia-
tion rates of 86.3% and 20.4% are achieved for the training
and test sets, respectively. The main reason for the low
differentiation rate on the test set is due to the [C0, Imax]T

feature vector of the observed intensity scans not being very
distinctive. For the heteroscedastic case, the differentiation
rates are better than the homoscedastic case, which are 98.3%
and 42.2% for the training and test sets, respectively.

For the case when the [C1, Imax]T feature vector is used
for differentiation, the correct differentiation rates for ho-
moscedastic PDE are 96.6% and 98.6% for the training and
test sets, respectively. For the test data, only three edges
are incorrectly classified as cylinders. For heteroscedastic
PDE, the differentiation rate on the training set improves
to 98.3% and the correct differentiation rate on the test set
is the same as in the homoscedastic case. These results are
much better than those obtained with the classification based
on the [C0, Imax]T feature vector. Since the results indicate
that C1 parameter is more distinctive than C0 in identifying
the geometry, from now on, we concentrate on differentiation
based on only the [C1, Imax]T feature vector.

b) Mixture of Normals (MoN) Classifier: In the MoN
classifier, each feature vector in the training set is assumed to
be associated with a mixture of M different and independent
normal distributions. Each normal distribution has probabil-
ity density function pj with mean vector μj and covariance
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matrix Σj :

pj(x|μj , Σj) =
1

(2π)(d/2)|Σj |1/2
exp

[
− 1

2
(x − μj)

T
Σ

−1
j (x − μj)

]
,

(3)

j = 1, . . . , M . The M normal distributions are mixed ac-
cording to the following model, using the mixing coefficients
αj :

p(x|Θ) =

M∑
j=1

αjpj(x|μj , Σj) (4)

Here, Θ = [α1, . . . , αM ; μ1, . . . ,μM ; Σ1, . . . ,ΣM ] is a
parameter vector which consists of three sets of parameters
and conveniently represents the relevant parameters for the
normals to be mixed. The mixing coefficients should satisfy
the normalization condition

∑M
j=1 αj = 1 and 0 ≤ αj ≤

1 ∀j and can be thought of as prior probabilities of each
mixture component so that αj = Prob{j′th component} =
p(j) and

∑M
j=1 p(j|x,Θ) = 1. In our implementation, M

takes the values two and three. For the i’th class, the param-
eter vector Θi maximizing Eqn. (4) needs to be estimated,
corresponding to the MLE. Since deriving an analytical
expression for the MLE is not possible in this case, Θi is
estimated by using expected-maximization (E-M) clustering
which is iterative [12]. The elements of the parameter vector
Θi are updated recursively as follows:

αijk = 1
Ni

∑Ni

n=1 p(j|xn,Θi,k−1)

μijk =
∑Ni

n=1
xnp(j|xn,Θi,k−1)∑Ni

n=1
p(j|xn,Θi,k−1)

Σijk =
∑Ni

n=1
(xn−μijk)(xn−μijk)T p(j|xn,Θi,k−1)∑Ni

n=1
p(j|xn,Θi,k−1)

(5)

where i = 1, . . . , c and j = 1, . . . , M . Here, Θi,k is
the parameter vector estimate of the i’th class at the k’th
iteration step and Ni is the number of feature vectors in
the training set representing the i’th class. The expectation
and maximization steps are performed simultaneously. The
algorithm proceeds by using the newly derived parameters as
the guess for the next iteration. With E-M clustering, even if
the dimensionality of the feature vectors increases, fast and
reliable parameter estimation can be accomplished.
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Fig. 5. Discriminant functions for the MoN classifier when the
[C1, Imax]T feature vector is used.

After estimating the parameter vectors for each class based
on the training set feature vectors, testing is done as follows:
A target with a given test feature vector x is assigned to the
class whose parameter vector Θi maximizes Eqn. (4) so that
p(x|Θi) > p(x|Θl) ∀i �= l. Then, the target is labeled as a
member of class wi.

The discriminant functions for classification based on
[C1, Imax]T feature vector are shown in Fig. 5. For both
M = 2 and M = 3, all training targets are correctly
classified using the [C1, Imax]T feature vector. In the tests,
for the M = 3 case, again 100% correct differentiation rate
is achieved. For the M = 2 case, the only difference in
the test results is that one of the edges is misclassified as a
cylinder so that the correct classification rate falls to 99.5%.

2) Non-Parametric Classifiers: In this section, we con-
sider different non-parametric classifiers, which are the ker-
nel estimator, k-nearest neighbor, artificial neural network,
and support vector machine classifiers.

a) Kernel Estimator (KE): In the KE method, the
CCPDF estimates p̂(x|wi) are of the form

p̂(x|wi) =
1

Nihd
i

Ni∑
n=1

K

(
x − xn

hi

)
i = 1, . . . , c (6)

where x is the d-dimensional feature vector at which the
estimate is being made and xn, n = 1, . . . , Ni are the
training set sample feature vectors associated with class wi.
Here, hi is called the spread or smoothing parameter or the
bandwidth of the KE, and K(z) is a kernel function which
satisfies the conditions K(z) ≥ 0 and

∫
K(z)dz = 1. In

this method, the selection of the bandwidth hi is important.
If hi is selected too small, p̂(x|wi) degenerates into a
collection of Ni sharp peaks, each located at a sample feature
vector. On the other hand, if hi is selected too large, the
estimate is oversmoothed and an almost uniform CCPDF
results. Usually, hi is chosen as a function of Ni such that
limNi→∞ h(Ni) = 0.

In the implementation of this method, since d = 2,
we employed a 2-dimensional normal kernel function. The
bandwidth hi for the ith class is pre-computed based on
the Ni sample feature vectors available for this class by
optimization with respect to leave-one-out error [12]. After
hi’s are computed, a test feature vector x is classified into
that class for which the CCPDF in Eqn. (6) is maximized.
This requires the training data to be stored throughout testing.

b) k-Nearest Neighbor (k-NN) Classifier: Consider the
k nearest neighbors of a feature vector x in a set of several
feature vectors. Suppose ki of these k vectors come from
class wi. Then, a k-NN estimator for class wi can be
defined as p̂(wi|x) = ki

k , and p̂(x|wi) can be obtained from
p̂(x|wi)p̂(wi) = p̂(wi|x)p̂(x). This results in a classification
rule such that x is classified into class wj if kj = maxi(ki),
where i = 1, . . . , c. In other words, the k nearest neighbors
of the vector x in the training set are considered and the
vector x is classified into the same class as the majority of
its k nearest neighbors.

A major disadvantage of this method is that a pre-defined
rule for the selection of the value of k does not exist. In
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TABLE I

CORRECT DIFFERENTIATION PERCENTAGES FOR DIFFERENT CLASSIFIERS (PDE-HM: PARAMETRIC DENSITY ESTIMATION-HOMOSCEDASTIC,

PDE-HT: PARAMETRIC DENSITY ESTIMATION-HETEROSCEDASTIC, MON-2: MIXTURE OF NORMALS WITH TWO COMPONENTS, MON-3: MIXTURE

OF NORMALS WITH THREE COMPONENTS, KE: KERNEL ESTIMATOR, k-NN: k NEAREST NEIGHBOR, ANN-BP: ANN TRAINED WITH BP, ANN-LM:

ANN TRAINED WITH LM, ANN-LP: ANN TRAINED WITH LP, SVM-P: SVM WITH POLYNOMIAL KERNEL, SVM-E: SVM WITH EXPONENTIAL

KERNEL, SVM-R: SVM WITH RADIAL KERNEL).

data set classification techniques

PDE-HM PDE-HT MoN-2 MoN-3 KE k-NN ANN-BP ANN-LM ANN-LP SVM-P SVM-E SVM-R

training 96.6 98.3 100 100 100 100 98.3 98.3 77.7 84.3 100 100

test 98.6 98.6 99.5 100 99.5 99.5 98.6 99.5 76.3 98.1 99.5 99.1

this study, the number of nearest neighbors k is determined
by optimization with respect to leave-one-out error. In the
implementation, k values varying between 1 and 12 have
been considered. For k = 1, 2, and 3, the same correct
differentiation rates are obtained for the training and test sets,
respectively. For larger values of k, the errors start increasing.
The given results correspond to k = 1. Again, the training
data must be stored during testing. For both classifiers, the
training targets are correctly differentiated with 100% correct
differentiation rate. For the test targets, only one edge target
is incorrectly classified as a cylinder, corresponding to a
correct differentiation rate of 99.5%.

c) Artificial Neural Network (ANN) Classifiers: Feed-
forward ANNs trained with Back-propagation (BP) and
Levenberg-Marquardt (LM) algorithms, and a linear percep-
tron (LP) are used as classifiers. The feed-forward ANN
has one hidden layer with four neurons. The number of
neurons in the input layer is two (since the feature vector
consists of two parameters) and the number of neurons
in the output layer is three. LP is the simplest type of
ANN, used for classification of two classes that are linearly
separable. LP consists of a single neuron with adjustable
input weights and a threshold value. If the number of classes
is greater than two, LPs are used in parallel. One perceptron
is used for each output. The maximum number of epochs is
chosen as 1000. The weights are initialized randomly and
the learning rate is chosen as 0.1. Differentiation rates of
98.3% and 98.6% are achieved for the training and test sets,
respectively. When training is done by LM, the same correct
differentiation rate is obtained on the training set. However,
this classifier is better than the BP method in the tests, where
only one edge target is misclassified as a cylinder, resulting
in a correct differentiation rate of 99.5%. As expected from
the distribution of the parameters, because the classes are
not linearly separable, lower correct differentiation rates of
77.7% and 76.3% are achieved using LP on the training and
test sets, respectively.

d) Support Vector Machine (SVM) Classifier: SVM
classifier has been used in applications such as object, voice,
and handwritten character recognition, and text classification.
If the feature vectors in the original feature space are not
linearly separable, SVMs preprocess and represent them in
a space of higher dimension where they become linearly
separable. The dimension of the transformed space is typ-
ically much higher than the original feature space. With a
suitable nonlinear mapping to a sufficiently high dimension,

data from two different classes can always be made linearly
separable, and separated by a hyperplane. The choice of
the nonlinear mapping depends on the prior information
available to the designer. The complexity of SVMs is related
to the number of resulting support vectors rather than the
high dimensionality of the transformed space.

In this study, SVM is applied to differentiate target feature
vectors from multiple classes. Following the one-versus-rest
method, c different binary classifiers are trained, where each
classifier recognizes one of c target types. SVM classifiers
with polynomial, exponential, and radial basis function ker-
nels are used. The correct differentiation rates on the training
set are 84.3%, 100%, and 100% for the SVM classifiers with
polynomial, exponential, and radial basis function kernels,
respectively. For the test data, these numbers, given in the
same order, are 98.1%, 99.5%, and 99.1%.

To summarize the results of the statistical pattern recog-
nition techniques for geometry classification based on the
[C1, Imax]T feature vector, the overall differentiation rates
are given in Table I. Best classification rate is obtained for the
test scans using the MoN classifier with three components.
This is followed by MoN with two components, KE, k-NN,
and SVM with exponential kernel, equally. Ranking accord-
ing to highest classification rate continues as ANN trained
with LM algorithm, SVM with radial kernel, heteroscedastic
and homoscedastic PDE, ANN trained with BP, SVM with
polynomial kernel, and ANN trained with LP.

The above classification approaches were applied to dif-
ferentiate between surface types assuming the geometry of
the targets is determined correctly beforehand. However,
the results were not promising as expected from the very
similar variation of the parameters for different surfaces
corresponding to the same geometry (Fig. 4).

V. DISCUSSION AND CONCLUSION

We extended the parametric surface differentiation ap-
proach proposed in [10] to differentiate both the geometry
and surface type of the targets using statistical pattern
recognition techniques. We compared different classifiers
such as PDE, MoN, kernel estimator, k-NN, ANN, and
SVM for geometry type determination. Best differentiation
rates (100%) are obtained for the MoN classifier with three
components. MoN classifier performs better than models
which associate the data with a single distribution. It is also
more robust and the training set can be easily updated when
new classes need to be added to the database.
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TABLE II

OVERVIEW OF THE DIFFERENTIATION TECHNIQUES COMPARED (P: PLANE, C: CORNER, E: EDGE, CY: CYLINDER; AL: ALUMINUM, WD: WOOD,

WC: WHITE CLOTH, BC: BLACK CLOTH, WW: WHITE WALL, WP: WHITE PAPER, BRP: BROWN PAPER, VP: VIOLET PAPER.)

differentiation type of type of feature correct training learning parametric
technique geometry surface diff.(%) data

rule-based [15] P,C,E,CY WD geo 91.3 used, not stored no no

template-based used no no

[16] P,C,E,CY WD geo 97

[17] P AL,WW,BRP,ST surf 87

[18] P,C,E AL,WC,ST geo 99

” P,C,E ” surf 81

” P,C,E ” geo+surf 80

parametric [10] P ST,WW,WC(BC), surf 100 used, not stored yes yes
WP,BRP,VP

” ST,WW,WC(BC), ” 86
WP,BRP,VP,WD

” ST,WW,WC,BC, ” 83
WP,BRP,VP

” ST,WW,WC,BC, ” 73
WP,BRP,VP,WD

statistical P,E,CY ST,WC,BC,
pattern recognition WP,BRP,VP,WD geo

PDE-HM, PDE-HT ” ” ” 98.6 used, not stored no yes

MoN-3 ” ” ” 100 used, not stored no yes

KE ” ” ” 99.5 used, stored no no

k-NN ” ” ” 99.5 used, stored no no

NN-LM ” ” ” 99.5 used, not stored yes no

SVM-E ” ” ” 99.5 used, not stored no no

Table II summarizes the results for all of the differentiation
techniques considered in this study and in our earlier related
works, allowing for their overall comparison. Only the best
differentiation rates are given for the different variations of
the methods considered.

In geometry classification, the greatest difficulty is encoun-
tered in the differentiation of edges of different surface types.
Surface differentiation was not as successful as geometry
differentiation due to the similar characteristics of the feature
vectors of different surface types for non-planar geometries.
The results indicate that the geometrical properties of the
targets are more distinctive than their surface properties, and
surface determination is the limiting factor in differentia-
tion. Given the attractive performance-for-cost of IR-based
systems, we believe that the results of this study will be
useful for engineers designing or implementing IR systems
and researchers investigating algorithms and performance
evaluation of such systems.
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