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Abstract. Four methods of range measurement for airborne ultrasonic systems—namely
simple thresholding, curve-fitting, sliding-window, and correlation detection—are compared
on the basis of bias error, standard deviation, total error, robustness to noise, and the
difficulty/complexity of implementation. Whereas correlation detection is theoretically
optimal, the other three methods can offer acceptable performance at much lower cost.
Performances of all methods have been investigated as a function of target range, azimuth,
and signal-to-noise ratio. Curve fitting, sliding window, and thresholding follow correlation
detection in the order of decreasing complexity. Apart from correlation detection, minimum
bias and total error is most consistently obtained with the curve-fitting method. On the other
hand, the sliding-window method is always better than the thresholding and curve-fitting
methods in terms of minimizing the standard deviation. The experimental results are in close
agreement with the corresponding simulation results. Overall, the three simple and fast
processing methods provide a variety of attractive compromises between measurement
accuracy and system complexity. Although this paper concentrates on ultrasonic range
measurement in air, the techniques described may also find application in underwater
acoustics.

Keywords: range measurement, time-of-flight measurement, ultrasonics, sonar,
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1. Introduction

Successful operation of most ultrasonic ranging systems
relies on accuratetime-of-flight (TOF) measurements. A
pulse is transmitted and an echo is produced when the
transmitted pulse encounters an object. TOF is the time
elapsed between the transmission of a pulse and its reception,
from which the target range can be calculated asr = ct0/2.
Here, t0 is the TOF andc is the speed of sound in air†.
Range information forms the basis of many applications
such as object localization, classification, and tracking [1–3].
Correct localization of targets using ultrasonics depends on
how accurately TOF can be measured and how well the
speed of sound in the medium is known. The dependence
of sound velocity on temperature can be relatively easily
compensated for [4]. Since we employ a pulse–echo
system, the measurements are not significantly affected by
movements of the propagation medium. The most frequently
employed method for TOF measurement is, due to its
simplicity, thresholding. In simple thresholding systems,
a range valuer is produced when the echo amplitude first

† c ∼= 331.4
√
T/273 m s−1, whereT is the absolute temperature in Kelvin.

At room temperature,c = 343.5 m s−1. This expression neglects effects
such as those due to humidity and pressure.

exceeds a preset threshold level. The main problem with
this method is that, on the average, the TOF measurement
so obtained is larger than the actual TOF, which corresponds
to the starting point (onset) of the echo signal. This is a
consequence of the relatively long rise-time of the echoes
produced by currently available low-bandwidth ultrasonic
transducers for operation in air. Hence, the range information
obtained by simple thresholding is biased, making the target
appear slightly farther than it actually is. The resulting
bias error, which is in the range of several millimetres to
centimetres, could easily be avoided if it were constant.
However, this is not the case: the bias is difficult to model
analytically since it is a function of the set threshold level,
signal-to-noise ratio (SNR), target location, size, and type, as
well as other factors [5] causing amplitude fluctuations. In
this paper, we consider two alternative fast methods, namely
curve fitting and sliding window, which reduce the bias and
improve robustness to noise.

All of the three methods mentioned so far are suboptimal
but fast and simple to implement in real time. These methods
are compared with the optimalcorrelation detection method
which maximizes the SNR. In this study, the SNR is taken
as the ratio of the maximum amplitude of the echo signal
to the amplitude noise standard deviation. Comparison of
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Figure 1. Envelope of the ultrasonic echo and TOF measurement
by thresholding and curve fitting.

the methods is based on bias, standard deviation, total error,
robustness to noise, and computational complexity.

This paper has been divided into four sections, the first
being the introduction. Section 2 gives a brief description of
the four TOF measurement methods considered in this paper.
Sections 3 and 4 provide the simulation and experimental
results, respectively.

2. TOF measurement and estimation

2.1. Thresholding method

The simplest way of measuring TOF is thresholding. In the
thresholdingmethod, the TOF is the timet0 at which the echo
amplitude waveform first exceeds a preset threshold levelτ

(figure 1). Assuming Gaussian noise,τ is usually set equal to
3–5 times the noise standard deviation. In current practical
ultrasonic systems, with this choice, the threshold level turns
out to be between−20 to−35 dB below the peak of the pulse.

2.2. Curve-fitting method

Another TOF estimation method iscurve fitting, in which
a nonlinear least-squares method is employed to fit a curve
to the onset of the ultrasonic echo in order to produce an
unbiased TOF measurement. A parabolic curve of the form
a0(t − t0)2 is fitted to the signal envelope around the rising
edge of the echo. It has been verified in [6, 7] and later
on in [8] that this is a good approximation. First, initial
estimates of the two parametersa0 andt0 are obtained: the
initial estimate fort0 is found by simple thresholding, and
a0 is estimated from the second derivative approximation
around the threshold point. These are used to initialize
an iterative numerical procedure: the Levenberg–Marquardt
nonlinear least-squares method [9]. In the simulations and the
experiments, 50 samples of the echo signal, taken around the
threshold point, have been used to estimate the parameters
a0 and t0 of the best-fitting curve. The value oft0 finally
obtained, which corresponds to the vertex of the parabola,
is taken as the TOF (figure 1). This value usually falls to

the left of the thresholding estimate, and reduces the bias
considerably.

The authors of [8] have pointed out a simpler variation of
the curve-fitting method which does not require the nonlinear
iterative fitting procedure. In this method, two different
threshold levels are set, and a parabola is fit to the two samples
of the signal at which the threshold levels are exceeded. Letτ1

andτ2 be the two threshold levels(τ2 > τ1)andt1 andt2 be the
times at which these thresholds are exceeded. The parameters
a0 and t0 of the parabolaa0(t − t0)2 passing through these
points can be solved from the following two equations:

τ1 = a0(t1− t0)2

τ2 = a0(t2 − t0)2.
(1)

Eliminating a0 we obtain the following expression for the
TOF t0:

t0 =
√
τ2/τ1 t1− t2√
τ2/τ1− 1

. (2)

It has been reported in [8] that a threshold ratioτ2/τ1 of
about 2 represents a suitable choice. In the following, to
distinguish the two approaches, we will refer to the original
iterative least-squares curve-fitting method as CUF(A) and
the 2-point analytical curve-fitting method as CUF(B).

2.3. Sliding-window method

The third method considered in this study is thesliding
window, whose use for ultrasonic signals was first suggested
in [10]. The method originates from them-out-of-N (or
double thresholding) detection originally developed for radar
signals, and is used to make detection more robust to
noise [11]. A window of widthN is slid through the echo
signal one sample at a time. At each window position, the
number of samples which exceed the preset threshold level
τ is counted. If this number exceeds a second thresholdm,
then a target is assumed to be present and a TOF estimate is
produced. The advantage of the method is its robustness to
noise spikes, since the target detection is based on at leastm

samples exceeding the threshold, instead of a single one as in
simple thresholding. This way, noise spikes of total duration
less thanm can be eliminated. We have considered four
different ways of choosing the TOF within the window. These
are, SW(A): the very first sample of the current window,
SW(B): the first sample exceedingτ within the window,
SW(C): the sample at the centre of the window, and SW(D):
the (N − m)th sample of the window. The performance
of the method depends on the window lengthN , the second
threshold valuem, and which variation of the method is used.

2.4. Optimum correlation detection

The optimum correlation detectionmethod for estimating
TOF from the echo signal is unbiased. Matched filter
techniques have been widely used to improve the accuracy of
TOF measurements in applications such as target localization
and identification [1,12,13].

A matched filter that contains a replica of the echo
waveform is employed to determine the most probable
location of the echo in the received signal [14]. The computer
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implementation of this procedure is time consuming because
of the required correlation operation, even when realized in
the frequency domain. Since the shape of the echo waveform
usually changes during propagation due to attenuation, and
also varies with target type, size, location, and orientation,
a large number of templates for the expected signal must be
stored for the correlation operation. Another fundamental
problem with this method is the inherent time delay involved
since classical correlation detection requires that theentire
echo be observed before an estimate is produced. Hence,
when working in real time, this method is only suitable
for distant objects when the echo duration is negligible
compared with the travel time. For nearby targets, or in
those applications where only the leading edge of the signal
is available [15] as, for instance, when the signal levels are
saturated, the estimate must be made at the beginning of
the observed echo, using methods such as those described
above. Nevertheless, this method serves as a useful basis for
comparison with the other methods.

3. Simulation studies

For a target at ranger and azimuthθ in the far zone of the
transducer [16], the received time signal can be approximated
by the following signal model [7]:

sr,θ (t) = k(r) exp

[
− θ2

2σ 2
θ

]
(t − t0)2 exp[−a1(t − t0)]

× sin[2πf0(t − t0)]u(t − t0) (3)

which is simply a sinusoid with frequencyf0, enveloped
by a function which is the product of a parabola and an
exponentially decaying function. Here,f0 is the resonance
frequency of the ultrasonic transducers,k(r) is a function
of the target type and is a decreasing function of the target
range [6],a1 is a shape parameter of the signal, andu(t−t0) is
the unit step function delayed byt0. The angular beam profile
is modelled as a Gaussian function with suitably chosen
spreadσθ [17]. The functional form of equation (3) is capable
of representing observed signals for a wide variety of target
types and locations [6,7].

First, we consider the problem of finding suitable values
for the window lengthN and the second threshold valuem in
the sliding-window method. DifferentN andm values in the
range 56 N 6 50 and 16 m 6 N have been investigated
for a wide range ofr andθ values. We have observed that
N = 40 andm = 10 are suitable choices for the range of
parameters considered. Thus, these values ofN andm are
used for the sliding-window method throughout this study.
The first threshold valueτ is taken as five times the noise
standard deviation in all the suboptimal methods.

In the simulations, the valuesf0 = 40 kHz, c =
343.5 m s−1, σθ = 27◦, anda1 = 7050 are used to model the
echo signals obtained with Panasonic transducers. For our
application of range measurement over moderate distances,
the resonance frequency of available transducers lies around
the range of 30–60 kHz so that the value off0 employed
can be considered to be representative. A sampling interval
of 2 µs is used, corresponding to a sampling frequency of
500 kHz. The signals are already well oversampled so that
further increases would offer diminishing returns. 5000 time

samples around the echo signal are employed, corresponding
to an observation window of duration 0.01 s. The value ofr

has been varied from 0.25 to 5.0 m with 0.25 m increments,
and the value ofθ has been varied from 0 to 55◦ with 5◦

increments.
To estimate the bias and the standard deviation, 100

realizations are generated by adding zero-mean white
Gaussian noise to the signal. The Gaussian noise is generated
by applying a standard transformation to the uniformly
distributed random variables of the C programming language.
The mean and the histogram of the noise sequence are
tested for bias. A comparison among the four methods and
their variations is made in table 1 and figure 2 in terms of
their biases, standard deviations, and total errors. We have
considered the three options of processing the original time
signal modelled by equation (3) (O), the rectified signal (R),
and its envelope (E). The total error is the root-mean-square
value of the difference between the range measurement and
the actual range value. The bias is the signed average of the
same difference. The three quantities are related according
to E2 = b2 + σ 2, whereE is the total error,b is the bias, and
σ is the standard deviation.

Figures 2(a)–(f ) show the dependence of the bias, the
standard deviation, and the total error onr andθ . The data
for all combinations ofr and θ are not presented due to
space limitations; parts (a)–(c) are for θ = 0◦ and parts
(d)–(f ) are for r = 0.5 m. From the figures, we observe
that the effect of increasingr and|θ | is to degrade the range
measurement accuracy. Since the noise level is kept constant,
this degradation is mostly caused by the decreasing SNR due
to the decrease in signal amplitude with increasingr and|θ |
(equation (3)). For example, when the target atr = 0.5 m
is moved fromθ = 0◦ to θ = 55◦, SNR changes from 35 to
17 dB. Similarly, when the target is moved fromr = 0.25 m
to r = 5 m along the line of sight (θ = 0◦), SNR changes
from 41 to 15 dB. It can be observed that the absolute bias
and the total error associated with CUF(A) increases much
more slowly withr and|θ | compared with the other methods.
This quality of CUF(A) makes it attractive compared with the
other methods which exhibit very large bias and total error
for certain values ofr andθ .

Figures 2(g)–(i) illustrate the dependence of the
performance directly on the SNR while the target position
is kept constant atr = 0.5 m and θ = 0◦. SNR
values between 15 and 65 dB have been realized by varying
the amount of noise on the signal. Around 14 dB, the
signal amplitude falls below the threshold, and therefore a
TOF measurement cannot be obtained. In comparing the
various methods, our purpose is to determine the method(s)
which most consistently result in the best performance, over
the range ofr, θ, and SNR. This is because, even if we
know the noise level, the signal level and thus the SNR
will depend on r and θ , which are the very quantities
one is trying to determine with such systems in the first
place.

We begin our comparison of the several methods by
comparing the four variations of the sliding-window method
among themselves. For all forms of the signal (i.e., O,
R, or E), sliding-window (A), (C), (D) have equal standard
deviations as expected. This is because, for a given window
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Table 1. Simulation and experimental results forr = 0.5 m,θ = 0◦, and SNR= 35 dB. THD: thresholding, SW: sliding window, CUF:
curve fitting, COR: correlation, O: original, R: rectified, E: envelope.

Simulation Experiment
(SNR= 35 dB) (SNR= 35 dB)

Method b (cm) σ (cm) E (cm) b (cm) σ (cm) E (cm)

THD O 0.671 0.082 2 0.676 0.585 0.0793 0.590
R 0.666 0.084 3 0.672 0.582 0.0790 0.587
E 0.586 0.052 4 0.588 0.519 0.0681 0.523

SW(A) O −0.228 0.039 4 0.231 −0.229 0.0432 0.233
R −0.232 0.041 5 0.235 −0.227 0.0449 0.231
E −0.448 0.034 8 0.449 −0.423 0.0322 0.425

SW(B) O 0.671 0.082 2 0.676 0.585 0.0793 0.590
R 0.666 0.084 3 0.672 0.582 0.0790 0.587
E 0.586 0.052 4 0.588 0.519 0.0681 0.523

SW(C) O 0.459 0.039 4 0.461 0.460 0.0432 0.462
R 0.455 0.041 5 0.457 0.458 0.0449 0.460
E 0.239 0.034 8 0.241 0.225 0.0322 0.227

SW(D) O 1.146 0.039 4 1.147 1.147 0.0432 1.148
R 1.142 0.041 5 1.143 1.145 0.0449 1.146
E 0.926 0.034 8 0.927 0.912 0.0322 0.913

CUF(A) O 0.436 0.242 0.499 0.428 0.227 0.484
R −0.269 0.053 4 0.274 −0.216 0.0613 0.225
E −0.261 0.034 5 0.263 −0.227 0.0361 0.230

CUF(B) O −0.578 0.301 0.652 −0.515 0.290 0.591
R −0.507 0.309 0.594 −0.472 0.283 0.550
E −0.530 0.161 0.554 −0.502 0.142 0.522

COR O 0.000 0.000 001 87 0.000 001 87−0.000 344 0.0185 0.0185
R 0.000 0.000 001 87 0.000 001 87−0.004 47 0.0298 0.0301
E 0.000 0.000 001 87 0.000 001 87−0.005 23 0.0312 0.0316

lengthN , the points taken as TOF in these variations (the
very first, central, and the(N−m)th samples of the window)
remain fixed with respect to each other. Variation (B), on
the other hand, exhibits a larger standard deviation than
(A), (C), and (D). For larger values ofr or |θ |, or smaller
values of SNR, we observe that variation (A) gives the
smallest bias, followed by variations (B), (C), and (D) in
the given order. Among the sliding-window variations, (B),
(C) and (D) would never be used since (A) can offer the
same standard deviation with smaller bias error than (C) and
(D), and it can offer both smaller bias and smaller standard
deviation than (B). Thus, sliding window (A) emerges as
the method of choice for largerr or |θ |, or smaller SNR. It
is important to note that this conclusion follows regardless
of the relative importance attached to minimizing bias and
standard deviation. For smallerr or |θ |, or larger SNR,
however, the situation is more complicated and none of the
variations is clearly superior to the others. For this method,
we emphasize that it is immaterial whether we use O, R, or
E since all give similar bias, standard deviation, and total
error.

The bias errors of both sliding-window and thresholding
methods increase withr and|θ |. In contrast, the bias error
of CUF(A) is relatively constant over ther, θ and SNR
values considered, and is generally smaller. It is followed
by CUF(B), and the other methods. (These biases for
CUF(A) are obtained when the envelope of the signal is
processed. Had the original or the rectified signal been used,
the bias would have been worse due to the fluctuations of the
waveform around the onset of the signal.)

On the other hand, the standard deviation of CUF(B) is
the largest, followed by CUF(A) at SNRs below 20 dB, and

by thresholding and SW(B) at SNRs above 20 dB. Apart
from the correlation method, smallest standard deviations
are obtained with SW(A), (C), (D). Therefore, in terms of
standard deviation, curve-fitting methods are not as good as
the sliding window which offers the smallest standard devi-
ation.

The total error turns out to be dominated by the bias and
therefore has a shape which resembles the bias curve. In
terms of bias and total error, CUF(A) shows the overall best
performance. Although some of the variations of the sliding
window result in smaller bias and total error over certain
intervals, it would not be practical to exploit this since one
does not knowr andθ to begin with. Thus, we conclude
that CUF(A) is the method which most consistently results
in lowest bias and total error over the range of parameters
considered. On the other hand, in those instances where
the standard deviation of the estimate is more important
than the bias and total error, the method of choice would
be sliding window, with the choice of variation as discussed
previously.

In order of increasing computational complexity, the
methods can be sorted as thresholding, sliding-window, curve
fitting, and correlation detection. For the processing of a
single echo, the required CPU times on a SUN SPARC 20
workstation are 5.6, 8.3 and 11.1 ms for the first three methods
respectively. The classical correlation detection method
would require many orders of magnitude greater time if the
correlation method is performed at every possible sample
shift: in other words if it is used as a detection method.
In a practical implementation, the detection of the pulse
could be performed by first thresholding and then applying
the correlation only in the vicinity of the point where the
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Figure 2. Variation of the bias, the standard deviation, and the total error of the TOF measurement withr, θ , and SNR when the signal
envelope is used: (a) bias error versus range, (b) standard deviation versus range, (c) and total error versus range whenθ = 0◦; (d) bias error
versus azimuth, (e) standard deviation versus azimuth, (f ) and total error versus azimuth whenr = 0.5 m; (g) bias error versus SNR,
(h) standard deviation versus SNR, (i) and total error versus SNR whenr = 0.5 m andθ = 0◦. THD: thresholding, SW: sliding window,
CUF(A): least-squares curve fitting, CUF(B): analytical curve fitting, COR: correlation.

threshold was exceeded to get an accurate TOF measurement.
Although such a hybrid thresholding/correlation method
would be faster in a practical situation, it would still be
difficult to implement, owing to the need to store many
different templates which represent different points in the
target position space.

4. Experimental results

Experiments have been performed with Panasonic transduc-
ers, resonant atf0 = 40 kHz and exhibiting a relatively large
half beamwidth of approximately 60◦ [18]. A planar target
is positioned atr = 0.5 m andθ = 0◦. The block diagram of
the ultrasonic measurement system is provided schematically

in figure 3. Data acquisition with this system is accomplished
by using a PC A/D card with 12-bit resolution and 1 MHz
maximum sampling frequency. In the current study, it was
sufficient to sample the signals at 500 kHz. 5000 samples of
each echo signal have been collected. A typical waveform ob-
tained from the system is shown in figure 4. Echo signals are
postprocessed on a SUN SPARC 20 workstation. An average
over 100 noisy echo signals is computed to produce the cor-
relation template for the original signal. Similarly, templates
are generated for processing the rectified signal and the sig-
nal envelope. Experimentally obtained biases, standard de-
viations, and total errors for all four methods, computed over
100 echo waveforms, are tabulated in table 1. The results are
in very good agreement with the corresponding simulation
results.
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Figure 3. Block diagram of the data acquisition system and a
target.
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Figure 4. Typical echo waveform obtained from the ultrasonic
system.

5. Conclusion

In this paper, four range measurement methods are compared
on the basis of bias error, standard deviation, total
error, robustness to noise, and difficulty/complexity of
implementation. Correlation detection always gives the
best results and forms a basis for comparison for the
simpler and faster suboptimal methods. However, it
is also computationally the most complex, with certain
disadvantages in a real-time implementation. It has been
included mainly as a reference in this study. Curve
fitting, sliding window, and thresholding follow correlation
detection in the order of decreasing complexity and can offer
acceptable performance at much lower cost. Performances
of all methods have been investigated as a function of
target distance, azimuth and SNR. Two variations of curve
fitting and four variations of the sliding window have been
considered. Apart from correlation detection, lowest bias and
total error is most consistently obtained with least-squares
curve-fitting applied to the signal envelope. The bias problem
of the simple thresholding method is more enhanced for the
relatively long rise-time of the echoes produced by currently

available low-bandwidth ultrasonic transducers for operation
in air. For larger bandwidth transducers, the signal rise-
time would be much smaller, reducing the bias and possibly
obviating the need to use curve-fitting methods. In those
instances where minimizing the standard deviation of the
measurement is more important than minimizing the bias
and the total error, sliding window emerges as the method
of choice. For all forms of the signal (i.e., original, rectified,
envelope), sliding-window variations (A), (C), (D) have equal
standard deviations. This value of the standard deviation is
also the smallest among all the methods. Depending on the
relative importance of bias and standard deviation for a given
application, the method of choice can be determined. Since
bias is the dominant component of the total error, developing
algorithms that are robust to bias errors are of interest. The
experimental results are in very good agreement with the
corresponding simulation results. Overall, the three simple
and fast processing methods provide a variety of attractive
compromises between measurement accuracy and system
complexity.
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