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Abstract. Two novel methods for surface profile extraction based on multiple ultrasonic
range measurements are described and compared. One of the methods employs
morphological processing techniques, whereas the other employs a spatial voting scheme
followed by simple thresholding. Morphological processing exploits neighbouring
relationships between the pixels of the generated arc map. On the other hand, spatial voting
relies on the number of votes accumulated in each pixel and ignores neighbouring
relationships. Both approaches are extremely flexible and robust, in addition to being simple
and straightforward. They can deal with arbitrary numbers and configurations of sensors as
well as synthetic arrays. The methods have the intrinsic ability to suppress spurious readings,
crosstalk and higher-order reflections, and process multiple reflections informatively. The
performances of the two methods are compared on various examples involving both
simulated and experimental data. The morphological processing method outperforms the
spatial voting method in most cases with errors reduced by up to 80%. The effect of varying
the measurement noise and surface roughness is also considered. Morphological processing
is observed to be superior to spatial voting under these conditions as well.

Keywords: ultrasonic ranging systems, sonar, range measurement, morphological
processing, voting, feature extraction, surface profile extraction, map building

1. Introduction

An inexpensive, yet effective and reliable approach to
machine perception is to employ multiple simple range
sensors coupled with suitable data processing. The two
approaches described in this paper, morphological processing
and a spatial voting scheme followed by thresholding, are
applied to ultrasonic range measurements to reconstruct the
profiles of arbitrarily curved surfaces that are encountered
in unstructured environments such as mines, rough terrain
or underwater. In contrast, approaches based on geometrical
or analytical modeling are often limited to elementary target
types with constant or piecewise-constant curvature [1, 2].
The methods presented here are novel ways of processing
range data in the form of an arc map which represents angular
uncertainties. These methods can also be viewed as new
ways of solving a class of nonlinear reconstruction problems
that arise when a large number of sensors produce range
measurements. These nonlinear inverse problems do not
seem amenable to efficient solution by standard analytical or
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numerical techniques. Both methods presented are extremely
flexible and can easily handle arbitrary sensor configurations
as well as synthetic arrays obtained by moving a relatively
small number of sensors. In contrast, approaches based on
geometrical or analytical modelling have often been limited
to simple, well structured sensor configurations.

A commonly noted disadvantage of ultrasonic ranging
systems is the difficulty associated with handling spurious
readings, crosstalk, higher-order and multiple reflections.
The proposed methods are capable of effectively suppressing
the first three of these, and have the intrinsic ability
to make use of echo returns beyond the first one (i.e.
multiple reflections) so that echoes returning from surface
features further away than the nearest can also be processed
informatively.

It is important to underline that morphological
processing and spatial voting are employed here to process
the ultrasonic arc map of the surface being reconstructed,
rather than conventional camera images.

The methods presented in this paper, which are based
on the use of multiple range sensors combined with arc map
processing, can be applied to different physical modalities of
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range sensing of vastly different scales and in many different
areas. These may include radar, sonar, optical sensing
and metrology, remote sensing, ocean surface exploration,
geophysical exploration, robotics and acoustic microscopy.
Although the present paper deals with the determination
of two-dimensional surface profiles, both methods can be
readily generalized to three-dimensional environments [3].

This paper is organized as follows. In section 2, basic
principles of ultrasonic ranging systems are reviewed. In
section 3, the generation of arc maps is described and two
different methods are introduced for processing these arc
maps. Section 3.1 presents a scheme based on morphological
processing. Section 3.2 describes a spatial voting scheme
followed by simple thresholding. The methods are compared
based on various examples in section 3.4 based on both
simulated and experimental data. The effect of additive noise
on the measurements and the effect of surface roughness are
considered in sections 3.7 and 3.8 respectively.

2. Basics of ultrasonic ranging systems

Although the methods presented in this paper can be applied
to other kinds of range sensor or measurement, here we
concentrate on ultrasonic range sensing from which our
experimental results are derived. We consider simple
ultrasonic transducers that measure time-of-flight (TOF) t0,
which is the round-trip travel time of the pulse between the
transducer and the surface. Given the speed of transmission
c, the range r can be easily calculated from r = ct0/2. Many
ultrasonic transducers operate in this pulse-echo mode [4].
The same transducer can function as both the receiver and the
transmitter. The major limitation of ultrasonic transducers
comes from their large beamwidth. For example, the Polaroid
transducers used in this study have a half beamwidth angle of
θ0 = ±12.5◦. Although these devices return accurate range
data, usually they cannot provide direct information on the
angular position of the surface from which the reflection is
obtained. Thus, all that is known is that the reflection point
lies on a circular arc whose radius is determined by r = ct0/2,
as illustrated in figure 1(a). More generally, when one sensor
transmits and another receives, it is known that the reflection
point lies on the arc of an ellipse whose focal points are
the transmitting and receiving elements (figure 1(b)). Notice
that the arcs are tangent to the reflecting surface at the actual
point(s) of reflection. The angular extent of these arcs is
determined by the sensitivity regions of the transducers. For
the same transmitting/receiving pair, if multiple echoes are
detected at the receiver, circular or elliptical arcs are drawn
to correspond to each echo. As a result of this process, we
obtain the arc map, comprised of circular and elliptical arcs.
An example of an arc map is given in figure 2(a).

We distinguish between multiple reflections and higher-
order reflections as follows. Multiple reflections are those
which are caused by one time (or first-order) reflection of
the emitted wave from different points in the environment,
resulting in multiple returns at the detector. For instance,
along the curved surface, there may be multiple points
falling within the sensitivity region of the transducer at which
the incoming beam is perpendicular to the surface tangent.
In general, such points will be at different distances from

the transducer, creating echoes at locations corresponding
to these distances. Such multiple reflections have been
modelled in the simulations and also properly registered by
the experimental detection circuitry so that the reflections
are processed informatively. Some simpler systems detect
and process only the first echo received, corresponding to the
nearest reflection point.

A higher-order reflection refers to a single return de-
tected after bouncing off successively from more than one
point in the environment before returning to the detector. The
key idea of the method is that a large number of data points
coincide with the actual surface (at least at the tangent points
of the arcs) and the data points off the actual curve are more
sparse. Those spurious arcs caused by higher-order reflec-
tions and crosstalk also remain sparse and lack reinforcement
most of the time. The algorithms eliminate these spurious
arcs together with the sparse arc segments resulting from the
angular uncertainty of the sensors. Although higher-order
reflections have not been generated in the simulated data sets
due to the complexity of modelling them, they naturally exist
in the experimental data, providing the opportunity to verify
the ability of our method to eliminate them.

We initially consider the case where the surfaces reflect
the ultrasonic waves specularly (mirror-like). Since most
airborne ultrasonic systems operate at resonance frequencies
below 200 kHz, the propagating waves have wavelengths well
above several millimetres. Thus, the features on the objects
which are smaller than the wavelength cannot be resolved,
resulting in specular reflections [2]. Later, we also consider
rough surfaces that do not reflect the waves specularly. The
ultrasonic devices modelled in the simulation studies and
used in the experiments are Polaroid 6500 series transduc-
ers [5], operating at a resonance frequency f0 = 49.4 kHz,
which corresponds to a wavelength of λ = c/f0 = 6.9 mm
at room temperature.

Most commonly, the large beamwidth of the transducer
is accepted as a device limitation that determines the angular
resolving power of the system and the reflection point is
assumed to be along the line of sight. In this naive approach, a
range reading of r from a transmitting/receiving transducer is
taken to imply that an object lies along the line of sight of the
transducer at the measured range. Consequently, the angular
resolution of the surface profile measurement is limited by
the rather large beamwidth, which is a major disadvantage.
Our approach, as will be seen, turns this disadvantage
into an advantage. Instead of restricting oneself to an
angular resolution equal to the beamwidth by representing
the reflection point as a coarse sample along the line of sight,
circular or elliptical arcs representing the uncertainty of the
object location are drawn. By combining the information
inherent in a large number of such arcs, angular resolution
far exceeding the beamwidth of the transducer is obtained.

3. Processing of the arc map

As an illustrative example, figure 2(a) shows the arc
map obtained from a surface using an irregular sensor
configuration. A considerably large number of arcs can be
obtained with a reasonable number of sensors because each
sensor can receive pulses transmitted from all the others,
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Figure 1. (a) For the same transducer transmitting and receiving, the reflecting point is known to be on the circular arc shown. (b) The
elliptical arc if the wave is transmitted and received by different transducers. The intersection of the individual sensitivity regions serves as a
reasonable approximation to the joint sensitivity region.
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Figure 2. (a) The arc map obtained with an array of 27 sensors, each of 45◦ beamwidth. Features visible between about y = 100 cm and
y = 200 cm are representations of the transducers. (b) The result of n = 6 thinning, (c) the fitted curve of order m = 8 (solid line) and the
original surface (dashed line). E1 = 2.85 cm, E2 = 0.098. (d) The result of spatial voting and subsequent thresholding. (e) Polynomial fit
of order m = 8 to part (d) (solid line), and the actual surface (dashed line). E1 = 4.42 cm, E2 = 0.152 (simulated data).

provided a reflection point lies in the joint sensitivity region
of that sensor pair. For sensors with large beamwidth, the
number of arcs obtained approaches the square of the number
of sensors. Near the actual reflection point(s), several arcs
intersect with small angles. The many small segments of
the arcs superimposed in this manner tend to coincide with
and cover the actual surface, creating the darker features in
figure 2(a) that reveal the surface profile. The remaining parts
of the arcs, not actually corresponding to any reflections and
simply representing the angular uncertainty of the sensors,
remain more sparse and isolated. Similarly, those arcs caused
by higher-order reflections, crosstalk and noise also remain
sparse and lack reinforcement.

It is often possible to visually perceive the surface profile
from the darker features in the arc map (see for example

figures 4, 5 and 7). The purpose of the methods described
in this paper is to formalize and automate this process. The
dark features of the arc maps which eventually reveal the
surface profile are essentially caused by two effects: several
arc segments slightly displaced with respect to each other,
and several arcs crossing at the same pixel. The first of
the two methods discussed below exploits the neighbouring
relationship of the arc segments whereas the second method
takes into account the number of arcs intersecting at each
pixel.

3.1. Morphological processing

As a first alternative to processing the arc map, morphological
processing is considered. In this approach, morphological
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operators are used to weed out the sparse and isolated arc
segments, spikes or extrusions in the arc map, leaving behind
the mutually reinforcing segments that directly reveal the
original surface profile.

Erosion, dilation, opening, closing and thinning are
widely used morphological operations to accomplish tasks
such as edge detection, skeletonization, segmentation,
texture analysis, enhancement and noise removal in image
processing [6]. Mathematical morphology has been applied
in diverse areas such as pattern and shape analysis [7],
machine vision [8], medical imaging [9], remote sensing
[10], automatic target recognition [11], flaw detection [12]
and electron microscopy [13]. Although most applications
involve processing of conventional binary or grey-scale
images, in some cases, range images are processed where
the range information is coded in the grey levels of the image
[14–16]. The present approach is novel in that morphological
processing is applied to range measurements in the form of
an arc map, representing angular uncertainties.

Morphological operations basically consist of a set of
simple rules to modify images. Erosion and dilation are two
fundamental morphological operations used to thin and fatten
an image respectively. A simple algorithm for erosion is as
follows: if all eight neighbours of a pixel with value one also
equal one, that pixel preserves its value, otherwise its value is
set equal to zero. This operation erodes or shrinks the image
in all directions by one pixel. An example is presented in
figure 3. On the other hand, the dilation operation is used
to fatten an image. This time, all eight neighbours of those
image pixels which originally equal one are set equal to one.

Thinning is a generalization of erosion with a parameter
n varying in the range 1 � n � 8. In this case, it is sufficient
for any n of the neighbours of an image pixel to equal one
in order for that pixel to preserve its value of one. This
parameter is useful for adjusting the amount of thinning so
as to obtain the best results.

In pruning, which is a special case of thinning, at least
one (n = 1) of the neighbouring pixels must have the value
one in order for the central pixel to remain equal to one after
the operation. This operation is used to eliminate isolated
points [6]. As should be evident, pruning and erosion are the
two extremes of thinning, corresponding to n = 1 and n = 8
respectively.

In some cases, the direct use of erosion may eliminate
too many points and result in the loss of information
characterizing the surface. For such cases, the compound
operations of opening and closing are considered. Opening
consists of erosion followed by dilation, and vice versa for
closing. Opening helps reduce small extrusions, whereas
closing enables one to fill the small holes inside the image
[17]. Closing is applied prior to thinning in cases where
the points are not closely connected to each other so that
the direct use of thinning may result in the loss of too many
points. Filling the gaps using closing first may prevent this
from happening.

The result of applying n = 6 thinning to the arc map
shown in figure 2(a) is presented in figure 2(b). Note that the
points remaining after morphological processing follow the
surface profile quite closely.

3.2. Spatial voting

Another way of processing the information in the arc map is to
employ a spatial voting scheme followed by thresholding. In
this approach, the number of arcs which cross at each pixel
is kept track of while generating the arc map. A matrix is
created which represents the number of arcs crossing at each
pixel. The values of pixels which have not been crossed by
any arcs remain zero. The values of other pixels are equal
to the number of arcs crossing them. Note that the number
of arcs crossing a given pixel was not directly employed in
the morphological processing approach. The morphological
processing method makes use of only the binary information
as to whether a pixel has been crossed by at least one arc or
not. On the other hand, the spatial voting scheme takes into
account how many arcs cross at a given pixel.

The most important parameter in the voting method is
the threshold value. A suitable threshold level is chosen to
select those pixels which have been crossed more frequently.
If the number of crossings for a given pixel is less than the
threshold, the value of that pixel is set equal to zero. If the
number is greater than or equal to the threshold, the pixel
value is set equal to one.

As an example, consider again the arc map illustrated
in figure 2(a). The result obtained with spatial voting and
subsequent thresholding is given in part (d) of the same figure.

3.3. Curve fitting

Both methods generate a set of points which outline
the surface. To represent this estimated surface profile
compactly, we obtain a least-squares polynomial fit to these
points. Since the error distribution after morphological
processing is zero mean and symmetric, application of a least-
squares fit is appropriate. The curve fitted to the result of
morphological thinning given in figure 2(b) is displayed in
figure 2(c). Similarly, the curve fitted to the result of spatial
voting and thresholding in figure 2(e) is displayed in part (f)
of the same figure. Two error measures, both comparing the
final polynomial fit with the actual curve, are introduced:

E1 =
√√√√ 1

N

N∑
i=1

[p(xi) − y(xi)]2 (1)

E2 = E1

σy

. (2)

The first is a root-mean-square absolute error measure,
whereas the second is a dimensionless relative error measure
with respect to the variation of the actual curve. N is the
total number of columns in the map matrix, p(xi) are the
samples of the fitted polynomial and σ 2

y = 1
N

∑N
i=1[y(xi)

− 1
N

∑
i y(xi)]2 is the variance of the actual surface profile

y(xi).
In the example given in figure 2, the errors obtained with

the first method are E1 = 2.85 cm and E2 = 0.098. On the
other hand, the errors obtained with the second method are
E1 = 4.42 cm and E2 = 0.152, which are larger than those
obtained with the first method by a factor of 1.55.
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Figure 3. An example for erosion: (a) the original image, (b) and the image after erosion.
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Figure 4. (a) The arc map obtained from a linear array of 11 sensors with 50 cm spacing where the sensors are individually rotated from 40◦

to 140◦ in 10◦ steps. (b) Result of closing and n = 5 thinning applied to part (a). (c) Polynomial fit of order m = 8 to part (b) (solid line),
compared with the actual surface (dashed line). E1 = 3.03 cm, E2 = 0.127. (d) The result of spatial voting and subsequent thresholding.
(e) Polynomial fit of order m = 7 to part (d) (solid line), and the actual surface (dashed line). E1 = 5.42 cm, E2 = 0.227 (simulated data).

3.4. Comparison of the two methods

In this section, we illustrate and compare the two approaches
with various examples involving different numbers and
configurations of ultrasonic range sensors.

First, we consider a linear array of sensors. This array
has an horizontal extension of 5.0 m with 50 cm spacings
between the 11 sensors, as shown in figure 4. Given the
narrow beamwidth of the sensors (25◦), the number of arcs
obtained with this many sensors turns out to be insufficient
to reconstruct the surface profile [18]. Whereas narrow
beamwidths are esteemed for their higher resolving power in
conventional usage of ultrasonic transducers, here it would
have been desirable to have sensors with larger beamwidths.
This would have enabled a greater number of the sensor pairs
at hand to produce elliptical arcs, better revealing the surface
profile. Instead, we have considered the alternative strategy
of rotating the sensors and refiring them several times in order
to collect a sufficient number of arcs.

A further consideration is that in practice the number of
sensors may be limited. One way to overcome this limitation

is to move a smaller array much in the same spirit as synthetic
aperture radar (SAR) techniques [19]. However, this is not
exactly equivalent to the full array since those elliptical arcs
corresponding to pairs of sensors not contained within the
actually existing array will be missing.

We now return to figure 4(a) where the sensors are
individually rotated around their shown positions. The result
of morphological processing is presented in part (b), and the
polynomial fitted is shown in part (c) of the same figure, with
E1 = 3.03 cm and E2 = 0.127. Corresponding results for
spatial voting are given in parts (d) and (e) of the figure,
with E1 = 5.42 cm and E2 = 0.227, which is 1.79 times
larger.

In the second example, five transducers located on a
circular arc have been used, where the array is moved over a
distance of 2.0 m to collect data. The circular configuration
corresponds to the arrangement of ultrasonic sensors on the
Nomad 200 mobile robot [20] in our laboratory. The resulting
arc map is shown in figure 5(a). The result of n = 6 thinning
and curve fitting are shown in parts (b) and (c) of the same
figure respectively, with errors E1 = 1.64 cm, E2 = 0.200.
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Figure 5. (a) The arc map obtained by translating the circular array of sensors from (−100, 0) to (100, 0), collecting data every 5 cm.
(b) The result of n = 7 thinning applied to part (a). (c) Polynomial of order m = 12 fitted to part (a) (solid line) compared with the original
surface (dashed line). E1 = 1.64 cm, E2 = 0.200. (d) The result of spatial voting and subsequent thresholding. (e) Polynomial fit of order
m = 6 to part (d) (solid line), and the actual surface (dashed line). E1 = 3.35 cm, E2 = 0.410 (simulated data).
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Figure 6. (a) The arc map and the sensor configuration. The data are collected from the surface at every 2.5 cm by translating the array
from (−75, 0) to (75, 0). (b) Result of erosion and n = 7 thinning applied to part (a). (c) Polynomial fit of order m = 8 to part (b) (solid
line), compared with the actual surface (dashed line). E1 = 2.09 cm, E2 = 0.204, (d) The result of spatial voting and subsequent
thresholding. (e) Polynomial fit of order m = 12 to part (d), resulting in E1 = 2.12 cm, E2 = 0.206 (experimental data).

The result of spatial voting and subsequent thresholding is
shown in part (d). In this case, the errors are E1 = 3.35 cm,
E2 = 0.410, which is more than twice the error obtained with
morphological processing.

As another example, consider the experimentally
obtained arc map shown in figure 6(a). These data were
collected with a real ultrasonic ranging system, from a
cardboard surface constructed in our laboratory. An array
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Figure 7. (a) The arc map obtained by using 150 sensors positioned and oriented randomly (not shown). The x and y coordinates of each
sensor are independent and uniformly distributed in the intervals [0, 500] and [0, 360] respectively. The orientation is uniformly distributed
in [40◦, 140◦]. (b) Result of n = 6 thinning applied to part (a). (c) Polynomial fit of order m = 7 to part (b) (solid line), compared with the
actual surface (dashed line). E1 = 2.28 cm, E2 = 0.096. (d) The result of spatial voting and subsequent thresholding. (e) Polynomial fit of
order m = 7 to part (d) (solid line), and the actual surface (dashed line). E1 = 5.34 cm, E2 = 0.224 (simulated data).

of five ultrasonic sensors has been moved horizontally over
a distance of 1.5 m to increase the total number of arcs,
collecting data every 2.5 cm. In the resulting arc map, there
are some arcs which are not tangent to the actual surface
at any point (e.g. the isolated arcs faintly visible in the
upper part of figure 6(a)). These correspond to spurious data
due to higher-order reflections, readings from other objects
in the environment or totally erroneous readings. Such
points are readily eliminated upon processing (figure 6(b)
and (d)). The polynomial fit to part (b) is shown in
figure 6(c), with E1 = 2.09 cm, E2 = 0.204. Corresponding
results obtained with spatial voting and thresholding are
given in parts (d) and (e). In this case, the errors are
E1 = 2.12 cm, E2 = 0.206. For this experimental example,
the actual surface profile was determined by using a very
accurate (and much more expensive) laser structured-light
system [21].

Although structured arrays such as linear or circular
ones are often preferred in theoretical work for simplicity
and ease of analysis, the method presented here can handle
irregular arrays equally easily. In fact, the large number
of simulations we have undertaken indicate that arrays
consisting of irregularly located and oriented sensors tend
to yield better results. This stems from the fact that the many
different vantage points and orientations of the sensors tend to
complement each other better than in the case of a structured
array. Although the problem of optimal complementary
sensor placement is a subject for future research, the large
number of simulations performed indicate that it is preferable
to work with irregular arrays rather than simple-structured

arrays such as linear or circular ones. A detailed study of
the effect of using structured sensor configurations such as
linear and circular arrays, as well as irregularly configured
and moving sensors in conjunction with the morphological
processing approach can be found in [18]. Although the
elements of the irregular transducer array may obscure each
other under certain circumstances, such configurations may
also correspond to a synthetic array (as described after the first
example in this section). Even when it is the case that SAR
techniques are not used, the perturbation on the fields caused
by other transducers will be negligible if the transducers
are relatively small. In those cases where the obstruction
cannot be neglected, the only modification required in the
algorithm is to simply omit those arcs corresponding to
such transducers. The morphological processing approach
has also been applied to map building for mobile robots
using experimentally obtained ultrasonic data from test
rooms involving target types commonly encountered in robot
environments [22].

In the next example, the locations and the line-of-sight
orientations of the sensors are generated randomly and do
not conform to any special structure. Figure 7(a) illustrates
an arc map obtained with such a sensor configuration. In
figure 7(b), the result obtained after applying n = 2 thinning
to the arc map in part (a) are shown. Applying spatial voting
and thresholding to the arc map in part (a), the result in part (d)
is obtained. The curves fitted are presented in parts (c) and (e)
of the same figure. Morphological processing followed by
curve fitting results in E1 = 2.28 cm, E2 = 0.096. On
the other hand, the errors obtained by spatial voting and
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Table 1. Results of various morphological operations on the
sinusoidal surface.

Morphological operation E1 (cm) E2 tCPU (s)

thinning (n = 1: pruning) 2.41 0.236 0.29
thinning (n = 2) 2.21 0.217 0.28
thinning (n = 3) 2.03 0.199 0.27
thinning (n = 4) 2.09 0.205 0.27
thinning (n = 5) 2.46 0.242 0.26

subsequent thresholding and curve fitting are E1 = 5.34 cm,
E2 = 0.224, which are larger by a factor of 2.34.

Our final example deals with a surface whose profile
is a sinusoid with amplitude 30 cm, period 125 cm, and
which is located at a distance of 2.0 m from y = 0. The
arc map generated by using an array of 36 arbitrarily located
and oriented sensors is given in figure 8(a). The result of
n = 3 thinning is given in part (b). The fitted curve and
its comparison with the original surface are presented in
part (c) of the same figure, resulting in E1 = 1.98 cm,
E2 = 0.195. Corresponding results obtained with spatial
voting and thresholding are given in parts (d) and (e), where
E1 = 3.81 cm, E2 = 0.376. The errors obtained with
the second method are greater than those obtained with
morphological processing by a factor of 1.92.

Overall, we observe that the errors obtained with
morphological processing are lower than those obtained with
spatial voting. In our examples, the errors obtained with the
former approach have been found to be up to 80% lower than
those obtained with the latter approach.

In the above examples, the values of n and m and the
value of the threshold employed are those which yield the
smallest error E1 (and consequently E2). For the examples
given, threshold values between 2 and 6 were found to
give the best results. The optimal value of the threshold
depends on the amount of measurement noise, the resolution
of the arc map and the total number of arcs, which further
depends on the number and configuration of the sensors
used. In the simulations, where the actual surface profile
is known, it is possible to choose the optimal value of n

and m or the threshold, minimizing E1 or E2. In practice,
this is not possible so that one must use parameter values
judged appropriate for the given system and the class of
surfaces under investigation, based on previous simulations
and experiments. This is indeed a feasible strategy because
the precise choice among functionally similar morphological
operations does not have a strong effect on the resulting
errors, as exemplified by table 1 corresponding to figure 8.

Although the algorithms were not actually run in real
time, we have kept a record of the CPU times of the
morphological operations (table 1). (Since the thresholding
technique is much simpler than morphological processing
algorithms, it would even take less time.) The total
processing time consists of the data collection time plus the
morphological processing time. Morphological operations
are implemented in the C programming language and the
programs are run on a 200 MHz Pentium Pro PC. The average
CPU times for morphological processing, starting with the
raw TOF data, are in general fractions of a second, indicating
that the method is viable for real-time applications. On the
other hand, the time it takes for an array of 16 sonars to

collect all the TOF data is 16 × 40 ms = 0.64 s which is of
the same order of magnitude as the morphological processing
time. It should be noted that the actual algorithmic processing
time is a small fraction of the CPU time, as most of the
CPU time is consumed by file operations, reads and writes
to disk, matrix allocations etc. Thus, it seems possible that a
dedicated system could extract the surface profile even faster,
bringing the computation time much below the data collection
time.

3.5. Discussion

Of the two methods described, morphological processing
emphasizes neighbouring relationships whereas the spatial
voting method takes into account the number of arcs which
intersect at a certain pixel. From a different perspective, the
morphological processing approach can also be interpreted
as a kind of spatial voting scheme where the neighbours of
a certain pixel provide local support and reinforcement by
voting for it. In this perspective, the two approaches differ in
the specific way the voting is realized.

From a map-building perspective, the methods can also
be considered as hybrids of feature-based and grid-based
methods. Initially, the environment is discretized into a
rectangular array of square cells. After accumulation of
a sufficient amount of measurements and their processing
using either one of the methods, a curve-fitting procedure
is employed to extract the geometry of the surface under
investigation. The voting method essentially relies on the
accumulation of multiple measurements in each pixel so that
it does not allow the use of very small grid sizes. On the other
hand, the morphological processing method does not exhibit
such a limitation.

3.6. Choice of grid size

In this section, we discuss the choice of sampling resolution
or pixel size. There are a couple of factors that determine
the accuracy of TOF readings in a range measurement
system. One of these factors is the operating wavelength
of the measurement system. Other factors include effects
such as the thermal noise in the receiving circuitry or the
ambient acoustic noise. Given these, it is not meaningful
to choose the pixel size much smaller than the resolving
limit determined by these factors since it would increase the
computational burden without resulting in a more accurate
profile determination. Thus, the pixel size should be chosen
comparable to the TOF measurement accuracy. Nevertheless,
since the TOF accuracy may not be known beforehand, in the
following, we have also examined the cases where the noise
or uncertainty is smaller, as well as larger than one pixel. The
pixel size used throughout this study is 1 cm.

3.7. The effect of measurement noise

To investigate the robustness of the morphological processing
method to noise, zero-mean white Gaussian noise has been
added to the TOF measurements. The noise standard
deviation (σn) is varied logarithmically to cover a broad range
of noise levels, as shown in figure 9. As expected, for σn

smaller than one pixel, the performance is approximately the
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Figure 8. (a) The arc map of a sinusoidal surface obtained with an array of 36 sensors, each of 30◦ beamwidth, (b) the result of n = 3
thinning, (c) polynomial fit of order m = 10 (solid line) and the original surface (dashed line). E1 = 1.98 cm, E2 = 0.195. (d) The result of
spatial voting and subsequent thresholding, (e) polynomial fit of order m = 10 to part (d) (solid line), and the actual surface (dashed line).
E1 = 3.81 cm, E2 = 0.376 (simulated data).
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Figure 9. (a) E1, (b) E2, as the standard deviation of the noise σn on the TOF readings is increased.

same as for the noiseless case. This performance can be
further improved by reducing the pixel size until it becomes
comparable to the TOF measurement accuracy, at the cost of
greater computation time.

As expected, the error increases as the noise level
increases beyond one pixel (figure 9). Since the method
relies on the mutual reinforcement of several arcs to reveal
the surface, larger amounts of noise are expected to have
a destructive effect on this process by moving the various
arc segments out of their mutually reinforcing positions.
Despite what is suggested by these arguments, the error does
not start increasing drastically until σn = 10 cm, up to
which the method seems to be reasonably robust to noise
and the performance is comparable to the noiseless case.
This is partly because the least-squares polynomial fit helps
eliminate some of the noise.

Figure 10(a) illustrates the arc map obtained from the
same surface as in figure 8, except that zero-mean white
Gaussian noise of standard deviation 5 cm has been added
to the TOF measurements. The result of n = 3 thinning
is given in part (b). The polynomial fit and its comparison
with the original surface are presented in part (c) of the same
figure, yielding E1 = 4.62 cm, E2 = 0.454. Corresponding
results obtained with spatial voting and thresholding are given
in parts (d) and (e), with E1 = 5.38 cm, E2 = 0.528. The
errors obtained with the second method are greater than those
obtained with the first method by a factor of 1.16.

3.8. The effect of surface roughness

Even though the two methods we have discussed were
initially developed and demonstrated for specularly reflecting
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Figure 10. (a) The arc map of the sinusoidal surface obtained from noisy TOF measurements (σn = 5 cm), (b) the result of n = 3 thinning,
(c) polynomial fit of order m = 10 to part (b) (solid line), and the original surface (dashed line), E1 = 4.62 cm, E2 = 0.454, (d) the result of
spatial voting and subsequent thresholding, (e) polynomial fit of order m = 10 to part (d) (solid line), and the actual surface (dashed line).
E1 = 5.38 cm, E2 = 0.528 (simulated data).

surfaces, subsequent tests were performed with Lambertian
surfaces of varying roughness. Arc maps obtained from
rough surfaces generally resemble those from specularly
reflecting surfaces, except that the arcs are now slightly more
dispersed.

We now reconsider the example of figure 6 given
in section 3.4. Figure 11 illustrates the morphological
processing results obtained from this surface when its
roughness is varied by covering it with two different types
of material. The original surface in figure 6(a) was made of
smooth, thin cardboard. The results in parts (a) and (b) of
figure 11 were obtained when the same surface was covered
with packing material with small and large air bubbles,
respectively. The packing material with small bubbles had a
honeycomb pattern of uniformly distributed circular bubbles
of diameter 1.0 cm and height 0.3 cm, with a centre-to-
centre separation of 1.2 cm. The packing material with
large bubbles had the same pattern with diameter, height
and centre-to-centre separation 2.5 cm, 1.0 cm and 2.8 cm
respectively. The corresponding results obtained with spatial
voting and subsequent thresholding are provided in figure 12.
The results indicate that both methods still work for rough
surfaces, with slightly larger errors. The errors obtained with
the second method are still larger than those obtained with
morphological processing. Table 2 provides a comparison
of the errors obtained with the two methods. Overall, the
errors for rough surfaces are larger than those in figure 6.
The morphological approach maintains its superiority with
respect to spatial voting.

Table 2. Comparison of the two approaches on surfaces with
different roughness.

Surface material Method E1 (cm)

thin cardboard morphological
processing 2.09
spatial voting 2.12

small-bubbled morphological
packing material processing 3.56

spatial voting 4.08

large-bubbled morphological
packing material processing 3.97

spatial voting 4.38

4. Conclusion

Two novel methods are described for determining arbitrary
surface profiles from data acquired by ultrasonic range
sensors, by applying morphological processing and spatial
voting followed by thresholding. Both methods are
extremely flexible, versatile and robust, as well as being
simple and straightforward. They can deal with arbitrary
numbers and configurations of sensors, including synthetic
arrays. Resolution improves with the number of sensors
used. Accuracies down to a few centimetres were
demonstrated in our experiments. The methods are
robust in many aspects; they have the inherent ability to
eliminate undesired TOF readings arising from higher-order
reflections, crosstalk and noise, as well as processing multiple
echoes informatively. Of the two methods, morphological
processing has been found to be generally superior compared
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Figure 11. Morphological processing results from surfaces of the same shape but of increasing roughness: (a) packing material with small
bubbles: E1 = 3.56 cm, (b) packing material with large bubbles: E1 = 3.97 cm (experimental data).
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Figure 12. Spatial voting results from surfaces of the same shape but of increasing roughness: (a) packing material with small bubbles:
E1 = 4.08 cm, (b) packing material with large bubbles: E1 = 4.38 cm (experimental data).

to spatial voting followed by thresholding. It maintains its
superiority when noisy measurements and rough surfaces are
involved.

The CPU times for arc map processing (when
implemented in the C programming language and run on a
200 MHz Pentium Pro PC) are generally about a quarter of a

second [22], indicating that the methods are viable for real-
time applications.

To the best of our knowledge, this is the first application
of morphological processing techniques to sonar range data.
The method developed extends the types of object that can
be handled by intelligent systems from simple primitives
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such as planes, corners, edges, cylinders, to also include
those with arbitrarily curved surfaces. This is a substantial
generalization, increasing the recognition and navigation
capability of such systems. The methods presented in
this paper, which are based on the use of multiple range
sensors combined with sonar arc map processing, are very
basic and general so that they can be applied to different
physical modalities of range sensing of vastly different scales
and in many different areas. These may include radar,
sonar, optical sensing and metrology, remote sensing, ocean
surface exploration, geophysical exploration, robotics and
intelligent systems and acoustic microscopy. In our case,
the application motivating our research was map building
for mobile robotics. For instance, the system demonstrated
can be used for continual real-time map building purposes
on a robot navigating in a given environment. The robot
can continually add to and update its collection of arcs
and reprocess them as it moves, effectively resulting in a
synthetic array with more sensors than the robot actually has.
Apart from indoor mobile robotics, the methods can also
find application in outdoor land vehicles and other intelligent
systems operating underwater, underground or in outer space,
and dealing with rough terrain or other curved surfaces.

Both methods can be readily generalized to three-
dimensional environments with the arcs replaced by spherical
or elliptical caps and the arc map processing rules extended
to three dimensions [3]. In certain problems, it may
be preferable to reformulate the methods in polar or
spherical coordinates. Some applications may involve an
inhomogeneous and/or anisotropic medium of propagation.
It is envisioned that the methods could be generalized in such
cases by constructing broken or non-ellipsoidal arcs.
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