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Turhey 

Fractional Fourier transL0rms, which are related to chirp and wavelet transforms, Iead to the notion 0L 
Lractional Fourier domains. The concept of filtering of signals in Lractional domains is developed, revealing that 

under certain conditions one can improve upon the special cases of these operations in the conventional space 
and frequency domains. Because of the ease 0L performing the fractional Fourier transform optically, these 
operations are relevant for optical information processing. 
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1 . Introduction 

Whenever we are confronted with an operator, it is 
natural to inquire into the effect of repeated applications of 

that operator, which might be considered as its integer 
powers. A further extension is to inquire what meaning 
may be attached to fractional powers of that opertor. The 
fractional Fourier transform was defined mathematically 
by McBride and Kerr.1) In Refs. 2-6), it is shown how the 
two-dimensional fractional Fourier transform can be real-
ized optically and various mathematical and physical prop-
erties are discussed. 

The definition of the ath order fractional Fourier trans-
form ~"~r] can be cast in the form of a general linear 
transformation with kernel Ba(x,x'): 

j,= (~a[f(x)])(x)= Ba(x,x')f(x')dx' , 

ei(*c14-c/2) 

B (x,x')=1sin ipll/2 

X exp[irz(x2 cot~-2xx' cscip+x'2 cotc)] , 
for 0< ipl<21 (i.e. 0<ja <2), where 

c=a;z:/2 

and 
~ = sgn(sin ip ) 

The kernel is defined separately for a=0 and a=2 as 
Bo(x,x')= (~(x-x') and B2(x,x')= (~(x+x') respectively. 

The kernel Ba(x,x') is a chirp function, allowing the 
above transformation to be interpreted as a coordinate 
transformation in which the chirp functions play the role 
of basis functions. Based on this concept, a formulation of 

fractional Fourier transform can be characterized by the 
following properties: 

1. Basis functions in the ath domain, be they delta 
Lunctions or harmonics, are in general chirp frunctions in 

any other (a')th domain. 
2. The representation of a signal in the ath domain can 

be obtained from the representation in the (a')th domain 
by taking the inner product (projection) of the representa-

tion in the (a')th domain with basis functions in the target 

ath domain. 
3. This operation, having the L0rm of a chirp transform, 

is equivalent to taking the (a-a')th fractional Fourier 

transform of the representation in the (a')th domain. 
The relationship of fractional Fourier transL0rm to chirp 

transforms provides the basis of the concept of fractional 
domains, which are generalizations of the conventional 
space and frequency domains. The relationship to wavelet 
transoforms is discussed in Ref. 6). 

2. Filtering in Fractional Domains 

Now we move on to discussing filtering in fractional 
domains. We will see that under certain circumstances, 
noise separation can be realized effectively in fractional 

Fourier domains: Fractional Fourier transform can be 
used to separate signals which cannot be separated in 
ordinary coordinate and frequency domains. For instance, 
consider the signal and noise components shown in Fig. 1. 
Their projections on both coordinate and frequency axes 
overlap, however, their projections on the axis correspond-
ing to the ath fractional Fourier domain do not. Thus, the 
signal can be separated from the noise easily. 

Now let us give some more concrete exarnples. Con-
sider the signal 

exp [ - 7r (x-4)2 J 

distorted additively by 
exp(-i7zx2)rect(x/16) 

The magnitude of their sum is displayed in part a of Fig. 

2. These signals overlap in the frequency domain as well. 
In part b, we show their a=0.5th fractional Fourier trans-

L0rm. We observe that the signals are separated in this 
domain. The chirp distortion is transformed into a peaked 
function which does not exhibit significant overlap with 
the signal transform, so that it can be blocked out by a 
simple mask (part c). Inverse transforming to the original 

domain, we obtain the desired signal nearly perfectly 
cleansed of the chirp distortion (part d). 

Now we consider a slightly more involved example in 
which the distorting signal is also real. The signal 

exp( - ;~x2) 

is distorted additively by 
cos[27r(x2/2-4x)]rect(x/8) , 

as shown in part a of Fig. 3. The a=0.5th transform is 
shown in part b. One of the complex exponential chirp 
components of the cosine chirp has been separated in this 
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domain and can be masked away, but the other still 
distorts the transform of the Gaussian. After masking out 
the separated chirp component (not shown), we take that 
a=-Ist transform (which is just an inverse Fourier trans-
form), to arrive at the a=-0.5th domain (part c). Here the 
other chirp component is separated and can be blocked out 
by another simple mask. Finally, we take the 0.5th trans-
form to come back to our home domain (part d), where we 
have recovered our Gaussian signal, with a small error. 

The exarnples above have been limited to chirp distor-
tions which are particularly easy to separate in a fractional 

Fourier domain Gust as pure harmonic distortion is 
particularly easy to separate in the ordinary Fourier 
domain). However, it is possible to filter out more general 

types of distortion as well. In some cases this may require 
several consecutive filtering operations in several fractional 

domains of different order.6) There is nothing special about 

our choice of Gaussian signals other than the fact that they 

allow easy analytical manipulation. Also, there is nothing 
special about the 0.5th domain. It just turns out that this 

is the domain of choice for the examples considered above. 

In the above examples we have demonstrated that the 
method works, but did not discuss what led us to trans-
form to a particular domain and what gave us the 
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confidence that doing so will get rid of the distortion. This 

becomes very transparent once one understands the rela-
tionship between the fractional Fourier transform and the 

Wigner distribution. This relationship, as well as the 
general philosophy behind such filtering operations is 
disucced in Ref. 6). 

3. Conclusions 

The concept of fractional Fourier transform is related to 

chirp and wavelet transforms, as well as being intimately 
connected to the concept of space-frequency distributions. 

This leads to the notion of fractional Fourier domains, 
which are discussed at length in Ref. 6). In this papar, we 

have shown numerical examples in which filtering in a 
fractional domain can enable effective noise elimination. 
Because of the ease of performing the fractional Fourier 
transform optically, these operations are relevant for opti-

cal information processing. 
The concept of multiplexing in fractional domains is 

also investigated in ReL. 6), showing that for certain signal 

Wigner distributions, eflicient multiplexing can be realized 

in fractional domains. 
In most of this paper, we work with continuous signals 

which are represented as functions of space or spatial 
frequency. Temporal interpretations of our discussions 
can be provided easily by those interested in them. 
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