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Abstract

This study compares the performances of various statistical pattern recognition techniques for the differentiation of commonly encountered
features in indoor environments, possibly with different surface properties, using simple infrared (IR) sensors. The intensity measurements
obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot
be represented by a simple analytical relationship, therefore complicating the differentiation process. We construct feature vectors based on the
parameters of angular IR intensity scans from different targets to determine their geometry and/or surface type. Mixture of normals classifier
with three components correctly differentiates three types of geometries with different surface properties, resulting in the best performance
(100%) in geometry differentiation. Parametric differentiation correctly identifies six different surface types of the same planar geometry,
resulting in the best surface differentiation rate (100%). However, this rate is not maintained with the inclusion of more surfaces. The results
indicate that the geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting
factor in differentiation. The results demonstrate that simple IR sensors, when coupled with appropriate processing and recognition techniques,
can be used to extract substantially more information than such devices are commonly employed for.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Target differentiation is of considerable interest for intelli-
gent systems that need to interact with and operate in their
environment autonomously. Such systems rely on sensor mod-
ules which are often their only available source of information.
Since the resources of such systems are limited, the available
resources should be used in the best way possible. It is desir-
able to maximally exploit the capabilities of lower cost sensors
before more costly and sophisticated sensors with higher reso-
lution and higher resource requirements are employed. This can
be achieved by employing better characterization and physical
modeling of these sensors.

Although ultrasonic sensors have been widely used for object
detection and ranging, they are limited by their large beam
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width and the difficulty of interpreting their readings due to
specular, higher-order, and multiple reflections from surfaces.
Furthermore, many readily available ultrasonic systems cannot
detect objects up to 0.5 m which corresponds to their blank-out
zone. Therefore, in performing tasks at short distances from ob-
jects, use of inexpensive and widely available sensors such as
simple infrared detectors are preferable to employing ultrasonic
sensors or more costly laser and vision systems. Furthermore,
in a sensor-fusion framework, IR sensors would be perfectly
complementary to these systems which are not suitable for
close-range detection. Infrared detectors offer faster response
times and better angular resolution than ultrasonic sensors and
provide intensity readings at nearby ranges (typically from
a few centimeters up to a meter). The intensity versus range
characteristics are nonlinear and dependent on the properties
of the surface and environmental conditions. Consequently, a
major problem with the use of simple IR detectors is that it is
often not possible to make accurate and reliable range estimates
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based on the value of a single intensity return because the return
depends on both the geometry and surface properties of the
encountered object. Likewise, the surface properties and the
geometry of the target cannot be deduced from simple intensity
returns without knowing its position and orientation.

Due to single intensity readings not providing much infor-
mation about the target properties, recognition capabilities of
IR sensors have been underestimated and underused in most
work. To achieve accurate results with these sensors, their non-
linear characteristics should be analyzed and modeled based
on experimental data. Armed with such characterization and
modeling, their potential can be more fully exploited and their
usage can be extended beyond simple tasks such as counting
and proximity detection. The aim of this study is to maxi-
mally realize the potential of these simple sensors so that they
can be used in more complicated tasks such as differentiation,
recognition, clustering, docking, perception of the environment
and surroundings, and map building. For this purpose, we em-
ploy various statistical pattern recognition techniques (paramet-
ric density estimation, mixture of normals, kernel estimator,
k-nearest neighbor (k-NN), artificial neural network, and sup-
port vector machine classifiers) to classify targets with different
geometries, different surface properties, and the combination
of the two. With the approaches considered in this paper, we
can differentiate a moderate number of targets and/or surfaces
commonly encountered in indoor environments, using a sim-
ple IR system consisting of one emitter and one detector. We
provide a comparison of these approaches based on real data
acquired from simple IR sensors. The results indicate that if
the data acquired from such simple IR sensors are processed
effectively through the use of suitable techniques, substantially
more information about the environment can be extracted than
is commonly achieved with conventional usage.

This paper is organized as follows: In Section 2, we make
an introduction to IR sensing and introduce the IR sensor and
the experimental set up used in this study. Section 3 summa-
rizes our earlier work on target differentiation with IR sensors.
Section 4 provides differentiation of planar surfaces based on
parametric modeling of the IR intensity scans. In Section 5,
statistical pattern recognition techniques based on the param-
eterized model are employed for geometry/surface-type deter-
mination. A comparison of the different techniques considered
is provided in Section 6 together with a discussion. Conclud-
ing remarks are made and directions for future research are
provided in the same section.

2. Infrared (IR) sensing

Most work on pattern recognition involving infrared deals
with the recognition or detection of features or targets in con-
ventional two-dimensional (2D) images. Examples of work in
this category include face identification [1], automatic vehi-
cle detection [2], automatic target recognition [3] and tracking
[4], detection and identification of targets in background clut-
ter [5], remote sensing, and automated terrain analysis [6]. We
note that the differentiation techniques employed in this paper

are different from such operations performed on conventional
images [7] in that here we work not on direct “photographic”
images of the targets obtained by some kind of imaging system,
but rather on angular intensity scans obtained by rotating a
point sensor. The targets we differentiate are not patterns in
a 2D image, but rather objects in space, exhibiting depth, at
different positions with respect to the sensing system.

Simple IR sensors are used in robotics and automation, pro-
cess control, remote sensing, and safety and security systems.
More specifically, they have been used in object and proxim-
ity detection [8], counting [9], distance and depth monitoring,
floor sensing, position measurement and control [10], obsta-
cle/collision avoidance [11], and map building [12]. Other ap-
plications include door detection and mapping of openings in
walls [13], as well as monitoring doors/windows of buildings
and vehicles, and “light curtains” for protecting an area. IR sen-
sors have also been used for automated sorting of waste objects
made of different materials [14].

In earlier work [15], we developed a novel range estima-
tion technique which is independent of surface type since it is
based on the position of the maximum intensity value instead
of surface-dependent absolute intensity values. An intelligent
feature of the system is that its operating range is made adap-
tive based on the maximum intensity of the detected signal.

The IR sensor [16] used in this study is employed in the active
mode and consists of an emitter and detector and works with
20–28V DC input voltage. The emitted light is back-scattered
from the target and an analog output voltage, proportional to
the reflected light, is measured at the detector. The detector
window is covered with an IR filter to minimize the effect of
ambient light on the intensity measurements. Indeed, when the
emitter is turned off, the detector reading is essentially zero. The
sensitivity of the device can be adjusted with a potentiometer
to set the operating range of the system. The maximum range
of operation of the sensor is about 60 cm. The IR sensor (see
Fig. 1(a)) is mounted on a 12 in rotary table [17] to obtain an-
gular intensity scans from the targets. A photograph of the ex-
perimental setup and its schematics can be seen in Figs. 1(b)
and 2, respectively. Basically, the IR sensor, rotating on the
platform, acquires angular scans from targets positioned dif-
ferently. The different target types are a plane, a 90◦ corner, a
90◦ edge, and a cylinder of radius 4.8 cm, each with a height
of 120 cm and with cross-sections given in Fig. 3. All targets
are made of unpolished oak wood. The horizontal extent of all
targets other than the cylinder is large enough that they can be
considered infinite and thus edge effects can be ignored. Some
example angular intensity scans acquired from these targets are
provided in Fig. 4.

3. Review of our earlier work on differentiation with
infrared

3.1. Rule-based target differentiation

As a first attempt in differentiation of targets with simple IR
sensors, we employed a rule-based approach which is based on
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Fig. 1. (a) The IR sensor and (b) the experimental setup used in this study.
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Fig. 2. Top view of the experimental setup. The emitter and detector windows
are circular with 8 mm diameter and center-to-center separation 12 mm. (The
emitter is above the detector.) Both the scan angle � and the surface azimuth
� are measured counter-clockwise from the horizontal axis.

extracting empirical rules by inspecting the nature of the IR in-
tensity scans. The method can achieve position-invariant target
differentiation without relying on the absolute return signal in-
tensities of the IR sensors. Details of the differentiation rules
can be found in Ref. [18]. Based on tests with experimental

cornerplane edge cylinder

Fig. 3. The different target types considered.

data from four target geometries, an average differentiation rate
of 91.3% is achieved.

3.2. Template-based target differentiation

The template-based approach is based on comparing the
acquired IR intensity scans with previously stored templates
acquired from targets with different properties. Hence, this ap-
proach relies on the distinctive natures of the IR intensity scans
and requires the storage of a complete set of reference scans
of interest. We considered the following different cases: targets
with different geometrical properties but made of the same sur-
face material [19], targets made of different surface materials
but of the same planar geometry [20], and targets with both dif-
ferent geometry and surface properties [21], generalizing and
unifying the results of Refs. [19,20].

We experimentally verified the proposed techniques by po-
sitioning the targets at randomly selected locations and collect-
ing test scans (see Refs. [19–21] for details). For targets with
different geometrical properties (plane, corner, edge, and cylin-
der) but made of the same surface material (wood) [19], the
average correct differentiation rate over all target types is 97%.
For different surface materials (aluminum, white wall, brown
paper, and Styrofoam) of the same planar geometry, the aver-
age correct differentiation rate over all surfaces is 87%. For tar-
gets with both different geometry and surface properties (plane,
corner, and edge covered with aluminum, white cloth, and Sty-
rofoam), the average accuracy of differentiation over all target
types is 80%.

4. Parametric surface differentiation

The parametric approach is based on modeling of IR inten-
sity scans [22]. Light reflected from a surface depends on the
wavelength, the distance and the properties of the light source
(i.e., point or diffuse source), and the surface properties of the
objects such as reflectivity, absorptivity, transmittivity, and ori-
entation. Depending on the surface properties, reflectance can
be modeled in different ways [23].

In parametric surface differentiation, only the reflection
coefficients corresponding to the reflection model presented
below are considered as parameters and used in the differ-
entiation process, instead of using the complete IR intensity
scans as in our earlier work reviewed in the previous section.
The surface materials considered are unpolished oak wood,
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Fig. 4. Intensity scans for targets at different distances. Solid lines indicate the model fit and the dotted lines indicate the actual data. (P, plane; E, edge; CY,
cylinder; WD, wood; ST, Styrofoam; WC, white cloth.) (a) P-WD, (b) P-ST, (c) P-WC, (d) E-WD, (e) E-ST, (f) E-WC, (g) CY-WD, (h) CY-ST, and (i) CY-WC.

Styrofoam packaging material, white painted matte wall, white
and black cloth, and white, brown, and violet paper (matte).

Reference intensity scans are collected for each surface type
by positioning the surfaces over their observable ranges with
2.5 cm distance increments, at �=0◦. Resulting reference scans
for three of the eight surface types and three geometries are
shown as examples in Fig. 4 using dotted lines. These inten-
sity scans have been modeled by approximating the surfaces as
ideal Lambertian (or diffusely reflecting) surfaces since all of
the surface materials involved were matte. The received return
signal intensity is proportional to the detector area and is in-
versely proportional to the square of the distance to the surface
and is modeled with three parameters as

I = C0 cos(�C1)

[z/ cos � + R(1/ cos � − 1)]2 . (1)

In Eq. (1), the product of the intensity of the light emitted,
the area of the detector, and the reflection coefficient of the
surface is lumped into the constant C0, and C1 is an additional
coefficient to compensate for the change in the basewidth of
the intensity scans with respect to distance (Fig. 4). A similar
dependence on C1 is used in sensor modeling in Ref. [24]. The
z is the horizontal distance between the rotary platform and the
surface as shown in Fig. 2. The denominator of I is the square
of the distance d between the IR sensor and the surface. From
the geometry of Fig. 2, d +R = (z+R)/ cos �, from which we
obtain d as z/ cos � + R(1/ cos � − 1), where R is the radius
of the rotary platform and � is the angle between the IR sensor
and the horizontal.

Using the model represented by Eq. (1), parameterized curves
have been fitted to the reference intensity scans by employing a
nonlinear least-squares technique based on a model-trust region
method provided by MATLABTM [25]. Resulting curves are
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Fig. 5. Variation of the parameters (a) C0, (b) C1, and (c) z with respect to maximum intensity (dashed, dotted, and solid lines are for planes, edges, and
cylinders, respectively).

shown in Fig. 4 in solid lines. For the reference scans, z is not
taken as a parameter since the distance between the surface and
the IR sensing unit is already known. The initial guesses of the
parameters must be made cleverly so that the algorithm does
not converge to local minima and curve fitting is achieved in a
smaller number of iterations. The initial guess for C0 is made
by evaluating I at �=0◦, and corresponds to the product of I
with z2. Similarly, the initial guess for C1 is made by evaluating
C1 from Eq. (1) at a known angle � different than zero, with
the initial guess of C0 and the known value of z. During curve
fitting, C0 value is allowed to vary between ±2000 of its initial
guess and C1 is restricted to be positive. The variations of
C0, C1, and z with respect to the maximum intensity of the
reference scans are shown in Fig. 5. As the distance d decreases,
the maximum intensity increases and C0 first increases then
decreases but C1 and z both decrease, as expected from the
model represented by Eq. (1).

The proposed method is experimentally verified with planar
surfaces. In the test process, the surfaces are randomly located
at range values between 30 and 52.5 cm and azimuth angles
varying from −45◦ to 45◦. First, the maximum intensity of the
observed intensity scan is detected and the angular value where
this maximum occurs is taken as the azimuth estimate of the

surface. Then, the observed scan is shifted by the azimuth esti-
mate and the model represented by Eq. (1) is fitted as described
above for the reference scans. The initial guess for the distance
z is found from Fig. 5(c) by taking the average of the minimum
possible and the maximum possible range values corresponding
to the maximum value of the recorded intensity scan. (Linear
interpolation is used between the data points in the figure.) This
results in a maximum absolute range error of approximately
2.5 cm. Therefore, the parameter z is allowed to vary between
±2.5 cm of its initial guess. Using the initial guess for z, the
initial guesses for C0 and C1 are made in the same way as ex-
plained before for the reference scans. After nonlinear curve
fitting to the observed scan, we obtain three parameters C0, C1,
and z. In the decision process, the maximum intensity of the
observed scan is used and a value of C1 is obtained by linear
interpolation between the data points in Fig. 5(b) for each sur-
face type. In other words, Fig. 5(b) is used as a look-up table
because of the more distinctive nature of the C1 variation with
respect to maximum intensity. Surface-type decisions are made
by comparing the C1 value of the observed scan with the C1
values of the reference scans for each surface. The surface type
giving the minimum absolute difference is declared to be the
correct one.
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For a set of six surfaces including Styrofoam packaging
material, white painted matte wall, white or black cloth, and
white, brown, and violet paper (also matte), we get a correct
differentiation rate of 100%. We can increase the number of sur-
faces differentiated at the expense of a decrease in the correct
differentiation rate. For example, if we add wood to our test set
keeping either white or black cloth, we get a correct differenti-
ation rate of 86% for the seven surfaces. Similarly, if we form
a set of surfaces excluding wood but keeping both white and
black cloth, we achieve a correct differentiation rate of 83%
for seven surfaces. For all eight surfaces considered, an overall
correct differentiation rate of 73% is achieved. The decrease in
the differentiation rate resulting from adding new surfaces in
the parametric approach does not represent an overall degra-
dation in differentiation rates across all surface types but is
almost totally explained by pairwise confusion of the newly in-
troduced surface with a previously existing one, resulting from
the similarity of the C1 parameter of the intensity scans of the
two confused surfaces. (Similar decreases in differentiation rate
with increasing number of surfaces or objects are also observed
with non-parametric template-based approaches.)

In the template-based approach, where we considered differ-
entiation of surfaces by employing non-parametric approaches,
a maximum correct differentiation rate of 87% over four sur-
faces is achieved. The parametric approach can differentiate
six different surfaces with 100% accuracy. Comparing the
two, we can conclude that the parametric approach is superior
to non-parametric ones, in terms of the accuracy, number of
surfaces differentiated, and memory requirements, since the
non-parametric approaches we considered require the storage
of reference scan signals. By parameterizing the intensity scans
and storing only their parameters, we have eliminated the need
to store complete reference scans.

5. Statistical pattern recognition techniques

In this section, we extend the parametric differentiation ap-
proach presented in the previous section to differentiation of the
geometry of the target types in parameter space, using statisti-
cal pattern recognition techniques. The geometries considered
are plane, edge, and cylinder made of unpolished oak wood.
The surfaces are either left uncovered (plain wood) or alterna-
tively covered with Styrofoam packaging material, white and
black cloth, and white, brown, and violet paper (matte). In the
implementation, PRTools [26] is used.

After nonlinear curve fitting to the observed scan as in Sec-
tion 4, we get three parameters C0, C1, and z. We begin by con-
structing two alternative feature vector representations based
on the parametric representation of the IR scans. The feature
vector x is a 2 × 1 column vector comprised of either the
[C0, Imax]T or the [C1, Imax]T pair, illustrated in Figs. 5(a) and
(b), respectively. Therefore, the dimensionality d of the feature
vector representations is 2.

We associate a class wi with each target type (i = 1, . . . , c).
An unknown target is assigned to class wi if its feature vector
x=[x1, . . . , xd ]T falls in the region �i . A rule which partitions
the decision space into regions �i , i = 1, . . . , c is called a

decision rule. Each one of these regions corresponds to a dif-
ferent target type. Boundaries between these regions are called
decision surfaces. Let p(wi) be the a priori probability of a tar-
get belonging to class wi . To classify a target with feature vec-
tor x, a posteriori probabilities p(wi |x) are compared and the
target is classified into class wj if p(wj |x) > p(wi |x) ∀i �= j .
This is known as Bayes minimum error rule. However, since
these a posteriori probabilities are rarely known, they need to be
estimated. A more convenient formulation of this rule can be
obtained by using Bayes’ theorem: p(wi |x) = p(x|wi)p(wi)/

p(x) which results in p(x|wj)p(wj ) > p(x|wi)p(wi) ∀i �=
j �⇒ x ∈ �j where p(x|wi) are the class-conditional prob-
ability density functions (CCPDFs) which are also unknown
and need to be estimated in their turn based on the training set.
The training set consists of several sample feature vectors xn,
n=1, . . . , Ni which all belong to the same class wi , for a total
of N1+N2+· · ·+Nc=N sample feature vectors. The test set is
then used to evaluate the performance of the decision rule used.
This decision rule can be generalized as qj (x) > qi(x) ∀i �=
j �⇒ x ∈ �j where the function qi is called a discriminant
function.

The various statistical techniques for estimating the CCPDFs
based on the training set are often categorized as non-parametric
and parametric. In non-parametric methods, no assumptions on
the parametric form of the CCPDFs are made; however, this
requires large training sets. This is because any non-parametric
PDF estimate based on a finite sample is biased [27]. In para-
metric methods, specific models for the CCPDFs are assumed
and then the parameters of these models are estimated. These
parametric methods can be categorized as normal and non-
normal models.

5.1. Determination of geometry

5.1.1. Parametric classifiers
5.1.1.1. Parameterized density estimation (PDE). In this
method, the CCPDFs are assumed to be d-dimensional normal:

p(x|wi) = 1

(2�)(d/2)|�i |1/2
exp

[
−1

2
(x − μi )

T�−1
i (x − μi )

]
,

i = 1, . . . , c, (2)

where the μi’s denote the class means, and the �i’s denote
the class-covariance matrices, both of which must be estimated
based on the training set. The most commonly used parame-
ter estimation technique is the maximum likelihood estimator
(MLE) [28] which is also used in this study.

In PDE, d-dimensional homoscedastic and heteroscedastic
normal models are used for the CCPDFs. In the homoscedastic
case, the covariance matrices for all classes are selected equal,
usually taken as a weighted (by a priori probabilities) average of
the individual class-covariance matrices:

∑c
i=1(Ni/N)�̂i [29].

In the heteroscedastic case, they are individually calculated for
each class.

In this study, both homoscedastic and heteroscedastic nor-
mal models have been implemented to estimate the means and
the covariances of the CCPDF for each class (i.e., target type)
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Fig. 6. Discriminant functions for PDE when the [C0, Imax] feature vector
is used.

Table 1
Geometry confusion matrix: homoscedastic PDE using the [C0, Imax]T feature
vector

Geometry Differentiation result Total

P E CY

P 61(0) 0(50) 9(34) 70(84)
E 0(0) 49(43) 6(0) 55(43)
CY 4(0) 5(84) 41(0) 50(84)

Total 65(0) 54(177) 56(34) 175(211)

Numbers outside (inside) the parentheses are for the training (test) scans
(P, plane; E, edge; CY, cylinder).

using the MLE, for each of the two feature vector representa-
tions described above. These are the [C0, Imax]Tand [C1, Imax]T

feature vectors illustrated in Fig. 5(a) and (b), respectively.
The training set consists of N = 175 data pairs for three

classes: N1 =70 planes, N2 =55 edges, and N3 =50 cylinders.
The test set consists of 211 data pairs for three classes: 84
planes, 43 edges, and 84 cylinders. A given test feature vector
is classified into the class for which Eq. (2) is maximum.

Since the feature vector size d is two and the number of
classes c is three, three 2D normal functions are used for clas-
sification. The discriminant functions for PDE are plotted on
the training set feature vectors [C0, Imax]T in Fig. 6. The clas-
sification results are given in Table 1 for both the training and
test sets for homoscedastic PDE. Overall correct differentiation
rates of 86.3% and 20.4% are achieved for the training and test
sets, respectively. The main reason for the low differentiation
rate on the test set is due to the [C0, Imax]T feature vector of
the observed intensity scans not being very distinctive. For the
heteroscedastic case, the geometry confusion matrix is given in
Table 2. The differentiation rates for this case are the same as
in the homoscedastic case.

Equal probability contours of the 2D normal functions are
given in Fig. 7(a) and (b) for each case when the [C1, Imax]T

feature vector is used for differentiation. The corresponding

Table 2
Geometry confusion matrix: heteroscedastic PDE using the [C0, Imax]T feature
vector

Geometry Differentiation result Total

P E CY

P 60(0) 0(46) 10(38) 70(84)
E 0(0) 51(43) 4(0) 55(43)
CY 4(0) 6(84) 40(0) 50(84)

Total 64(0) 57(173) 54(38) 175(211)
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Fig. 7. 2D normal contour plots for (a) homoscedastic (b) heteroscedastic
PDE when the [C1, Imax]T feature vector is used.

discriminant functions are shown in Fig. 8. From Table 3, the
correct differentiation rates for homoscedastic PDE are 96.6%
and 98.6% for the training and test sets, respectively. For the test
data, only three edges are incorrectly classified as cylinders. For
heteroscedastic PDE (Table 4), the differentiation rate on the
training set improves to 98.3% and the correct differentiation
rate on the test set is the same as in the homoscedastic case.
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Fig. 8. Discriminant functions for PDE when the [C1, Imax]T feature vector
is used.

Table 3
Geometry confusion matrix: homoscedastic PDE using the [C1, Imax]T feature
vector

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 49(40) 6(3) 55(43)
CY 0(0) 0(0) 50(84) 50(84)

Total 70(84) 49(40) 56(87) 175(211)

Table 4
Geometry confusion matrix: heteroscedastic PDE using the [C1, Imax]T feature
vector

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 52(40) 3(3) 55(43)
CY 0(0) 0(0) 50(84) 50(84)

Total 70(84) 52(40) 53(87) 175(211)

These results are much better than those obtained with the
classification based on the [C0, Imax]T feature vector. We have
also considered the use of the feature vectors [C0, C1, Imax]T

and [C0, C1]T. However, these did not bring any improvement
over those reported. Since the results indicate that C1 parameter
is more distinctive than C0 in identifying the geometry, from
now on, we concentrate on differentiation based on only the
[C1, Imax]T feature vector. These conclusions have also been
verified for the other classifiers considered below.

5.1.1.2. Mixture of normals (MoN) classifier. In the MoN clas-
sifier, each feature vector in the training set is assumed to
be associated with a mixture of M different and independent

normal distributions [30]. Each normal distribution has proba-
bility density function pj with mean vector μj and covariance
matrix �j :

pj (x|μj , �j ) = 1

(2�)(d/2)|�j |1/2

× exp

[
−1

2
(x − μj )

T�−1
j (x − μj )

]
,

j = 1, . . . , M . (3)

The M normal distributions are mixed according to the follow-
ing model, using the mixing coefficients �j :

p(x|�) =
M∑

j=1

�jpj (x|μj , �j ). (4)

Here, � = [�1, . . . , �M ; μ1, . . . ,μM ; �1, . . . ,�M ] is a
parameter vector which consists of three sets of parameters
and conveniently represents the relevant parameters for the
normals to be mixed. The mixing coefficients should satisfy
the normalization condition

∑M
j=1�j = 1 and 0��j �1 ∀j

and can be thought of as prior probabilities of each mixture
component so that �j = Prob{j th component} = p(j) and∑M

j=1p(j |x, �) = 1. In our implementation, M takes the val-
ues two and three. For the ith class, the parameter vector �i

maximizing Eq. (4) needs to be estimated, corresponding to
the MLE. Since deriving an analytical expression for the MLE
is not possible in this case, �i is estimated by using expected-
maximization (E-M) clustering which is iterative [26]. The
elements of the parameter vector �i are updated recursively
as follows:

�ijk = 1

Ni

∑Ni

n=1
p(j |xn, �i,k−1),

μijk =
∑Ni

n=1xnp(j |xn, �i,k−1)∑Ni

n=1p(j |xn, �i,k−1)
,

�ijk =
∑Ni

n=1(xn − μijk)(xn − μijk)
Tp(j |xn, �i,k−1)∑Ni

n=1p(j |xn, �i,k−1)

where i = 1, . . . , c and j = 1, . . . , M . (5)

Here, �i,k is the parameter vector estimate of the ith class
at the kth iteration step and Ni is the number of feature vec-
tors in the training set representing the ith class. The expecta-
tion and maximization steps are performed simultaneously. The
algorithm proceeds by using the newly derived parameters as
the guess for the next iteration. With E-M clustering, even if the
dimensionality of the feature vectors increases, fast and reliable
parameter estimation can be accomplished.

Each class is considered independent from the others and
training is performed separately for each class. For this reason,
addition of new classes can be done conveniently by adding
the corresponding feature vectors to the training data set and
estimating the corresponding class parameter vector.

After estimating the parameter vectors for each class based
on the training set feature vectors, testing is done as follows:
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Fig. 9. Discriminant functions for the MoN classifier when the [C1, Imax]T
feature vector is used.

Table 5
Geometry confusion matrix: MoN classifier (M = 3) using the [C1, Imax]T

feature vector

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 55(43) 0(0) 55(43)
CY 0(0) 0(0) 50(84) 50(84)

Total 70(84) 55(43) 50(84) 175(211)

a target with a given test feature vector x is assigned to the
class whose parameter vector �i maximizes Eq. (4) so that
p(x|�i ) > p(x|�l ) ∀i �= l. Then, the target is labeled as a
member of class wi .

The discriminant functions for classification based on
[C1, Imax]T feature vector are shown in Fig. 9. Differentiation
results for M = 3 are given in Table 5 in the form of a con-
fusion matrix. For both M = 2 and 3, all training targets are
correctly classified using the [C1, Imax]T feature vector. In the
tests, for the M = 3 case (Table 5, in parentheses), again 100%
correct differentiation rate is achieved. For the M = 2 case,
the only difference in the test results is that one of the edges
is misclassified as a cylinder so that the correct classification
rate falls to 99.5%.

5.1.2. Non-parametric classifiers
In this section, we consider different non-parametric clas-

sifiers, which are the kernel estimator, k-NN, artificial neural
network, and support vector machine classifiers.

5.1.2.1. Kernel estimator (KE). KE is a family of PDF estima-
tors first proposed by Fix and Hodges in 1951 [31]. In the KE

method, the CCPDF estimates p̂(x|wi) are of the form

p̂(x|wi) = 1

Nih
d
i

Ni∑
n=1

K

(
x − xn

hi

)
, i = 1, . . . , c, (6)

where x is the d-dimensional feature vector at which the es-
timate is being made and xn, n = 1, . . . , Ni are the training
set sample feature vectors associated with class wi . Here, hi is
called the spread or smoothing parameter or the bandwidth of
the KE, and K(z) is a kernel function which satisfies the con-
ditions K(z)�0 and

∫
K(z) dz = 1. In this method, the selec-

tion of the bandwidth hi is important [32,33]. If hi is selected
too small, p̂(x|wi) degenerates into a collection of Ni sharp
peaks, each located at a sample feature vector. On the other
hand, if hi is selected too large, the estimate is oversmoothed
and an almost uniform CCPDF results. Usually, hi is chosen
as a function of Ni such that limNi→∞ h(Ni) = 0.

In the implementation of this method, since d = 2, we em-
ployed a 2D normal kernel function. The bandwidth hi for
the ith class is pre-computed based on the Ni sample feature
vectors available for this class by optimization with respect to
leave-one-out error [26]. After hi’s are computed, a test fea-
ture vector x is classified into that class for which the CCPDF
in Eq. (6) is maximized. This requires the training data to be
stored throughout testing.

5.1.2.2. k-Nearest neighbor (k-NN) classifier. Consider the
k-nearest neighbors of a feature vector x in a set of several
feature vectors. Suppose ki of these k vectors come from
class wi . Then, a k-NN estimator for class wi can be de-
fined as p̂(wi |x) = ki/k, and p̂(x|wi) can be obtained from
p̂(x|wi)p̂(wi) = p̂(wi |x)p̂(x). This results in a classification
rule such that x is classified into class wj if kj = maxi (ki),
where i = 1, . . . , c. In other words, the k-NNs of the vector x
in the training set are considered and the vector x is classified
into the same class as the majority of its k-NNs.

A major disadvantage of this method is that a pre-defined
rule for the selection of the value of k does not exist [34]. In
this study, the number of nearest neighbors k is determined by
optimization with respect to leave-one-out error. In the imple-
mentation of the k-NN classifier, k values varying between 1
and 12 have been considered. For k = 1, 2, and 3, the same
correct differentiation rates (given below) are obtained for the
training and test sets. For larger values of k, the errors start in-
creasing. Again, the training data must be stored during testing.

In Fig. 10, the discriminant functions for both the KE and
the k-NN classifier are illustrated when the [C1, Imax]T feature
vector is used. For both classifiers, the training targets are cor-
rectly differentiated with 100% correct differentiation rate. For
the test targets, only one edge target is incorrectly classified
as a cylinder, corresponding to a correct differentiation rate of
99.5%.

5.1.2.3. Artificial neural network (ANN) classifiers. Feed-
forward ANNs trained with back-propagation (BP) and
Levenberg–Marquardt (LM) algorithms, and a linear percep-
tron (LP) are used as classifiers. The feed-forward ANN has
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Fig. 10. Discriminant functions for the KE and the k-NN classifiers when
the [C1, Imax]T feature vector is used.
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Fig. 11. Discriminant functions for ANN classifiers when the [C1, Imax]T
feature vector is used.

one hidden layer with four neurons. The number of neurons in
the input layer is two (since the feature vector consists of two
parameters) and the number of neurons in the output layer is
three. LP is the simplest type of ANN, used for classification
of two classes that are linearly separable. LP consists of a sin-
gle neuron with adjustable input weights and a threshold value
[35]. If the number of classes is greater than two, LPs are
used in parallel. One perceptron is used for each output. The
maximum number of epochs is chosen as 1000. The weights
are initialized randomly and the learning rate is chosen as 0.1.
MATLABTM Neural Network Toolbox is used for the imple-
mentation. The discriminant functions are given in Fig. 11
for the three classifiers. The correct differentiation rates using
the BP algorithm are given in Table 6. Differentiation rates of
98.3% and 98.6% are achieved for the training and test sets,
respectively. When training is done by LM, the same correct

Table 6
Geometry confusion matrix: ANN trained with BP

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 52(40) 3(3) 55(43)
CY 0(0) 0(0) 50(84) 50(84)

Total 70(84) 52(40) 53(87) 175(211)

Table 7
Geometry confusion matrix: ANN trained with LM

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 52(42) 3(1) 55(43)
CY 0(0) 0(0) 50(84) 50(84)

Total 70(84) 52(42) 53(85) 175(211)

Table 8
Geometry confusion matrix: LP

Geometry Differentiation result Total

P E CY

P 70(84) 0(0) 0(0) 70(84)
E 0(0) 45(32) 10(11) 55(43)
CY 0(0) 29(39) 21(45) 50(84)

Total 70(84) 74(71) 31(56) 175(211)

differentiation rate is obtained on the training set (see
Table 7). However, this classifier is better than the BP method
in the tests, where only one edge target ismisclassified as a
cylinder, resulting in a correct differentiation rate of 99.5%.
The results for the LP classifier are given in Table 8. As ex-
pected from the distribution of the parameters, because the
classes are not linearly separable, lower correct differentiation
rates of 77.7% and 76.3% are achieved on the training and test
sets, respectively.

5.1.2.4. Support vector machine (SVM) classifier. SVM classi-
fier is a machine learning technique proposed early in the eight-
ies [36]. It has been used in applications such as object, voice,
and handwritten character recognition, and text classification.

If the feature vectors in the original feature space are not
linearly separable, SVMs preprocess and represent them in a
space of higher dimension where they become linearly separa-
ble. The dimension of the transformed space may sometimes
be much higher than the original feature space. With a suitable
nonlinear mapping �(.) to a sufficiently high dimension, data
from two different classes can always be made linearly separa-
ble, and separated by a hyperplane. The choice of the nonlin-
ear mapping depends on the prior information available to the
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designer. If such information is not available, one might choose
to use polynomials, Gaussians, or other types of basis func-
tions. The dimensionality of the mapped space can be arbitrarily
high. However, in practice, it may be limited by computational
resources. The complexity of SVMs is related to the number
of resulting support vectors rather than the high dimensionality
of the transformed space.

Consider SVMs in a binary classification setting. We are
given the training feature vectors xi that are vectors in some
space X ⊆ Rd and their labels li ∈ {−1, 1} where i=1, . . . , N .
The goal in training a SVM is to find the separating hyper-
plane with the largest margin so that the generalization of the
classifier is better. All vectors lying on one side of the hyper-
plane are labeled as +1, and all vectors lying on the other side
are labeled as −1. The support vectors are the (transformed)
training patterns that lie closest to the hyperplane and are at
equal distance from it. They correspond to the training samples
that define the optimal separating hyperplane and are the most
difficult patterns to classify, yet the most informative for the
classification task.

More generally, SVMs allow one to project the original train-
ing data in space X to a higher dimensional feature space F
via a Mercer kernel operator K [37]. We consider a set of clas-
sifiers of the form f (x)=∑N

i=1�iK(xi , x). When f (x)�0, we
label x as +1, otherwise as −1. When K satisfies Mercer’s con-
dition, K(u, v) = �(u) · �(v) where �(.) : X → F is a non-
linear mapping and “·” denotes the inner product. We can then
rewrite f (x) as f (x) = a · �(x), where a = ∑N

i=1�i �(xi ) is a
weight vector. Thus, by using K, the training data is projected
into a new feature space F which is often higher dimensional.
The SVM then computes the �i’s that correspond to the max-
imal margin hyperplane in F. By choosing different kernel
functions, we can project the training data from X into spaces
F for which hyperplanes in F correspond to more complex
decision boundaries in the original space X. Hence, by nonlin-
ear mapping of the original training patterns into other spaces,
decision functions can be found using a linear algorithm in the
transformed space by only computing the kernel K(xi , x).

The function f (x)=a ·�(x) is a linear discriminant function
in the transformed space based on the hyperplane a · �(x) =
0. Here, both the weight vector and the transformed feature
vector have been augmented by one dimension to include a bias
weight so that the hyperplanes need not pass through the origin.

Table 9
Correct differentiation percentages for different classifiers

Data set Classification techniques

PDE-HM PDE-HT MoN-2 MoN-3 KE k-NN ANN-BP ANN-LM ANN-LP SVM-P SVM-E SVM-R

Training 96.6 98.3 100 100 100 100 98.3 98.3 77.7 100 100 100
Test 98.6 98.6 99.5 100 99.5 99.5 98.6 99.5 76.3 99.5 99.5 99.1

PDE-HM, parametric density estimation-homoscedastic; PDE-HT, parametric density estimation-heteroscedastic; MoN-2, mixture of normals with two compo-
nents; MoN-3, mixture of normals with three components; KE, kernel estimator; k-NN, k-nearest neighbor; ANN-BP, ANN trained with BP; ANN-LM, ANN
trained with LM; ANN-LP, ANN trained with LP; SVM-P, SVM with polynomial kernel; SVM-E, SVM with exponential kernel; SVM-R, SVM with radial
kernel.

A separating hyperplane ensures

lif (xi ) = lia · �(xi )�1 for i = 1, . . . , N . (7)

It can be shown that finding the optimal hyperplane corresponds
to minimizing the magnitude of the weight vector ‖a‖2 subject
to the constraint given by Eq. (7) [38]. Using the method of
Lagrange multipliers, we construct the functional

L(a, �) = 1

2
‖a‖2 −

N∑
i=1

�i[lia · �(xi ) − 1], (8)

where the second term in the above equation expresses the
goal of classifying the points correctly. To find the optimal
hyperplane, we minimize L(a, �) with respect to the weight
vector a, while maximizing with respect to the undetermined
Lagrange multipliers �i �0. This can be done by solving the
constrained optimization problem by quadratic programming
[26] or by other alternative techniques. The solution of the
weight vector is a∗=∑N

i=1li�i�(xi ) corresponding to �i = li�i .
Then the decision function is given by

f ∗(x) =
N∑

i=1

�i li�(xi ) · �(x). (9)

In this study, the method described above is applied to dif-
ferentiate target feature vectors from multiple classes. Follow-
ing the one-versus-rest method, c different binary classifiers are
trained, where each classifier recognizes one of c target types.
SVM classifiers with polynomial, exponential, and radial basis
function kernels are used. The kernel functions are Kp(x, xi )=
(x · xi + 1)3, Ke(x, xi ) = e−‖x−xi‖, Kr(x, xi ) = e−‖x−xi‖2

, re-
spectively [26]. The dimension of the feature space F is 3.
Hundred percent correct differentiation rate is achieved on the
training set for all of the SVM classifiers. For the test set, the
correct differentiation rates are 99.5%, 99.5%, and 99.1% for
SVM classifiers with polynomial, exponential, and radial basis
function kernels, respectively. Therefore, the polynomial and
exponential kernels result in the highest classification rates.

To summarize the results of the statistical pattern recognition
techniques for geometry classification based on the [C1, Imax]T

feature vector, the overall differentiation rates are given in
Table 9. Best classification rate is obtained for the test scans
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Table 10
Overview of the differentiation techniques compared

Differentiation technique Type of geometry Type of surface Feature Correct diff. (%) Training data Learning Parametric

Rule-based [18] P,C,E,CY WD Geometry 91.3 Used, not stored No No
Template-based Used No No
[19] P,C,E,CY WD Geometry 97
[20] P AL,WW,BR,ST Surface 87
[21] P,C,E AL,WC,ST Geometry 99

” P,C,E ” Surface 81
” P,C,E ” Geometry + Surface 80

Parametric [22] P ST,WW,WC(BC), Surface 100 Used, not stored Yes Yes
WP,BR,VP

” ST,WW,WC(BC), ” 86
WP,BR,VP,WD

” ST,WW,WC,BC, ” 83
WP,BR,VP

” ST,WW,WC,BC, ” 73
WP,BR,VP,WD

Statistical P,E,CY ST,WC,BC,
Pattern recognition WP,BR,VP,WD Geometry
PDE-HM, PDE-HT ” ” ” 98.6 Used, not stored No Yes
MoN-3 ” ” ” 100 Used, not stored No Yes
KE ” ” ” 99.5 Used, stored No No
k-NN ” ” ” 99.5 Used, stored No No
NN-LM ” ” ” 99.5 Used, not stored Yes No
SVM-P, SVM-E ” ” ” 99.5 Used, not stored No No

P, plane; C, corner; E, edge; CY, cylinder; AL, Aluminum; WD; wood; WC, white cloth; BC: black cloth; WW, white wall; WP, white paper; BR, brown
paper; VP, violet paper.

using the MoN classifier with three components. This is fol-
lowed by MoN with two components, KE, k-NN, and SVM with
polynomial and exponential kernels, equally. Ranking accord-
ing to highest classification rate continues as ANN trained with
LM algorithm, SVM with radial kernel, heteroscedastic and
homoscedastic PDE, ANN trained with BP, and ANN trained
with LP.

5.2. Determination of surface type

Parametric surface differentiation is a more difficult prob-
lem than geometry differentiation. This is clearly seen in the
very similar variation of the parameters for different surfaces
corresponding to the same geometry (Fig. 5). In Ref. [22], pla-
nar surfaces covered with six different surfaces are correctly
classified with 100% correct differentiation rate. Although we
succeeded with surface differentiation for planar surfaces, the
surface differentiation results for other geometries were not as
good. The above classification approaches were applied to dif-
ferentiate between surface types assuming the geometry of the
targets is determined correctly beforehand. For example, for
cylindrical targets, the classification error is about 85% when
PDE is used. Since the results were not promising, no further
attempt has been made to differentiate surface types in para-
metric space.

As an alternative, we extracted features from these intensity
scans corresponding to different surfaces of the same geome-
try using forward feature selection. Since the magnitude and

basewidth of intensity scans both change with distance, the in-
tensity scans are first normalized before feature extraction. We
experimented with different features of the intensity scans by
extracting the points representing the intensity scans best and
using them for differentiation. However, the differentiation re-
sults were not promising. For example, for cylindrical targets,
the surfaces are correctly classified only with a correct differen-
tiation rate of 20%. Different initialization procedures did not
result in any improvement in feature extraction.

6. Discussion and conclusion

We extended the parametric surface differentiation approach
proposed in Ref. [22] to differentiate both the geometry and sur-
face type of the targets using statistical pattern recognition tech-
niques. We compared different classifiers such as PDE, MoN,
kernel estimator, k-NN, ANN, and SVM for geometry-type de-
termination. Best differentiation rates (100%) are obtained for
the MoN classifier with three components. MoN classifier per-
forms better than models which associate the data with a sin-
gle distribution. It is also more robust and the training set can
be easily updated when new classes need to be added to the
database.

Table 10 summarizes the results for all of the differentiation
techniques considered in this study and in our earlier related
works, allowing for their overall comparison. Only the best
differentiation rates are given for the different variations of the
methods considered.
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In geometry classification, the greatest difficulty is encoun-
tered in the differentiation of edges of different surface types.
Surface differentiation was not as successful as geometry dif-
ferentiation due to the similar characteristics of the feature vec-
tors of different surface types for non-planar geometries. The
results indicate that the geometrical properties of the targets
are more distinctive than their surface properties, and surface
determination is the limiting factor in differentiation. Based on
the data we have collected and the differentiation results, it
seems possible to increase the vocabulary of different geome-
tries, provided they are not too similar. However, the same can-
not be said for the number of different surfaces. For a given
total number of distinct targets, increasing the number of sur-
faces and decreasing the number of geometries will in general
make the results worse. On the other hand, decreasing the num-
ber of surfaces and increasing the number of geometries will
in general improve the results.

This work demonstrates that simple IR sensors, when cou-
pled with appropriate processing and recognition techniques,
can be used to extract substantially more information about the
environment than such devices are commonly employed for.
This will allow the possible applications to go beyond rela-
tively simple tasks such as simple object and proximity detec-
tion, counting, distance and depth monitoring, floor sensing,
position measurement, obstacle/collision avoidance. As such,
dealing with tasks such as differentiation, classification, recog-
nition, clustering, position estimation, map building, perception
of the environment and surroundings, autonomous navigation,
and target tracking will be possible.

The demonstrated system would find application in intelli-
gent autonomous systems such as mobile robots whose task
involves surveying an unknown environment made of different
surface types. Industrial applications where different materi-
als/surfaces must be identified and separated may also benefit
from this approach.

Given the attractive performance-for-cost of IR-based sys-
tems, we believe that the results of this study will be useful
for engineers designing or implementing IR systems and re-
searchers investigating algorithms and performance evaluation
of such systems. While we have concentrated on IR sensing,
the techniques evaluated and compared in this paper may be
useful for other sensing modalities and environments where the
objects are characterized by complex signatures and the infor-
mation from a multiplicity of partial viewpoints must be com-
bined and resolved.
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