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Abstract: Wearable motion sensors are assumed to be correctly positioned and oriented in most of
the existing studies. However, generic wireless sensor units, patient health and state monitoring
sensors, and smart phones and watches that contain sensors can be differently oriented on the
body. The vast majority of the existing algorithms are not robust against placing the sensor units at
variable orientations. We propose a method that transforms the recorded motion sensor sequences
invariantly to sensor unit orientation. The method is based on estimating the sensor unit orientation
and representing the sensor data with respect to the Earth frame. We also calculate the sensor
rotations between consecutive time samples and represent them by quaternions in the Earth frame.
We incorporate our method in the pre-processing stage of the standard activity recognition scheme
and provide a comparative evaluation with the existing methods based on seven state-of-the-art
classifiers and a publicly available dataset. The standard system with fixed sensor unit orientations
cannot handle incorrectly oriented sensors, resulting in an average accuracy reduction of 31.8%.
Our method results in an accuracy drop of only 4.7% on average compared to the standard system,
outperforming the existing approaches that cause an accuracy degradation between 8.4 and 18.8%.
We also consider stationary and non-stationary activities separately and evaluate the performance
of each method for these two groups of activities. All of the methods perform significantly better
in distinguishing non-stationary activities, our method resulting in an accuracy drop of 2.1% in this
case. Our method clearly surpasses the remaining methods in classifying stationary activities where
some of the methods noticeably fail. The proposed method is applicable to a wide range of wearable
systems to make them robust against variable sensor unit orientations by transforming the sensor
data at the pre-processing stage.

Keywords: activity recognition and monitoring; patient health and state monitoring; wearable
sensing; orientation-invariant sensing; motion sensors; accelerometer; gyroscope; magnetometer;
pattern classification

1. Introduction

As a consequence of the development and pervasiveness of sensor technology and wireless
communications, wearable sensors have been reduced in size, weight, and cost, gained wireless
transmission capabilities, and been integrated into mobile devices such as smart phones, watches,
and bracelets [1]. Such smart devices, however, have limited resources. Their effectiveness
is determined by the screen size, sensor, computing processor, battery and storage capacities,
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as well as the wireless data transmission capability [2,3]. Activity recognition with wearables has
various potential applications in the healthcare domain in the form of medical state monitoring,
memory enhancement, medical data access, and emergency communications [4,5]. Health state
monitoring and activity recognition using wearable sensors is advantageous compared to approaches
based on computer vision and radio frequency identification that rely on external sensors such as
cameras or antennas [6].

With the advancements mentioned above, placing wearable devices on the body properly has
become a challenging and intrusive task for the user, making wearable devices prone to be fixed to the
body at incorrect orientations. For instance, disabled, injured, elderly people or children whose health,
state, or activities can be monitored using wearables [7] tend to place the sensor units at incorrect
or variable orientations. Mobile phones can be carried in pockets at different orientations. However,
the majority of existing wearable activity recognition studies neglect this issue and assume that the
sensor units are properly oriented or, alternatively, use simple features (such as the vector norms)
that are invariant to sensor unit orientation. In this study, we focus on orientation invariance in a
generic activity recognition framework. Our aim is to develop a methodology that can be applied at
the pre-processing stage of activity recognition to make this process robust to variable sensor unit
orientation, as depicted in Figure 1.

Figure 1. An overview of the proposed method for sensor unit orientation invariance.

We utilize tri-axial wearable motion sensors (accelerometer, gyroscope, and magnetometers)
to capture the body motions. Data acquired by these sensors not only contain information about
the body movements but also about the orientation of the sensor unit. However, these two types of
information are coupled in the sensory data and it is not straightforward to decouple them. More
specifically, a tri-axial accelerometer captures the vector sum of the gravity vector and the acceleration
resulting from the motion. A tri-axial gyroscope detects the angular rate about each axis of sensitivity
and can provide the angular velocity vector. A tri-axial magnetometer captures the vector sum of the
magnetic field of the Earth and external magnetic sources, if any.

The acceleration vector acquired by an accelerometer approximately points in the down direction
of the Earth frame, provided that the gravitational component of the total acceleration is dominant
over the acceleration components resulting from the motion of the sensor unit. However, even if
the acceleration vector consists of mainly the gravitational component, by itself it is not sufficient to
estimate the sensor unit orientation because there exist infinitely many solutions to the sensor unit
orientation, obtained by rotating the correct solution about the direction of the acquired acceleration
vector (Figure 2a). Hence, we need to incorporate the magnetometer into the orientation estimation
as well. The magnetic field vector acquired by a magnetometer points in a fixed direction in the
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Earth frame (the magnetic North) (Figure 2b), provided that there are no external magnetic sources or
distortion and the variation of the Earth’s magnetic field is neglected.

(a) (b)

Figure 2. (a) With only the acquired acceleration field vector a, there exist infinitely many solutions
to the sensor unit orientation (two are shown); (b) the acquired magnetic field vector m uniquely
identifies the sensor unit orientation.

By taking the reference directions obtained from the accelerometer and the magnetometer as
the vertical axis and the (magnetic) North axis of the Earth frame, respectively, we can calculate the
orientation of the sensor unit with respect to the Earth frame. However, this estimation is reliable only
in the long term because the gravity component is superposed with the acceleration caused by the
motion of the unit and the Earth’s magnetic field is superposed with the external magnetic sources
(if any). Hence, we also estimate the sensor unit orientation by integrating the gyroscope angular rate
output, which is reliable only in the short term because of the drift error [8]. To obtain an accurate
orientation estimate both in the short and long term, we merge these two sources of information.
Thus, we exploit the information provided by the three types of sensors to determine the sensor unit
orientation with respect to the Earth frame as a function of time.

Once we estimate the sensor unit orientation with respect to the Earth frame, we can transform
the acquired data from the sensor frame to the Earth frame such that they become invariant to sensor
unit orientation. In addition, to include the information about the rotational motion of the sensor
unit, we represent the sensor unit rotation between consecutive time samples in the Earth frame by
using a similarity transformation. We show that appending this rotational motion data to the sensor
data and representing both in the Earth frame improves the activity recognition accuracy. Figure 1
provides an overview of the proposed method with experimentally acquired sensor sequences during
a walking activity.

We utilize widely available sensor types and do not make any assumptions about the sensor
configuration, data acquisition, activities, and activity recognition procedure. Our proposed method
can be integrated into existing activity recognition systems by applying a transformation to the
time-domain data in the pre-processing stage without modifying the rest of the system or the
methodology. We outperform the existing methods for orientation invariance and achieve an accuracy
close to the fixed orientation case.

The rest of the article is organized as follows: In Section 2, we summarize the related work on
wearable sensing that allows versatility in sensor placement. Section 3 presents the transformations
applied to the sensor data to achieve orientation invariance. In Section 4, we describe the dataset
together with the proposed and existing methodology on orientation invariance, explain the activity
recognition procedure, and present the data analysis results including accuracies and run times of
the data transformation techniques and the classifiers. In Section 5, we provide a discussion of the
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results. Section 6 summarizes our contributions, draws conclusions, and indicates some directions for
future research.

2. Related Work

Although most of the existing activity recognition studies assume fixed sensor unit
orientations [9,10], a number of methods have been proposed to achieve orientation invariance
with wearable sensors. These methods can be grouped as transformation-based geometric methods,
learning-based methods, and other approaches.

2.1. Transformation-Based Geometric Methods

A straightforward method for achieving orientation invariance is to calculate the magnitudes
(the Euclidean norms) of the 3D vectors acquired by tri-axial sensors and to use these magnitudes as
features in the classification process instead of individual vector components. When the sensor unit is
placed at a different orientation, the magnitude of the sensor readings remains the same, making this
method invariant to sensor unit orientation [10–12]. Reference [10] states that a significant amount
of information is lost with this approach and the accuracy drops off even for classifying simple daily
activities. Instead of using only the magnitude, references [13–15] append the magnitude of the tri-axial
acceleration vector as a fourth axis to the tri-axial data. Reference [13] shows that this modification
slightly increases the accuracy compared to using only the tri-axial acceleration components. Even if
the magnitude of the acceleration is not appended to the data, the limited number of sensor unit
orientations considered (only four) allows accurate classification to be achieved with Support Vector
Machine (SVM) classifiers [13]. Reference [16] uses the magnitude, the y-axis data, and the squared
sum of x and y axes of the tri-axial acceleration sequences acquired by a mobile phone, assuming that
the orientation of the phone carried in a pocket has natural limitations: the screen of the phone either
faces inward or outward.

In a number of studies [17–19], the direction of the gravity vector is estimated by averaging the
acceleration vectors in the long term. This is based on the assumption that the acceleration component
associated with daily activities averages out to zero, causing the gravity component to remain dominant.
Then, the amplitude of the acceleration along the gravity vector direction and the magnitude of
the acceleration perpendicular to that direction are used for activity recognition [17–19], which is
equivalent to transforming tri-axial sensor sequences into bi-axial ones. In terms of activity recognition
accuracy, in reference [17], this method is shown to perform slightly better and in reference [19],
significantly worse than using only the magnitude of the acceleration vector.

In addition to the direction of the gravity vector, reference [20] also estimates the direction of
the forward-backward (saggital) axis of the human body based on the assumption that most of
the body movements as well as the variance of the acceleration sequences are in this direction.
The sensor data are transformed into the body frame whose axes point in the direction of the
gravity vector, the forward-backward direction of the body that is perpendicular to that, and a
third direction perpendicular to both, forming a right-handed coordinate frame. The method in [20]
does not distinguish between the forward and backward directions of the body, whereas reference [10]
determines the forward direction from the sign of the integral of the acceleration as the subject walks.

Reference [21] assumes that incorrect placement of a sensor unit causes only shifts in the class
means in the feature space. The class means of a Bayesian classifier are adapted to the data by using
the expectation-maximization algorithm, and it is shown that the accuracy improves for one dataset
and diminishes for another. To test for orientation invariance, sensor data are artificially rotated either
about the x or z axis of the sensor unit. In this study, sensor unit rotation about an arbitrary axis is not
considered and the assumption regarding the shifts in the class means is a strong one since such shifts
may not always be significant.

Reference [22] proposes a coordinate transformation from the sensor frame to the Earth frame to
achieve orientation invariance. To transform the data, the orientation of a mobile phone is estimated
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based on the data acquired from the accelerometer, gyroscope, and magnetometer of the sensor
unit embedded in the device. An accuracy level close to the fixed orientation case is obtained by
representing the sensor data with respect to the Earth frame. However, only two different orientations
of the phone are considered, which is a major limitation of the study in [22]. Reference [23] calculates
three principal axes based on acceleration and angular rate sequences by using principal component
analysis (PCA) and represents the sensor data with respect to these axes.

2.2. Learning-Based Methods

Reference [24] proposes a high-level machine-learning approach for activity recognition that
can tolerate incorrect placement (both position and orientation) of some of multiple wearable sensor
units. In the standard approach, features extracted from all the sensor units are aggregated and the
activity is classified at once. In reference [24], the performed activity is classified by processing the data
acquired from each sensor unit separately and the decisions are fused by using the confidence values.
The proposed method is compared with the standard approach for different sets of activities, features,
and different numbers of incorrectly placed sensor units by using three types of classifiers. When the
subjects are requested to place the sensor units at any position and orientation on the appropriate body
parts, incorrect placement of some of the units can be tolerated when all nine units are employed, but
not with only a single unit.

Among the references [25–27] that employ deep learning for activity recognition, reference [27]
increases robustness to variable sensor unit orientations by summing the features extracted from the
x, y, z axes.

2.3. Other Approaches

Reference [28] proposes to classify the sensor unit orientation to compensate for variations in
orientation. Dynamic portions of the sensor sequences are extracted by thresholding the standard
deviation of the acceleration sequence and four pre-determined sensor unit orientations are perfectly
recognized by a one-nearest-neighbor (1-NN) classifier. Then, the sensory data are rotated accordingly
prior to activity recognition. However, the number of sensor unit orientations considered is again very
limited and the direction of one of the sensor axes is common to all four orientations.

Reference [29] proposes an activity recognition scheme invariant to sensor orientation and position,
based on tri-axial accelerometers. Orientation invariance is achieved by calibration movements to
estimate the sensor orientation. With sensor units fixed to the body, the subject performs two static
postures for a few seconds. Then, the axes of a new coordinate frame are determined by using
Gram-Schmidt ortho-normalization applied to the average acceleration vectors corresponding to the
calibration postures.

In some studies [30,31], the sensor unit is allowed to be placed at an incorrect position on the
same body part but its orientation is assumed to remain fixed throughout the activity, which is not
realistic. Reference [30] claims that the sensor unit orientation can be estimated without much effort in
most cases, which is not always true according to the results obtained in the literature [32,33].

In our earlier work [34–36], we have proposed two different approaches to transform and make
time-domain sensor data invariant to the orientations at which the sensor units are fixed to the body.
The first approach is a heuristic transformation where geometrical features invariant to the sensor
unit orientation are extracted from the sensor data and used in the classification process [34,35],
analogous to a method proposed by [37] for gait analysis. In the second approach, sensor sequences are
represented with respect to three principal axes that are calculated using singular value decomposition
(SVD) [34,36]. In both approaches, the transformed sequences are mathematically proven to be
invariant to sensor unit orientations. Unlike most of the other studies that investigate orientation
invariance, the proposed heuristic and SVD-based methods are compared with the fixed orientation
case and shown to decrease the accuracy by 15.5% and 7.6%, respectively, on average, over five publicly
available datasets, four state-of-the-art classifiers, and two cross-validation techniques. It is also shown
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in [34] that randomly oriented sensor units degrade the accuracy by 21.2% when the untransformed
sensor data are used for classification. In this article, as explained in Section 4.3, we use a wider set of
classifiers and leave-one-subject-out (L1O) cross-validation technique for better generalizability [38],
in which case our newly proposed method achieves a noticeably higher accuracy than our previously
proposed methods [34–36].

2.4. Discussion

The activity recognition methods in most of the existing studies are not generic and the
results are neither consistent nor comparable because they use different datasets and sensor
configurations. Furthermore, in most studies, the proposed orientation-invariant methods are not
evaluated comparatively including the case with fixed sensor unit orientations. These methods
either impose a major restriction on the possible sensor unit orientations or the types of body
movements, which prevents them from being used in a wide range of applications such as health,
state, and activity monitoring of elderly or disabled people. The aim of our study is to propose a novel
orientation-invariant transformation and to comparatively and fairly observe its impact on the activity
recognition accuracy based on the same dataset. To this end, we execute the activity recognition scheme
with and without applying our transformation in the pre-processing stage for comparison between
fixed and variable sensor unit orientations. We also implement the existing orientation invariance
methods to compare them with ours. Furthermore, we artificially rotate the sensor data to observe the
effects of incorrectly oriented sensor units on the standard activity recognition system that is originally
designed for fixed sensor unit orientations.

3. Proposed Methodology to Achieve Invariance to Sensor Unit Orientation

To achieve orientation invariance with wearable motion sensor units in activity recognition,
we propose to transform the acquired sensor data such that they become invariant to the orientations
at which the sensor units are worn on the body. To transform the data, we first estimate the orientation
of each sensor unit with respect to the Earth frame as a function of time. Unlike most existing studies,
we consider a continuum of sensor orientations.

3.1. Estimation of Sensor Orientation

We define the Earth’s coordinate frame E such that the Earth’s z axis, zE, points downwards and
the Earth’s x axis, xE, points in the direction of the component of the Earth’s magnetic field that is
perpendicular to the z axis, which is roughly the North direction, as illustrated in Figure 3. The Earth
frame is also called the North-East-Down frame [39].

Let Sn be the rotating sensor frame at time sample n. Estimating the sensor unit orientation
involves calculating a 3× 3 rotational transformation matrix RE

Sn
that describes the sensor frame Sn with

respect to the Earth frame E at each time sample n. The Earth frame and the sensor frame at consecutive
time samples n and n + 1 are depicted in Figure 4 together with the rotation matrices relating these
coordinate frames. We adopt the orientation estimation method in [40], which is explained in the
Appendix A. The short-term orientation estimate is calculated by integrating the angular rate acquired
by the gyroscope. For the long-term orientation estimation, Gauss-Newton method is used to minimize
a cost function which decreases as the acceleration vector points downwards in the Earth frame and
as the horizontal component of the magnetic field vector is aligned with the North direction of the
Earth frame. Then, the short- and long-term orientation estimates are combined through weighted
averaging [40].

3.2. Sensor Signals with Respect to the Earth Frame

The tri-axial data acquired on the x, y, and z axes of each sensor in the sensor coordinate frame Sn

naturally depend on the orientations of the sensor units. Our approach is based on transforming the
acquired data from the sensor frame to the Earth frame.
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Let vS[n] =
(

vS
x [n], vS

y [n], vS
z [n]

)T
be the data vector in R3 acquired from the x, y, z axes of a

tri-axial sensor at time sample n. To represent vS[n] with respect to the Earth frame, we pre-multiply it
by the estimated sensor unit orientation at that time sample, which is the rotation matrix relating the
Sn frame to the E frame:

vE[n] = RE
Sn

vS[n] (1)

The components of the vector vE[n] =
(

vE
x [n], vE

y [n], vE
z [n]

)T
are represented with respect to the

xE, yE, zE axes of the Earth frame and are invariant to the sensor orientation.

Figure 3. The Earth frame illustrated on an Earth model with the acquired reference vectors.

Figure 4. The Earth and the sensor coordinate frames at two consecutive time samples with the
rotational transformations relating them.

3.3. Differential Sensor Rotations with Respect to the Earth Frame

In addition to the data transformed to the Earth frame, we propose to incorporate the information
contained in the change in the sensor unit orientation over time. While the sensor units can be placed
at arbitrary orientations, we require that during data acquisition their orientations remain fixed with
respect to the body part they are placed on. In other words, the sensor units need to be firmly attached
to the body and are not allowed to rotate freely during the motion. However, this restriction is
only necessary in the short term over one time segment (5 s in this study). Under this restriction,
the rotational motion of the body parts on which the sensor units are worn can be extracted from the
acquired data correctly regardless of the initial orientations of the units.

Note that we can easily calculate the sensor unit orientation RSn
Sn+1

at time sample n + 1 relative to
the sensor orientation at time sample n as

Cn , RSn
Sn+1

= RSn
E RE

Sn+1
=
(

RE
Sn

)−1
RE

Sn+1
(2)
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for each n as shown in Figure 4. The matrix Cn is not invariant to sensor orientation because it
represents the orientation of frame Sn+1 with respect to Sn and depends on the orientation at which
the sensor unit is fixed to the body. To observe this, let us assume that the sensor unit is placed at a
different arbitrary orientation; that is, the sensor unit is rotated by an arbitrary rotation matrix P that is
constant over time. Then, the acquired data are ṽS[n] = P−1 vS[n] for all n, represented with respect to
the new sensor orientation S̃n, and the sensor unit orientation with respect to the Earth is estimated
as R̃E

Sn
= RE

Sn
P for all n. Note that the original rotation matrix is post-multiplied by P because P

describes a rotational transformation with respect to the sensor frame, not the Earth frame [41]. For the
new sensor unit orientation, the rotation of the sensor unit between time samples n and n + 1 can be
calculated as

C̃n = R̃Sn
Sn+1

= R̃Sn
E R̃E

Sn+1

=
(

R̃E
Sn

)−1
R̃E

Sn+1

=
(

RE
Sn

P
)−1 (

RE
Sn+1

P
)

= P−1
(

RE
Sn

)−1
RE

Sn+1
P

= P−1 RSn
E RE

Sn+1
P

= P−1 RSn
Sn+1

P

= P−1 Cn P

(3)

Since C̃n 6= Cn in general, Cn is not invariant to sensor orientation.
We can make the rotational transformation Cn invariant to sensor unit orientation by representing

it in the Earth frame. Hence, we transform Cn from the sensor frame Sn to the Earth frame E by using
a similarity transformation [42]:

Dn =
(

RSn
E

)−1
Cn

(
RSn

E

)
= RE

Sn
RSn

Sn+1
RSn

E = RE
Sn+1

RSn
E (4)

We call this transformation Dn differential sensor rotation with respect to the Earth frame.
It is straightforward to show that Dn is invariant to sensor orientation. Using a constant arbitrary

rotation matrix P that relates the original and modified sensor orientations as before, we have:

D̃n = R̃E
Sn+1

R̃Sn
E

= R̃E
Sn+1

(
R̃E

Sn

)−1

=
(

RE
Sn+1

P
) (

RE
Sn

P
)−1

= RE
Sn+1

P P−1︸ ︷︷ ︸
I3×3

(
RE

Sn

)−1

= RE
Sn+1

RSn
E

= Dn

(5)

Thus, we observe that the differential rotation D̃n with respect to the Earth frame, calculated
based on the rotated data, is the same as the one calculated based on the original data (Dn).
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4. Comparative Evaluation of Proposed and Existing Methodology on Orientation Invariance for
Activity Recognition

4.1. Dataset

To demonstrate our methodology, we use the publicly available daily and sports activities dataset
acquired by our research group earlier [43]. To acquire the dataset, each subject wore five Xsens
MTx sensor units [44] (see Figure 5), each unit containing three tri-axial devices: an accelerometer,
a gyroscope, and a magnetometer. The sensor units are placed on the chest, on both wrists, and on
the outer sides of both knees, as shown in Figure 6. Nineteen activities are performed by eight
subjects. For each activity performed by each subject, there are 45 (= 5 units× 9 sensors) time-domain
sequences of 5 min duration, sampled at 25 Hz, and consisting of 7500 time samples each. The dataset
comprises the following activities:

Sitting (A1), standing (A2), lying on back and on right side (A3 and A4), ascending and
descending stairs (A5 and A6), standing still in an elevator (A7), moving around in an
elevator (A8), walking in a parking lot (A9), walking on a treadmill in flat and 15◦ inclined
positions at a speed of 4 km/h (A10 and A11), running on a treadmill at a speed of
8 km/h (A12), exercising on a stepper (A13), exercising on a cross trainer (A14), cycling on an
exercise bike in horizontal and vertical positions (A15 and A16), rowing (A17), jumping (A18),
and playing basketball (A19).

The activities can be broadly grouped into two: In stationary activities (A1–A4), the subject stays
still without moving significantly, whereas non-stationary activities (A5–A19) are associated with some
kind of motion.

Figure 5. The Xsens MTx unit [44].

4.2. Description of the Proposed and Existing Methodology on Orientation Invariance

In the pre-processing stage, seven data transformation techniques are considered to observe the
effects of different sensor orientations on the accuracy and the improvement obtained with the existing
and the proposed orientation-invariant transformations:

• Reference: Data are not transformed and the sensor units are assumed to maintain their fixed
positions and orientations during the whole motion. This corresponds to the standard activity
recognition scheme, as in [45–47].

• Random rotation: This case is considered to assess the accuracy of the standard activity
recognition scheme (without any orientation-invariant transformation) when the sensor units are
oriented randomly at their fixed positions. Instead of recording a new dataset with random sensor
orientations, we randomly rotate the original data to make a fair comparison with the reference
case. For this purpose, we randomly generate a rotational transformation:

P =

[1 0 0
0 cos θ − sin θ
0 sin θ cos θ

] [ cos φ 0 sin φ
0 1 0

− sin φ 0 cos φ

] [cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

]
(6)
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where yaw, pitch, roll angles θ, φ, ψ are independent and uniformly distributed in the interval
[−π, π) radians. For each time segment of each sensor unit (see Section 4.3 for segmentation),
we generate a different P matrix and pre-multiply each of the three tri-axial sequences of that
unit by the random rotation matrix corresponding to that segment of the unit: ṽ[n] = P vS[n].
In this way, we simulate the situation where each sensor unit is placed at a possibly different
random orientation in each time segment.

• Euclidean norm method: The Euclidean norm of the x, y, z components of the sensor sequences
are taken at each time sample and used instead of using the original tri-axial sequences.
As reviewed in Section 2, this technique has been used in activity recognition to achieve sensor
orientation invariance [10–12] or as an additional feature as in [13–16,48,49].

• Sequences along and perpendicular to the gravity vector: In this method, the acceleration
sequence in each time segment is averaged over time to approximately calculate the direction of
the gravity vector. Then, for each sensor type, the sensor sequence’s amplitude in this direction
and the magnitude that is perpendicular to this direction are taken. This method has been used
in [17–19] to achieve orientation invariance.

• SVD-based transformation: Sensory data are represented with respect to three principal axes
that are calculated by SVD [34,36]. The transformation is applied to each time segment of each
sensor unit separately so that sensor units are allowed to be placed at different orientations in
each segment.

To calculate the orientation-invariant transformations in the remaining two methods, we estimate
the orientation RE

Sn
of each of the five sensor units as a function of time sample n as explained in the

Appendix A. For the algorithm to reach steady state rapidly, we append to the acquired signal a prefix
signal of duration 1 s that consists of zero angular rate, a constant acceleration, and a constant magnetic
field that are the same as the measurements at the first time sample.

• Sensor sequences with respect to the Earth frame: We transform the sensor sequences into the
Earth frame using the estimated sensor orientations, as described by Equation (1). This method
has been used in [22] to achieve invariance to sensor orientation in activity recognition.
As an example, Figure 7a shows the accelerometer, gyroscope, and magnetometer data (vS[n])
acquired during activity A10 and Figure 7b shows the same sequences transformed into the Earth
frame. We observe that the magnetic field with respect to the Earth frame does not significantly
vary over time because the Earth’s magnetic field is nearly constant in the Earth frame provided
that there are no external magnetic sources in the vicinity of the sensor unit.

• Proposed method: sensor sequences and differential quaternions, both with respect to the
Earth frame: We calculate the differential rotation matrix Dn with respect to the Earth frame
for each sensor unit at each time sample n, as explained in Section 3.3. This rotation matrix
representation is quite redundant because it has nine elements while any 3D rotation can be
represented by only three angles. Since the representation by three angles has a singularity
problem, we represent the differential rotation Dn compactly by a four-element quaternion qdiff

n as

qdiff
n =


qdiff

1
qdiff

2
qdiff

3
qdiff

4

 =



√
1+d11+d22+d33

2
d32−d23

4
√

1+d11+d22+d33
d13−d31

4
√

1+d11+d22+d33
d21−d12

4
√

1+d11+d22+d33

 (7)

where dij (i, j = 1, 2, 3) are the elements of Dn [50]. The vector qdiff
n is called differential quaternion

with respect to the Earth frame (the dependence of the elements of qdiff
n and Dn on n has been

dropped from the notation for simplicity). In the classification process, we use each element of
qdiff

n as a function of n, as well as the sensor sequences with respect to the Earth frame. Hence,
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there are four time sequences for the differential quaternion in addition to the three axes each of
accelerometer, gyroscope, and magnetometer data for each of the five sensor units. Therefore,
the transformed data comprises (4+ 3+ 3+ 3) sequences× 5 sensor units = 65 sequences in total.
We have observed that the joint use of the sensor sequences and differential quaternions, both with
respect to the Earth frame, achieves the highest activity recognition accuracy compared to the
other combinations. Representing rotational transformations by rotation matrices instead of
quaternions degrades the accuracy. Omitting magnetometer sequences with respect to the Earth
frame causes a slight reduction in the accuracy. Activity recognition results of the various different
approaches that we have implemented are not presented in this article for brevity, and can be
found in [51].
Figure 7c shows the nine elements of the differential rotation matrix Dn with respect to the
Earth frame over time, which are calculated based on the sensor data shown in Figure 7a.
Figure 7d shows the elements of the differential quaternion qdiff

n as a function of n. The almost
periodic nature of the sensor sequences (Figure 7a) is preserved in Dn and qdiff

n (Figure 7c,d).
The differential rotation is calculated between two consecutive time samples that are only a
fraction of a second apart, hence the amplitudes of the elements of Dn and qdiff

n do not vary much.
Since differential rotations involve small rotation angles (close to 0◦), the Dn matrices are close to
the 3× 3 identity matrix (I3×3) because they can be expressed as the product of three rotation
matrices as in Equation (6) where each of the basic rotation matrices (as well as their product) is
close to I3×3 because of the small angles. Hence, the diagonal elements which are close to one
and the upper- and lower-diagonal elements which are close to zero are plotted separately in
Figure 7c for better visualization. When Dn is close to I3×3, the qdiff

n vectors calculated by using
Equation (7) are close to (1, 0, 0, 0)T , as observed in Figure 7d.

(a) (b)

Figure 6. (a) Positioning of the MTx units on the body; (b) connection diagram of the units (the body
drawing in the figure is from http://www.clker.com/clipart-male-figure-outline.html; the cables,
Xbus Master, and sensor units were added by the authors).

http://www.clker.com/clipart-male-figure-outline.html


Sensors 2018, 18, 2725 12 of 27

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
c
c
e

le
ra

ti
o

n

(m
/s

2
)

tri-axial sensor data with respect to the sensor frame

0 1 2 3 4 5 6 7 8 9 10
-200

0

200

a
n

g
u

la
r 

ra
te

(d
e

g
/s

) v
x
S

v
y
S

v
z
S

0 1 2 3 4 5 6 7 8 9 10

time (s)

-1

-0.5

0

0.5

m
a

g
n

e
ti
c
 f

ie
ld

(n
o

rm
a

liz
e

d
 b

y
 t

h
e

E
a

rt
h

's
 m

a
g

n
e

ti
c
 f

ie
ld

)

(a)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
c
c
e

le
ra

ti
o

n

(m
/s

2
)

tri-axial sensor data with respect to the Earth frame

0 1 2 3 4 5 6 7 8 9 10
-100

0

100

200

a
n

g
u

la
r 

ra
te

(d
e

g
/s

) v
x
E

v
y
E

v
z
E

0 1 2 3 4 5 6 7 8 9 10

time (s)

-0.5

0

0.5

1

m
a

g
n

e
ti
c
 f

ie
ld

(n
o

rm
a

liz
e

d
 b

y
 t

h
e

E
a

rt
h

's
 m

a
g

n
e

ti
c
 f

ie
ld

)

(b)

0 1 2 3 4 5 6 7 8 9 10

0.994

0.996

0.998

1

d
ia

g
o

n
a

l

e
le

m
e

n
ts

differential rotation matrix with respect to the Earth frame

d
11

d
22

d
33

0 1 2 3 4 5 6 7 8 9 10

-0.1

0

0.1

u
p

p
e

r

tr
ia

n
g

u
la

r

e
le

m
e

n
ts d

12

d
13

d
23

0 1 2 3 4 5 6 7 8 9 10

time (s)

-0.1

0

0.1

lo
w

e
r

tr
ia

n
g

u
la

r

e
le

m
e

n
ts d

21

d
31

d
32

(c)

0 1 2 3 4 5 6 7 8 9 10
0.998

0.999

1

1
s
t 
e
le

m
e
n
t

differential quaternion with respect to the Earth frame

q
1
diff

0 1 2 3 4 5 6 7 8 9 10

time (s)

-0.02

0

0.02

0.04

2
n
d
, 
3
rd

, 
4
th

e
le

m
e
n
ts q

2
diff

q
3
diff

q
4
diff

(d)
Figure 7. Original and orientation-invariant sequences from a walking activity plotted over time.
(a) Original sensor sequences; (b) sensor sequences; elements of (c) the differential rotation matrix and
(d) the differential quaternion. Sequences in (b–d) are represented in the Earth frame and are invariant
to sensor orientation.

4.3. Activity Recognition and Classifiers

A procedure similar to that in [34,45] is followed for activity recognition. The sensor sequences
are divided into 9120 (= 60 feature vectors× 19 activities× 8 subjects) non-overlapping segments of
5 s duration each and transformed according to one of the seven approaches described in Section 4.2.
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Then, statistical features are extracted for each segment of each axis of each sensor type. The following
features are calculated: minimum, maximum, mean, variance, skewness, kurtosis, 10 coefficients of
the autocorrelation sequence (autocorrelation sequence for the lag values of 5, 10, . . . , 45, 50 samples is
used), and the five largest discrete Fourier transform (DFT) peaks with the corresponding frequencies
(the separation between any two peaks in the DFT sequence is taken to be at least 11 samples), resulting
in a total of 26 features per segment of each axis. For the reference approach that does not involve
any transformation, there are 5 sensor units× 9 axes× 26 features per axis = 1170 features that are
stacked to form a 1170-element feature vector for each segment. The number of axes as well as the
number of features vary depending on the transformation technique; however, the total number of
feature vectors is fixed (9120). For instance, in the Euclidean norm, there is a three-fold decrease in the
number of axes and hence in the number of features. The features are normalized to the interval [0, 1]
over all the feature vectors for each subject.

The number of features is reduced through PCA, which is a linear and orthogonal transformation
where the transformed features are sorted to have variances in descending order [52]. This allows
one to consider only a certain number of features that exhibit the largest variances to reduce the
dimensionality. Thus, for each approach, the eigenvalues of the covariance matrix of the feature vectors
are calculated, sorted in descending order, and plotted in Figure 8. Using the first 30 eigenvalues
appears to be suitable for most of the approaches; hence, we reduce the dimensionality down to
F = 30.

0 10 20 30 40 50 60 70 80 90 100

order

10-2

10-1

100

101

e
ig

e
n

v
a

lu
e

s

reference (no transformation)

random rotation

Euclidean norm

sensor sequences with respect to the Earth frame

sensor sequences along and perpendicular to the gravity vector

SVD-based transformation

proposed method: sensor sequences and differential quaternions,

both with respect to the Earth frame

Figure 8. The first 100 eigenvalues of the covariance matrix of the feature vectors sorted in
descending order, calculated based on the features extracted from the data transformed according to
the seven approaches.

We perform activity classification with seven state-of-the-art classifiers that are briefly
described below.
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• Support Vector Machines (SVM): The feature space is nonlinearly mapped to a
higher-dimensional space by using a kernel function and divided into regions by hyperplanes.
In this study, the kernel is selected to be a Gaussian radial basis function fRBF(x, y) = e−γ‖x−y‖2

with parameter γ because it can perform at least as accurately as the linear kernel if the
parameters of the SVM are optimized [53]. To extend the binary SVM to more than two classes,
a binary SVM classifier is trained for each class pair, and the decision is made according to the
classifier with the highest confidence level [54]. The penalty parameter C (see Equation (1)
in [55]) and the kernel parameter γ are jointly optimized over all the data transformation
techniques by performing a two-level grid search. The optimal parameter values in the coarse
grid (C, γ) ∈

{
10−5, 10−3, 10−1, . . . , 1015} × {10−15, 10−13, 10−11, . . . , 103} are obtained as

(C∗, γ∗) =
(
101, 10−1). Then, a finer grid is constructed around (C∗, γ∗) as (C, γ) ∈ 100P ×P

with P = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 3, 5} and the optimal parameter values found
by searching the fine grid, (C∗∗, γ∗∗) = (5, 0.1), are used in SVM throughout this study. The SVM
classifier is implemented by using the MATLAB toolbox LibSVM [56].

• Artificial Neural Networks (ANN): We use three layers of neurons, where each neuron has a
sigmoid output function [57]. The number of neurons in the first (input) and the third (output)
layers are as many as the reduced number of features, F, and the number of classes, K, respectively.
The number of neurons in the second (or hidden) layer is selected as the integer nearest to
the average of log (2K)

log 2 and 2K − 1, with the former expression corresponding to the optimistic
case where the hyperplanes intersect at different positions and the latter corresponding to the
pessimistic case where the hyperplanes are parallel to each other. The weights of the linear
combination in each neuron are initialized randomly in the interval [0, 0.2] and during the training
phase, they are updated by the back-propagation algorithm [58]. The learning rate is selected as
0.3. The algorithm is terminated when the amount of error reduction (if any) compared to the
average of the last 10 epochs is less than 0.01. The ANN has a scalar output for each class. A given
test feature vector is fed to the input and the class corresponding to the largest output is selected.

• Bayesian Decision Making (BDM): In the training phase, a multi-variate Gaussian distribution
with an arbitrary covariance matrix is fitted to the training feature vectors of each class. Based on
maximum likelihood estimation, the mean vector is estimated as the arithmetic mean of the
feature vectors and the covariance matrix is estimated as the sample covariance matrix for each
class. In the test phase, for each class, the test vector’s conditional probability given that it is
associated with that class is calculated. The class that has the maximum conditional probability is
selected according to the maximum a posteriori decision rule [52,57].

• Linear Discriminant Classifier (LDC): This classifier is the same as BDM except that the average
of the covariance matrices individually calculated for each class is used for all of the classes.
Since the Gaussian distributions fitted to the different classes have different mean vectors but
the same covariance matrix in this case, the classes have identical probability density functions
centered at different points in the feature space. Hence, the classes are linearly separated from
each other, and the decision boundaries in the feature space are hyperplanes [57].

• k-Nearest Neighbor (k-NN): The training phase consists only of storing the training vectors with
their class labels. In the classification phase, the class corresponding to the majority of the k
training vectors that are closest to the test vector in terms of the Euclidean distance is selected [57].
The parameter k is chosen as k = 7 because it is suitable among the k values ranging from 1 to 30.

• Random Forest (RF): A random forest classifier is a combination of multiple decision trees [59].
In the training phase, each decision tree is trained by randomly and independently sampling the
training data. Normalized information gain is used as the splitting criterion at each node. In the
classification phase, the decisions of the trees are combined by using majority voting. The number
of decision trees is selected as 100 because we have observed that using a larger number of trees
does not significantly improve the accuracy while increasing the computational cost considerably.
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• Orthogonal Matching Pursuit (OMP): The training phase consists of only storing the training
vectors with their class labels. In the classification phase, each test vector is represented as a
linear combination of a very small portion of the training vectors with a bounded error, which is
called the sparse representation. The vectors in the representation are selected iteratively by
using the OMP algorithm [60] where an additional training vector is selected at each iteration.
The algorithm terminates when the desired representation error level is reached, which is selected
to be 10−3. Then, a residual for each class is calculated as the representation error when the test
vector is represented as a linear combination of the training vectors of only that class, and the
class with the minimum residual error is selected.

To determine the accuracies of the classifiers, L1O cross-validation technique is used [57]. In this
type of cross validation, feature vectors of a given subject are left out while training the classifier with
the remaining subjects’ feature vectors. The left out subject’s feature vectors are then used for testing
(classification). This process is repeated for each subject. Thus, in our implementation, the dataset
is partitioned into eight and there are 1140 feature vectors in each partition. L1O is highly affected
by the variation in the data across the subjects, and hence, is more challenging than subject-unaware
cross-validation techniques such as repeated random sub-sampling or multi-fold cross validation [61].

4.4. Comparative Evaluation Results

The activity recognition performance of the different data transformation techniques and
classifiers is shown in Figure 9. In the figure, the lengths of the bars correspond to the classification
accuracies and the thin horizontal sticks indicate plus/minus one standard deviation about the
accuracies averaged over the cross-validation iterations.

In the lower part of Figure 9, the accuracy values averaged over the seven classifiers are also
provided for each approach and compared with the reference case, as well as with the proposed method.
Referring to this part of the figure, the standard system that we take as reference, with fixed sensor
orientations, provides an average accuracy of 87.2%. When the sensor units are randomly oriented,
the accuracy drops by 31.8% on average with respect to the standard reference case. This shows
that the standard system is not robust to incorrectly or differently oriented sensors. The existing
methods for orientation invariance result in a more acceptable accuracy reduction compared to the
reference case: The accuracy drop is 18.8% when the Euclidean norms of the tri-axial sensor sequences
are taken, 12.5% when the sensor sequences are transformed to the Earth frame, 12.2% when the
sensor sequences are represented along and perpendicular to the gravity vector, and 8.4% when the
SVD-based transformation is applied.

Our approach that uses the sensor sequences together with differential quaternions, both with
respect to the Earth frame, achieves an average accuracy of 82.5% over all activities with an average
accuracy drop of only 4.7% compared to the reference case. Such a decrease in the accuracy is expected
when the sensor units are allowed to be placed freely at arbitrary orientations because this flexibility
entails the removal of fundamental information such as the direction of the gravity vector measured
by the accelerometers and the direction of the Earth’s magnetic field detected by the magnetometers.
Hence, the average accuracy drop of 4.7% is considered to be acceptable when such information related
to the sensor unit orientations is removed inevitably.

In the lower part of Figure 9, we also provide the improvement achieved by each method
compared to the random rotation case which corresponds to the standard system using random sensor
orientations. The method that we newly propose in this article performs the best among all the methods
considered in this study when the sensor units are allowed to be placed at arbitrary orientations.

The activity recognition accuracy highly depends on the classifier. According to Figure 9, in almost
all cases, the SVM classifier performs the best among the seven classifiers compared. SVM outperforms
the other classifiers especially in approaches targeted to achieve orientation invariance where the
classification problem is more challenging. The robustness of SVM in such non-ideal conditions
is consistent with other studies [13,46]. Besides the SVM classifier, ANN and LDC also obtain high
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classification accuracy. Although reference [22] states that k-NN has been shown to perform remarkably
well in activity recognition, it is not the most accurate classifier that we have identified.
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Figure 9. Activity recognition performance for all the data transformation techniques and classifiers
over all activities. The lengths of the bars represent the accuracies and the thin horizontal sticks indicate
plus/minus one standard deviation over the cross-validation iterations.

To observe the recognition rates of the individual activities, a confusion matrix associated with
the SVM classifier is provided in Table 1 for the proposed method. It is apparent that the proposed
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transformation highly misclassifies the stationary activities A1–A4. These activities contain stationary
postures, namely, sitting, standing, and two types of lying, which are misclassified probably because
we remove the information about sensor orientation from the data. In particular, activity A1 (sitting)
is mostly misclassified and confused with activities A3 (lying on back side) and A7 (standing still
in an elevator). The remaining stationary activities are also misclassified as A7. Among the 15
non-stationary activities, activities A10 and A11 (walking on a treadmill in flat and 15◦ inclined position,
respectively) are confused with each other because of the similarity between the body movements in
the two activities. Other misclassifications occur between activity pairs that have similarities such as
A7/A8, A8/A7, A2/A8, A18/A6, and A13/A9, although rarely. Activities A12 (running on a treadmill
at a speed of 8 km/h) and A17 (rowing) are perfectly classified by SVM for the proposed method,
probably because they are associated with unique body movements and do not resemble any of the
other activities.

We present the classification performance separately for stationary and non-stationary activities
in Figure 10. For each classifier and each approach, we calculate the accuracy values by averaging out
the accuracies of the stationary activities (A1–A4) and non-stationary activities (A5–A19).

For stationary activities (see Figure 10a), an average accuracy of 81.2% is obtained for fixed sensor
orientations. When the sensor units are oriented randomly, the average accuracy drops to 42.6%.
The existing orientation-invariant methods exhibit accuracies between 31.7% and 62.2%, some of them
being higher and some being lower than the accuracy for random rotation. The Euclidean norm
method performs particularly poorly in this case. The proposed method achieves an average accuracy
of 66.8%, which is considerably higher than random rotation and all the existing orientation-invariant
transformations. Although two of the existing transformations provide some improvement compared
to the random rotation case, their accuracies are much lower than the standard reference system.
Hence, removing the orientation information from the data makes it particularly difficult to classify
stationary activities.

For non-stationary activities (see Figure 10b), the accuracy decreases from 88.8% to 58.8% on
average when the sensor units are placed randomly and no transformation is applied. The existing
orientation-invariant methods obtain accuracies ranging from 78.2% to 83.2%, which are comparable to
the reference case with fixed sensor orientations. The method we propose obtains an average accuracy
of 86.7%, which is higher than all the existing methods and only 2.1% lower than the reference case.
This shows that when the sensor units are fixed to the body at arbitrary orientations, the proposed
method can classify non-stationary activities with a performance similar to that of fixed sensor unit
orientations. In the last two rows of the confusion matrix provided in Table 1, the average accuracy of
the stationary activities (A1–A4) and non-stationary activities (A5–A19) are provided separately for the
proposed method, again using the SVM classifier.

Referring to Figure 10a, we observe that the recognition rate of stationary activities highly depends
on the classifier. On average, the best classifier is LDC, probably because the recognition of stationary
activities is quite challenging and the LDC classifier separates the classes from each other linearly and
smoothly in the feature space. For the proposed method, the OMP classifier performs much better
than the remaining six classifiers. On the other hand, for non-stationary activities (see Figure 10b),
the classifiers obtain comparable accuracy values, unlike the case for stationary activities. In this case,
SVM is the most accurate classifier, both on average and for the proposed method.
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Table 1. Confusion matrix of the SVM classifier for the proposed method over all activities.

Estimated Labels True Labels Total
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

A1 286 1 68 20 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 383
A2 0 330 0 0 0 0 26 1 0 0 0 0 0 0 0 0 0 0 0 357
A3 81 0 372 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 453
A4 1 0 0 367 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 368
A5 0 0 0 0 477 0 0 2 11 0 12 0 0 0 0 0 0 0 1 503
A6 0 0 0 0 0 453 2 5 0 0 0 0 6 0 0 0 0 42 0 508
A7 97 102 33 83 0 0 354 61 0 0 0 0 0 0 0 0 0 0 0 730
A8 15 47 6 10 1 27 90 409 1 0 1 0 9 2 2 0 0 0 8 628
A9 0 0 0 0 2 0 0 1 416 19 4 0 36 0 0 1 0 0 0 479
A10 0 0 0 0 0 0 0 0 13 354 84 0 0 0 0 0 0 0 0 451
A11 0 0 0 0 0 0 0 0 38 105 374 0 11 0 0 0 0 0 0 528
A12 0 0 0 0 0 0 0 0 0 0 0 480 0 0 0 0 0 0 0 480
A13 0 0 0 0 0 0 0 1 1 2 5 0 399 7 0 0 0 0 1 416
A14 0 0 0 0 0 0 0 0 0 0 0 0 19 471 0 0 0 0 0 490
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 478 1 0 0 0 479
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 477 0 0 0 477
A17 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 480 0 1 482
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 438 0 439
A19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 469 469

total 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 9120

accuracy (%) 59.6 68.8 77.5 76.5 99.4 94.4 73.8 85.2 86.7 73.8 77.9 100.0 83.1 98.1 99.6 99.4 100.0 91.3 97.7 86.5 (overall)

70.6 90.7
(for stationary activities) (for non-stationary activities)
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Figure 10. Activity recognition performance for all the data transformation techniques and classifiers
for (a) stationary and (b) non-stationary activities. The lengths of the bars represent the accuracies
and the thin horizontal sticks indicate plus/minus one standard deviation over the cross-validation
iterations.

4.5. Run Time Analysis

The average run times of the data transformation techniques per one 5-s time segment
are provided in Table 2. All the processing in this work was performed on a laptop with a
quad-core Intel R© CoreTM i7-4720HQ processor at 2.6–3.6 GHz and 16 GB of RAM running 64-bit
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MATLAB R© R2017b. The proposed method has an average run time of about 61 ms per 5-s time
segment and can be executed in near real time since the run time is much shorter than the duration of
the time segment.

Table 2. Average run times of the data transformation techniques per 5-s time segment.

Data Transformation Technique Run Time (ms)

Euclidean norm 0.69

sensor sequences with respect to the Earth frame 56.25

sensor sequences along and perpendicular to the gravity vector 1.09

SVD-based transformation 8.94

proposed method: sensor sequences and differential 61.08quaternions, both with respect to the Earth frame

The run times of the classifiers are presented in Table 3 for each of the seven data transformation
techniques. Table 3a contains the total run times of the classifiers for an average cross-validation
iteration, including the training phase and classification of all the test feature vectors. We observe
that k-NN, LDC, and BDM are much faster than the other classifiers for all of the data transformation
techniques. Table 3b contains the average training times of the classifiers for a single cross-validation
iteration. The k-NN and OMP classifiers only store the training feature vectors in the training phase;
therefore, their training time is negligible. Among the remaining classifiers, training of BDM is the
fastest. Table 3c contains the average classification time of a single test feature vector, extracted from
a segment of 5 s duration. ANN and LDC are about an order of magnitude faster than the others
in classification. The classification time of OMP is the largest. Note that, because of programming
overheads, the total classification times provided in Table 3a are greater than the sum of the training
and classification times (Table 3b,c, respectively) multiplied by 1140 (the number of feature vectors per
L1O iteration).

This study is a proof-of-concept for a comparative analysis of the accuracies and run times of the
proposed and existing methods as well as state-of-the-art classifiers. Therefore, we have implemented
them as well as the remaining parts of the activity recognition framework on a laptop computer rather
than on a mobile platform.

Given that the data transformation techniques and most of the classifiers have been implemented
in MATLAB in this study, it is possible to further improve the efficiency of the algorithms by
programming them in other languages such as C++, by implementing them on an FPGA platform,
or by embedding the algorithms in wearable hardware. As such, our methodology can be handled
by the limited resources of wearable systems. Alternatively, transmitting the data acquired from
wearable devices wirelessly to a cloud server would allow performing the activity recognition in
the cloud [14,62]. Despite the latency issues that will arise in this case, this approach would provide
additional flexibility and enable the applications of wearables to further benefit from the proposed
methodology and the advantages of cloud computing.
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Table 3. (a) Total run time (including training and classification of all test feature vectors) and
(b) training time in an average L1O iteration; (c) average classification time of a single test feature vector.
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(a)

total run time

(s)

SVM 6.42 14.20 7.22 11.71 8.19 6.24 10.05

ANN 7.37 8.49 8.54 6.58 12.04 7.91 6.14

BDM 1.67 1.61 1.59 1.55 2.12 1.48 1.69

LDC 1.10 0.87 0.84 1.52 0.84 0.93 1.51

k-NN 0.24 0.12 0.12 0.21 0.19 0.12 0.22

RF 16.81 22.51 26.40 24.34 19.05 19.71 23.98

OMP 1018.27 798.90 92.32 99.41 96.48 75.18 114.68

(b)

training time

(s)

SVM 6.01 13.39 6.61 10.31 7.58 5.36 8.60

ANN 7.35 8.47 8.52 6.57 12.01 7.89 6.12

BDM 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LDC 0.33 0.23 0.22 0.38 0.22 0.26 0.33

k-NN – – – – – – –

RF 15.20 20.90 24.11 21.75 17.45 17.87 21.25

OMP – – – – – – –

(c)

classification time

(ms)

SVM 0.26 0.60 0.42 0.39 0.40 0.24 0.31

ANN 0.02 0.02 0.01 0.01 0.02 0.01 0.01

BDM 1.46 1.41 1.39 1.35 1.85 1.29 1.47

LDC 0.04 0.03 0.03 0.05 0.03 0.03 0.04

k-NN 0.21 0.11 0.11 0.19 0.16 0.11 0.19

RF 0.71 0.73 0.99 0.83 0.72 0.74 0.87

OMP 892.55 700.17 80.55 86.38 84.20 65.43 99.69

5. Discussion

Overall, the recognition rates of non-stationary activities are considerably better than those of
stationary ones for all the approaches considered in this study. This is because in non-stationary
activities, the activity type is encoded in the body motion whereas in stationary activities, since there
is no significant body motion, the removal of sensor orientation information to achieve orientation
invariance has a major impact on the accuracy. The classification of stationary activities is a more
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challenging problem and it is clear that sensor unit orientations provide essential information for
this purpose.

The direction of the gravity vector measured by the accelerometer and the direction of the magnetic
field vector determined by the magnetometer provide essential information about the orientation of
the sensor unit. When the sensor sequences are represented with respect to the Earth frame to achieve
orientation invariance, this information is lost because the gravity and the magnetic field of the Earth
are roughly in the fixed zE and xE directions of the Earth frame, respectively. Hence, in our proposed
method, we incorporate the change in the sensor unit orientation over time by calculating differential
quaternions with respect to the Earth, which represent the rotation between consecutive time samples
invariantly to the sensor unit orientation. The use of differential quaternions increases the accuracy
considerably because they effectively represent the rotational motion of the sensor unit related to the
activities. When the rotational transformation is represented with respect to the Earth frame, it is
invariant to sensor unit orientation, as desired.

For all the methods compared in this study, we use the same dataset which was acquired by
placing the sensor units on the body at fixed orientations. This enables us to make a fair comparison
between all of the seven approaches considered in this work. In the random rotation case, we rotate the
data arbitrarily for each time segment and each sensor unit; hence, we obtain new data that simulate
random sensor orientations and match exactly the same level of difficulty of the original data except for
the rotational difference. In the last five approaches that correspond to orientation-invariant methods,
it is mathematically guaranteed that the transformed data are exactly invariant to sensor orientations;
hence, they can be directly compared with the reference and random rotation cases. Had we recorded
an additional dataset with different sensor unit orientations, we would not be able to fairly compare
the accuracies obtained with the two datasets because it is not possible to guarantee the same level of
difficulty in activity recognition in different experiments. This fact can be observed even within the
current dataset from the non-negligible standard deviations in the activity recognition accuracy over
the cross-validation iterations (see Figures 9 and 10). This shows that the variation among the subjects
is significant, as also observed in [38].

6. Conclusions and Future Work

We have demonstrated that the standard activity recognition paradigm cannot handle incorrectly
or differently oriented sensors when the position remains fixed. To overcome this problem, we have
proposed a transformation that we apply on the sensor data at the pre-processing stage to increase
the robustness of the system to errors in the orientations at which the sensor units are worn on
the body. The method we have proposed extracts the activity-related information from the sensor
sequences while removing the information associated with the absolute sensor unit orientations.
This way, we ensure that the transformed sequences do not depend on the absolute sensor unit
orientations. The transformed sequences have the same form as the original sequences except the
number of axes, which enables us to apply this method in the pre-processing stage of any system that
can handle multi-axial data, including systems that directly use time-domain data in its raw form as
well as those that use extracted features. We have shown that our method significantly reduces the
accuracy degradation caused by incorrect/different sensor unit orientations. The proposed method
performs substantially better than the existing methods developed specifically for this problem and
achieves nearly the same accuracy level as the fixed orientation case for non-stationary activities.
The transformation we propose can be computed in a time much shorter than the duration of one
segment of the data, therefore, it can be efficiently implemented and used in near real time.

The next step of this research may involve calculating the differential quaternions with respect to
the Earth over a wider time window rather than over only two consecutive time samples, which may
improve robustness against high-frequency noise. The transformation proposed here can be used in
other wearable sensing applications such as detecting and classifying falls and automated evaluation
of physical therapy exercises. By transforming the sensor data at the pre-processing stage, orientation
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invariance can be achieved without the need to modify the rest of the system. Position invariance can
also be investigated to allow the sensor units to be interchanged and/or placed at different positions
on the body. The two can be combined to develop activity recognition systems that are invariant to
both the position and orientation of the sensor units.
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Abbreviations

The following abbreviations are used in this manuscript:

SVM Support Vector Machines
PCA Principal Component Analysis
1-NN One-Nearest-Neighbor
SVD Singular Value Decomposition
DFT Discrete Fourier Transformation
ANN Artificial Neural Networks
BDM Bayesian Decision Making
LDC Linear Discriminant Classifier
k-NN k-Nearest Neighbor
RF Random Forest
OMP Orthogonal Matching Pursuit
L1O Leave-One-Subject-Out

Appendix A. Sensor Unit Orientation Estimation

The orientation estimation method in [40] combines orientation estimates based on two sources
of information. The first estimate is obtained simply by integrating the gyroscope angular rate
measurements. This estimate is accurate in the short term but drifts in the long term. The second relies
on the direction of the gravity vector measured by the accelerometer and the magnetic field of the
Earth detected by the magnetometer in the long term. For the long-term estimation, the Gauss-Newton
method [40] is used to solve a minimization problem where the cost function decreases as the acquired
acceleration vector is aligned with the gravity vector and as the acquired magnetic field vector is
aligned with the magnetic North of the Earth. The short- and long-term estimates are combined
through weighted averaging [40].

In the orientation estimation algorithm, we relate the sensor and the Earth frames by a quaternion

q̂n = (q1, q2, q3, q4)
T corresponding to the rotation matrix R̂Sn

E =
(

R̂E
Sn

)−1
for all n as follows [50]:

R̂Sn
E =

q2
1 + q2

2 − q2
3 − q2

4 2 (q2q3 − q1q4) 2 (q1q2 + q2q4)

2 (q2q3 + q1q4) q2
1 − q2

2 + q2
3 − q2

4 2 (q3q4 − q1q2)

2 (q2q4 − q1q3) 2 (q1q2 + q3q4) q2
1 − q2

2 − q2
3 + q2

4

 (A1)

The short- and long-term orientation estimates are denoted by q̂n, ST and q̂n, LT and the overall
estimate is denoted by q̂n.

The short-term estimate of the sensor quaternion q̂n, ST at time sample n based on the overall
estimate q̂n−1 at the previous time sample is given by:

q̂n, ST = q̂n−1 + ∆t
(

1
2

q̂n−1 ⊗ωS[n]
)

(A2)
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where ωS[n] =
(

0, ωS
x [n], ωS

y [n], ωS
z [n]

)T
is an augmented vector consisting of zero and the angular

rate vector acquired by the gyroscope at time sample n [40] and ∆t is the sampling interval. Note that
the equation involves feedback because q̂n, ST is calculated based on q̂n−1.

For the long-term estimation, let aS[n] and mS[n] be the acceleration and the magnetic field
vectors, respectively, represented in the sensor frame and normalized by their magnitudes. To align
aS[n] with the zE axis of the Earth frame, we represent it in the Earth frame as aE[n] = qn ⊗ aS[n]⊗ q∗n,
and solve the following minimization problem [40]:

q̂n, LT-1 = arg min
qn

f1

(
qn, aS[n]

)
where f1

(
qn, aS[n]

)
=
∥∥∥(0, 0, 1)T − qn ⊗ aS[n]⊗ q∗n

∥∥∥ (A3)

where ‖ · ‖ denotes the Euclidean norm and ⊗ denotes the quaternion product operator.
We represent the magnetic field vector mS[n] as mE[n] = qn ⊗ mS[n] ⊗ q∗n in the Earth

frame and allow it to have only a vertical component along the zE direction and a horizontal
component along the xE direction. Hence, we align mE[n] with the magnetic reference vector

defined as m0[n] ,
(√

(mE
x [n])2 + (mE

y [n])2, 0, mE
z [n]

)T
in the Earth frame by solving the following

minimization problem [40]:

q̂n, LT-2 = arg min
qn

f2

(
qn, mS[n]

)
where f2

(
qn, mS[n]

)
=
∥∥∥m0[n]− qn ⊗mS[n]⊗ q∗n

∥∥∥ (A4)

To simultaneously align the acceleration and magnetic field vectors, we combine the
minimization problems defined in Equations (A3) and (A4) into one and solve the following joint
minimization problem:

q̂n, LT = arg min
qn

f
(

qn, aS[n], mS[n]
)

(A5)

where the combined objective function is

f
(

qn, aS[n], mS[n]
)
= f2

1

(
qn, aS[n]

)
+ f2

2

(
qn, mS[n]

)
(A6)

We use the Gauss-Newton method to solve the problem defined in Equation (A5) iteratively [40].
The quaternion at iteration i + 1 can be calculated based on the estimate at the ith iteration as follows:

q(i+1)
n, LT = q(i)

n, LT −
(

JTJ
)−1

JT f
(

q(i)
n, LT, aS[n], mS[n]

)
(A7)

where J is the 6× 4 Jacobian matrix of f with respect to the elements of q(i)
n . This matrix is provided in

closed form in [40].
Finally, the short- and long-term estimates are merged by using weighted averaging [40]:

q̂n = Kq̂n, ST + (1−K)q̂n, LT (A8)

where the parameter K is selected as 0.98 as in [40]. The estimated quaternion q̂n represents the
rotation matrix R̂Sn

E compactly, where we drop the hat notation (ˆ) in the main text for simplicity.
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