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Abstract

This technical report contains mathematical proofs related to the observability of cal-
ibration parameters of deterministic measurement error models developed in our related
works [1, 2]. We address the observability analysis of the model parameters to support
our assumptions and results. To this end, we consider the mathematical conditions re-
quired for observability and show that they are satisfied for the measurement error models
proposed in our related works.



1 Observability Analysis of the Proposed Accelerometer
Model

In [2], we propose an improved measurement model for accelerometers:

dn = (I + 8)T;C,CiCpp i + b+ . (1)

H

The 13 parameters, which are elements of the parameter vector ] below, are involved in the
deterministic part of the measurement model described by Equation (1):

5:[51 Sy S; a1 a3 & € € [ by by bZ]T (2)

The vector a,, is a recorded accelerometer measurement during the multi-position test. The
true excitation signal vector @ is equal to the gravity vector since the measurements are acquired
at stationary positions of the FMS during the multi-position test:

i=F" = [ -0.0167 0 9.7782 " m/s (3)

and C} comprises of ¢,v, and ¢ angles that determine the trajectory of the FMS during the

test. The vector @ can be parametrized as @ = [a, 0 aZ]T and C} can be expressed as

COS Y COS Y cOS 7y sin ¥ —siny
= | sinycosvysin¢g —siny cos¢ sinysiny sin¢ + cosy cos¢p cosysin @ (4)
siny cos 1) cos ¢ + sinysin¢ sinysin cos ¢ — cossin¢g cosy cos ¢

Note that in the above, @,d,,, and C} are all known. The g in Equation (2) contains an
additional parameter J compared to the traditional accelerometer model parameter vector
Otraditional. Hereafter, we investigate whether the parameter set is observable through the pro-

posed model. To this end, we decompose the measurement matrix as H 2 GCZCPNED, where

G2 (I + S)T;C} is a function of nine parameters, which can be expressed in vectorial form
as:

—

=[S S, S a1 a2 a5 €& ¢ ]

and C% g corresponds to a rotational transformation about the z-axis of the NED frame as

cosf  sinf 0
Clgp = | —sinf cosfB 0 (5)
0 0 1

Since I 4 S is a diagonal matrix with diagonal elements close to one, det (T}) = cos a; cos g sin o #
0 by a1 =0, ay = 0, and a3 = 7/2, and (C;)_l = (CZ)T, the matrix G is invertible. Thus, G
is the image of a full rank mapping as §_ € R? — G € R® x R and we can treat the elements of
G as independent parameters g;; instead of providing their explicit relations with the elements
of H:raditional for the observability analysis. Having defined G, Cg, and Cyp, we rewrite the

measurement equation [Equation (1)] more explicitly in component-wise form as

g11 912 913 COS 7y cos cOS 7y sin ¥ — sin~y
am = | G21 922 Y23 siny cossin ¢ — siny cos ¢ sinysinisin g + cosycos@ cos-ysin ¢
g31 g2 g33 siny cos 1) cos ¢ + sinysin¢ sinysin cos ¢ — cossin ¢  cosy cos ¢



cosf  sinfg 0 (g by
X | —sinf cosf 0 0 | + 1| by (6)
0 0 1 Q b.

We now rearrange Equation (6) in a way that parameters that belong to g are collected in a
single matrix of unknowns, while known variables, which are a,, a., ¢,7y, and 1, are collected
under a single vector. Then, we will show that the matrix of unknowns is a function of 13
parameters in 0. To this end, we first multiply C7 and CRgp with @ and rewrite Equation (6)
as follows:

g1t g1z Gi3 cos 3 cos 7y cos 1) — sin 3 cos 7y sin ¢
921 922 Go3 a; | cosf (sinycostsin g — sin ) cos ¢) + sin S (cos 1) cos ¢ + sin -y sin ¢ sin ¢)
931 932 933 cos 3 (sin~y cos 1 cos ¢ + sin 1) sin ¢) + sin 3 (cos 1 sin ¢ — sin ~y sin ¢ cos ¢)
—siny b,
+a, | cosysing + | by | = dnm. (7)
COS 7Y COS ¢ b,

Further rearrangements result in the following:

=/

a

T @5 COS 7Y COS 1) i
a, (siny cos ¥ sin ¢ — sin 1) cos @)
) i < | @z (sinycosvcos @+ sinysin @)
Jgi11 912 G13 cos 8 0 0 sing 0 o .1 0071 - —a, Easifsifnlb 7777777
g1 a2 Go3 0 cosg 0O , 0 snpg 0 ;010 a, (cos 1) cos ¢ + sin -y sin v sin ¢)
31 932 Gs3 0 0 cosB' 0 0 sing'0 0 1 a, (cos 1 sin ¢ — sin~y sin 1) cos ¢)
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by
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b,

The extended measurement matrix H' in Equation (8) is given by:

gi1cosB giacosB gizcosBigisinB gipsinB gizsinB g g2 i3
H' = g21c0s B g cos B gagcos B : g2185in 3 geesin B gegsin B : 921 Gg22 G23 |, (9)
931083 gsacosf gazcosB ! gzisinfg gssinf gszsinf g gs2 gss

where H' depends on all the parameters in ] except for b,,b,, and b,.

In total, we have 13 independent parameters to be estimated (nine parameters in G, three
in l;, and () without any further dependencies between them. According to the rearranged
model, 10 of these parameters are involved in H' and three of them come from b. In our
work, we perform the calibration based on N measurements. Every measurement results in
three equations, and after acquiring N measurements, we obtain 3N equations to solve for the
unknown parameter vector with 13 elements. However, the equations are nonlinear.

In order to check the degrees of freedom (DoF) of our estimation/calibration problem, it
is not sufficient to investigate the number of underlying independent parameters forming H'
but the whole set of measurement and excitation signals throughout the experiment. In terms
of measurement and excitation signals, we ensure that our calibration procedure is sufficiently
long and comprehensive that we do not loose any DoF of the original measurement model in our




measurements. Underdetermined systems where there are fewer measurements than unknowns
can be considered to be a troublesome case.

After taking the transpose of Equation (8), concatenating the rows of H' to form a 27 x 1
vector and augmenting that vector by the bias vector elements into a 30 x 1 vector 676, we can
represent our N measurements using a single vector-matrix equation in the form of ' = Afe:

[ gi1cos ]
gi2 cos 3
gi3cos 3
g1 sin 3
gi2sin 3
gi3sin 3
g11
g12
- g13
0 0 go1 CcOs 3
10 g2z cos 3
0 1 ga3 cos 3
=T T e e g218in 3
00 g22 5in 3
1 0 gog sin 3 (10)
0 1 921
: : ! :7 o Do 922
\—:_/ ,:T',,,,,;,,L,,',,,:,‘,;,;, Jos
Y 1 0 0 gs1 cos 3
07 :0 1 0 g3 cos 3
00 1 g33 cos 3
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gs31
932

Here, 0 is the 9 x 1 vector of zeros. The least-squares solution arg ming ||y — AG?|| to this
problem is equivalent to the minimization problem argming ||/ — G (5)“ in our article. In order
to show that all of the 13 parameters are observable, we need to show two things: 1) The rank
of A needs to be at least 13 [3]; 2) 6° needs to have a dimension of at least 13 [4]. Since N > 30
and ¢, , 1 take many different values (more than 13) covering the range [—m, +7) during the
calibration procedure, rank (A) > 13. As for the second condition, we need to check the rank
of the mapping M : 0 € R!¥ — §° € R, since this rank determines the actual dimension of
g°. If the rank of the mapping M is equal to 13, the underlying DoF's in the solution space is
13 as well, meaning that there exists a unique 6 solution. (A similar observability analysis is
performed in [5].) For this analysis, assuming that G has nine DoF's, we take the modified 0

- T
as f = [ g1 Gi2 913 921 Go2 Y23 Ym g2 933 B br by b, }
The mapping M between 6 and 6° can be described by 30 multi-variable nonlinear functions
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such that
Gf = f1 (01, 92, e ,013) = 91 COS 010

0; = f2 (91, 02, e ,913) = 02 COS 910
9§Ef3 (91,‘92,...,013) :63C08910 (11)

950 = f30 (91,92, cee 7913) = 013,

where 07,0;, and f;s correspond to the ith component of 56, modified 5, and the nonlinear
functions representing M, respectively.

The rank of M can be determined by deriving its 30 x 13 Jacobian matrix through the
following Jacobian definition based on the notation of Equation (11):

o O Of . Of1

90, 90, 003 90,3

Of2  Ofz2 Of2 . . Of2

nogomo W

Ju=| %, 60, o T o (12)
Ofso Ofso Ofso . . Ofs
L 90, 002 003 0013 -
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0 cosp 0 0 0 0 0 0 0 —giesinf3 0 0 O
0 0 cospB O 0 0 0 0 0 —gizsing 0 0 0
sinf 0 0 0 0 0 0 0 0 gircos 0 0 O
0 sin 3 0 0 0 0 0 0 0 gizcosB 0 0 O
0 0 sing O 0 0 0 0 0 gizcos 0 0 O
1 0 0 0 0 0 0 0 0 0 0 00
0 1 0 0 0 0 0 0 0 0 0 00
0 0 1 0 0 0 0 0 0 0 0 00
0 0 0 cosp 0 0 0 0 0 —gousing 0 0 O
0 0 0 0 cos 8 0 0 0 0 —goosinf3 0 0 O
0 0 0 0 0 cosfB O 0 0 —gozsing 0 0 O
0 0 0 sing 0 0 0 0 0 gorcosfB 0 0 0O
0 0 0 0 sing 0 0 0 0 gocosfS 0 0 0
B 0 0 0 0 0 sing 0 0 0 gazcosB 0 0 O
- 0 0 0 1 0 0 0 0 0 0 0 00
0 0 0 0 1 0 0 0 0 0 0 00
0 0 0 0 0 1 0 0 0 0 0 00
0 0 0 0 0 0 cospB O 0 —gzsing 0 0 0
0 0 0 0 0 0 0 cosfB 0 —gspsing 0 0 0
0 0 0 0 0 0 0 0 cosfB —gs3sinf 0 0 0O
0 0 0 0 0 0 sing 0 0 gsicosB 0 0 O
0 0 0 0 0 0 0 sing 0 ggpcosfS 0 0 0
0 0 0 0 0 0 0 0 sinf gszcosB 0 0 0O
0 0 0 0 0 0 1 0 0 0 0 00
0 0 0 0 0 0 0 1 0 0 0 00
0 0 0 0 0 0 0 0 1 0 000
0 0 0 0 0 0 0 0 0 0 1 00
0 0 0 0 0 0 0 0 0 0 010
| 0 0 0 0 0 0 0 0 0 0 00 1]




Inspection of Jj; reveals that its rank is 13 since cos 8 and sin 5 cannot be zero at the same
time. With this interpretation, we complete the above steps and conclude that our minimization
problem arg ming || — G(0)|| has 13 DoFs.

Another and probably a less tedious way to show that our calibration problem has 13 DoF's
is to incorporate different sample-based C'} matrices into our proposed model; thus, increasing
the dimensionality of our measurement equation in a different way. To this end, we write the
following N-sample measurement equation:

@ [1] G 0 0 0 C1 1] b
am:[z] oG ool o ai|? )
i, [V] 00 0 G||cin 7

Since the dimension of H” is N x 3 in this augmented form, the maximum possible DoFs of
H" is also 3N. In order to see the exact number of DoFs of this augmented form, one needs
to carry out an analysis as in the first approach. Based on this, one can claim that we do not
need to limit the dimension of § to 12 and can use a parameter vector § of length 13.

In both of the above approaches, we express the measurement model in a higher-dimensional
space, indicating that each of the parameters in g contributes to a unique measurement matrix
and none of them are redundant.

We also evaluate the validity of our conclusion using the acquired accelerometer data as
follows: Given a value for § € [—m, 7), we perform the calibration based on other parameters
and investigate the relationship between [ and achieved estimation error. By this, we can
decide whether (8 is a redundant parameter or our parameter vector 0 with 13 elements is
overdetermined. Results of this investigation are provided in Figure 1. As the figure illustrates,
the estimation performance heavily depends on the value of 3, thus proving us that ( is a not a
redundant parameter and needs to be contained in the parameter vector 0 in order to capture
the proposed model completely.
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Figure 1: Dependence of estimation accuracy with respect to  for (a) MicroStrain and
(b) Xsens accelerometers.



2 Observability Analysis of the Traditional Magnetome-
ter Model

In the original manuscript, we presented the traditional magnetometer model as
Bo=+8)T (chch{;ED BNED | 5§> b+ (14)

and estimate the parameter vector 0 corresponding to the equation given above. We begin with
correcting the traditional magnetometer model given above as

By = (I + 8) T;C; (KCIChyp BX™ + 68 + 5+ 7. (15)

If we perform a similar decomposition as in the accelerometer case with H 2 GCIClep

and G 2 (I + S)T;C, K, we can observe that unlike the accelerometer case, G is a function
of 15 parameters (three parameters in S, T, and C,, each, and six in K ). However, given that
the G' matrix contains nine elements, only nine of these 15 parameters can be independent. It
is not possible to observe and estimate all of the underlying 15 parameters. This can be further
clarified by considering a mapping

M:§eRY [ g11 912 913 921 G922 923 931 932 933 ] eR’.

Since the Jacobian J,; of M is a 9 x 15 matrix, the rank of Jj; for this case cannot be larger
than nine and only nine of the 15 parameters can be estimated.

To remedy the problem, we rewrite the measurement model according to the unified mea-
surement model given by Equation (10) in our article as:

By = GCICKun BN + 1 + 7. (16)

where b/ = (I+S) T C, §B+b. Equation (16) is in exactly the same form as the accelerometer
measurement equation. We also modify the parameter vector so that it contains 13 elements:

- T
92[911 gi2 G13 921 922 923 G31 Y32 gz 3 b; b; blz] (17>

Following the same steps as in the accelerometer case, we can show that the 13 parameters
that comprise the modified parameter vector are observable. We have modified the original
manuscript accordingly and provided updated parameter estimation results in Tables 8 and 9
of the manuscript for magnetometers.

3 Observability Analysis of the Proposed Magnetometer
Model

In the original manuscript, the proposed magnetometer model was given as:
By = (I+ 8)T; (KC,CiCkup BN + C;C4 05 + 5+ 7. (18)

The change in the traditional magnetometer model leads to a natural modification to the
proposed magnetometer model as

B, = (I+8)TC! (chC{;ED BNED Cgéé) + b+ . (19)
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Defining V/ 2 (I + S)T;C;, we can rewrite the above equation as
B,, = VKCC%yp BN + VOB + b + 7. (20)

We express G as G = V K as in Section 2 and after noting that K is symmetric, V = GK
where K = K ' is also a symmetric matrix since K ' = (K T)fl = (K _I)T. We reformulate

Equation (20) based on these definitions as
By, = GCUCyp, BN° + GKCI6B + b + 7. (21)

As explained in Section 2, we represent the G matrix by nine parameters corresponding to
each of its elements as

g1 G12 G913
G=| 021 G2 g
g31 932 ¢33

As for K, we only need six parameters since it is a symmetric matrix as follows:

Ell EIQ EIB
K = E12 EZQ E23
ElS E23 E33

The Earth’s magnetic field at the location of the experiments is given by:

BYFD — [ 0.2523 0.0217 0.4004 | Gauss, (22)
which can be parametrized by BNP = [m, m, m.|". With these definitions, we put the
proposed measurement equation Equation (21) into the component-wise form as

gi1 912 Gi3 COS Y COS cOS 7y sin ¢ — siny
Bn=1| 921 922 923 siny cosy sin¢ — siny cos ¢ sin7ysiniysing + cosy cos¢ cos-ysin ¢
931 932 Us3 siny cos® cos @ +sinysin¢g sinysiniy cos¢p — cosysing cosycos @

cosf  sinfg 0 My g11 912 G13 ki kg kg

X | —sinf cosf 0 my | + | 921 922 923 ks Koy Kog

0 0 1 m; 931 Y32 33 kig Koz ks
coS 7y cos Y cos 7y sin ¢ —sin~y 0B, b,
X | sinycossing —siny cos¢ sin-ysiny sin ¢ + cosy cos¢ cosysin ¢ 0By |+| by
siny cos ) cos ¢ 4+ sinsin ¢ sinysiny cos ¢ — cosysing cosy cos ¢ 0B, b,

(23)

Similar to the observability analysis of accelerometers, we separate the known and unknown

variables and collect them in a single vector and matrix, respectively. We follow the same steps
as in Section 1.

g1 912 913 cos 3 cosy cos 1) — sin 3 cosy sin ¢
G21 G22 G23 my | cos 3 (sin~ycossin ¢ — sin cos @) + sin B (cos 1 cos ¢ + sin y sin ¢ sin ¢)
931 932 §33 cos 3 (siny cos ¥ cos ¢ + sin ¢ sin ¢) + sin 3 (cos ¢ sin ¢ — sin -y sin ¥ cos ¢)

cos 3 cosy sin v + sin 3 cos 7y cos Y
+my,, | cos B (sin~ysin sin ¢ + cos ) cos @) + sin [ (siny cos ¢ sin ¢ — sin 1) cos @)
cos (3 (siny sin 1) cos ¢ — cos 1 sin ¢) + sin /3 (sin y cos 1) cos ¢ + sin 1 sin ¢)



—siny

+m, | cos~ysin ¢
COS Y COS ¢
gi11 gi12 913 Eu E12 E13 COS 7y COs ¥
+ | 921 G2 o3 ko Eyy ko 0B, | sin~ycos sin¢ — sin cos ¢
931 932 33 ki3 Koy kag sin 7y cos 1 cos ¢ + sin ¢ sin ¢
€OS 7y sin ¢
+0B, | sinysiny sin¢ + cos ) cos ¢
sin y sin ¥ cos ¢ — cos ¥ sin ¢
—siny
+0B, | cosysing =B, (24)
COS Y COS ¢
Further manipulation yields the following:
B g1 912 913 cosf 0 0 .sinf 0 0 /100
Bm = g21 G222 Qg23 0 COS 6 0 : 0 sin ﬁ 0 : 010
gs1 Y932 933 0 0 cos 8 0 0 sinpg 0 01
[ My, COS 7Y COS 1 + My, cos 7y sin ]
m (siny cos ¢ sin ¢ — sin 1) cos ¢) + my, (sin-y sin ) sin ¢ + cos 1 cos @)
Mg (sin 7y cos ¢ cos ¢ + sin P sin @) + my (sin 7y sin ¢ cos ¢ — cos Psin @)
—Mmy cos 7y sin ) + m,, cos 7y cos
X | my (cospcos ¢ + sinysin e sin @) + my, (siny cos 1 sin ¢ — sin 1) cos ¢)
Mg (cos Y sin ¢ — sinysin g cos @) + my (siny cos P cos ¢ + sinPsin @)
—m, siny
m, cOS 7y sin ¢
| M, COS 7Y COS @ |
g 912 g3 | [k Ey ks 6B, 0 0 6B, 0 0 6B, 0 0 ]
+ | 921 g22 g23 k1o koo EQ?, 0 0B, 0 : 0 5By 0 : 0 0B, 0
931 932 933 | | ki3 Koy kKag 0 0 d0B,' 0 0 d0B,' 0 0 0B, |
[ COS Y COS v i
sin y cos 1) sin ¢ — sin v cos ¢
_Sinycospcosg +singsing
cOs 7y sin ¢ .
X | (costcoso+sinysinysing | = By,. (25)
_sinysingcosd —cosysing
—sinvy
cOSs 7y sin ¢
i COS Y COS ¢ |
i
Now, we define another two matrices as
cosB 0 0 .sinf 0 0 100
H =G| 0 cospf 0, 0 sing 0 ;010
0 0 cosB' 0 0 sing'0 0 1



6B, 0 0 6B, 0 0 6B, 0 0
H,=GK| 0 6B, 0,0 6B, 0 ' 0 6B, 0
0 0 6B, 0 0 6B,' 0 0 6B,

To be clear, we remind that H} and HY, are unknown calibration matrices while 7 and
mi, are known signals. The expanded forms of H| and HY, can be written as:

G11cos B gracos B gizcos B gnsinB giasinf gissinf g Gz Gis
H) = | ga1cosB gacosf @go3cosf | gusinf goosinf gozsinf | go1 o2 o3 (26)
93108 gzpcosf gazcosflgsisinfd gssinf gssinf ' gs gs2 gs3

and

(SwaH (Swalg 5BIU)13 ; (5Byw11 5ByU)12 (5Byw13 ; 5BZU)11 5Bzw12 (5Bzw13
H/2 = (5wa21 53331()22 5wa23 : (SBwal (SBwaQ (SByU)Qg : 5B;ﬂl)21 5Bzw22 6Bzw23
5wa31 5wa32 (5wa33 j 5Byw31 5Byw32 5Byw33 j (5BZU}31 5Bzw32 (SBZUJ33

(27)

where

wi1 = g1k + giokis + g13k45
w12 = gr1kiy + giakoy + gi3kas
w13 = gi11ky3 + grokos + g13kas
W1 = ga1kyy + gaokis + goskis
W = ga1kyio + grokoy + go3kos
W3 = ga1ky3 + gaokos + gozkas
W31 = 931@11 + 932&12 + 933E13
w32 = ga1kyo + g32kog + ga3kas
w33 = ga1ky3 + ga2kog + gaskiss.

After taking the transpose of H) and Hj, concatenating their rows to form 27 x 1 vectors
and augmenting those vectors with the bias vector elements into a 57 x 1 vector 6°, we can

10



represent our N measurements using a single vector-matrix equation in the form i = A6°:

g11cos B
g12 cos B
g13 cos B8
g11sin 8
g12sin 8
gi13sin B
g1
g12
913
go1 cos B
g22 cos B
g23 cos B
g21sin 8
g22 sin 3
g23 sin 8
g21
g22
g23
g31cos B
g32 cos B
g33 cos B
_ g31sin
00 g32sin B
1 0 g33sin 8
0 1 g31

B"m [1} m’ 1 [2
Bon[2] hid

0 O
1 0 0B (911@11 + 912E12 + 913@13)
0 1 0Bz (911k19 + g12k9s + g13ka3)
****** 6By (911E13 + 912E23 + 913E33)
: : (SBy (911E11 + 912E12 + 913&13)
ST T T T Sen Ty T o ‘*1* *0* 6 - 0By (911k15 + 912kos + 913ko3)
| 0By (911k 3 + g12ko3 + 913k33)
0T ;0 1 0 0B, (g11E11 + ngElg + 913E13)
'o 0 1 0B (gllﬁlz + 912E22 + 913E23)
: - 0B, (gllﬁlg + 912E23 + 913E33)
( )
( )

Bm[N) .

::1[
L
|

A 0By 921E11 + 922512 + .923@13

0Bz (921k19 + g22kos + g23kos

0Bz (921k15 + g22kos + g23kss3)
6By (921&11 + 922@12 + 923&13)
0By (921ky5 + g22kos + g23kss)
5By (921E13 + 922&23 + .‘]23@33)
0B, (921E11 + !]22E12 + 923E13)
0B, (g21E12 + 922E22 + 923E23)
0B (921E13 + 922E23 + 923&33)
0Bz (93111 + 932k15 + 933k13)
0By (931&12 + 932E22 + 933&23)
0Bz (931k13 + 932kos + g33ks3)
6By (931E11 + 932@12 + 933&13)
6By (931E12 + 932E22 + 933E23)
5By (931E13 + 932@23 + 933E33)
0B, (931E11 + 932E12 + 933E13)
0B (g31k1o + 932kos + 933ko3)
0B, (931&13 + 932&23 + 933E33)

(28)

Similar to Section 1, 0 is a 9 x 1 vector of zeros. On the other hand, we now have a larger A

with a size of 3N x 57. For the observability analysis, we take the same approach and investigate

the rank of the linear mapping A and the extended natural mapping M : § € R?? — §¢ € R7

where 6§ is modified as follows assuming that G' has nine DoF's and considering the definitions
of G and K:

5:[ 911 912 913 921 G222 G23 G931 G32 933 ki kis ki koy kog kg3 B 6Br 6By 0B. by by b, ]T
(29)
For the first part of the analysis, the rank of A is required to be 22 minimum, which is true

in the same way as in Section 1 since ¢,~, and v take more than 22 different values in the
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[—7m,+7) in our N sample collection. We continue our analysis by deriving the Jacobian Jj;
of the mapping M. Checking the rank of J,; visually is a little cumbersome this time because
of its size. As can be seen easily, the first nine columns and the 16th column of J,; and the
last three columns are linearly independent with respect to all columns of the Jacobian. For
the remaining nine columns, it is not that easy to say that they are linearly independent as
well. To this end, we checked the rank using the symbolic toolbox of MATLAB. As a result, we
found out that rank(Jy;) = 22, which leads to the conclusion that the minimization problem
argming ||y — AG*||, equivalent to arg ming || — G(6)]| presented in the manuscript, has 22 DoFs.
Hence, all of the parameters involved in Equation (29) are observable.
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