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1. Introduction
Genus Camellia L. (Theaceae), the large type genus of 
Theaceae family, is widely distributed in eastern and 
southeastern Asia (Shen et al., 2008; Jiang et al., 2012). 
However, the interspecies relationship of this economically 
important genus is still a controversy (Vijayan et al., 
2009). While reliable classification of plants is of crucial 
importance in taxonomy, some principles of plant 
taxonomy such as morphological features, phylogenetic 
considerations and chemical and numerical taxonomy 
have been validly applied in Camellia taxonomic 
treatments (Lin et al., 2008; Lu et al., 2008a, 2008b, 2009; 
Pi et al., 2009; Jiang et al., 2010; Pi et al., 2011). To solve 
the discrepancies of Camellia taxonomy, the use of leaf 
characteristics was proposed (Ming, 2000; Kong, 2001). In 
particular, Lin et al. (2008) and Pi et al. (2009) suggested 
that leaf characteristics provide an effective foundation for 
further research of the genus Camellia.

Leaf characters like anatomical analysis have been 
successfully applied in plant research (Kumar et al., 2012; 
Vasic and Dubak, 2012). In addition, leaf characteristics 

can be used in conjunction with supervised pattern 
recognition (SPR) techniques for taxonomic classification. 
SPR refers to techniques in which a priori knowledge 
about the category membership of samples is used (Roggo 
et al., 2003; Chen et al., 2009). The classification model is 
constructed by training sets with known categories and 
model performance is assessed by comparing sample 
categories predicted with true categories that form a 
prediction set (Roggo et al., 2003). As a mathematical tool 
for prediction of nonlinearities, artificial neural networks 
(ANNs) attempt to mimic the functioning of the human 
brain and are increasingly utilized in many fields owing 
to their excellent pattern recognition capability (Bila et al., 
1999; Li and Yang, 2008; Zheng et al., 2011). Among all the 
ANNs, back-propagation artificial neural network (BP-
ANN) is the most widely used (Mitchell, 1997). BP-ANN 
is trained by repeatedly presenting a sequence of input and 
output patterns to the network. The network gradually 
learns the relationship between the input and the output by 
adjusting the weights to minimize the mean-squared error 
(MSE) between the actual and predicted output patterns 
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of the training set (Sadeghi, 2000). The network training is 
considered complete when the MSE of the test set reaches 
a minimum. The BP-ANN has been successfully utilized 
as a modeling tool in food technology, chemistry science, 
sensory analysis, bacteria predictions, beam identification, 
operations management, etc. (Giacomini et al., 2000; 
Guyer and Yang, 2000; Luo et al., 2004; Lu et al., 2010).

Support vector machines (SVMs) is another 
classification technique developed by the machine 
learning community (Vapnik, 1989; Cortes and Vapnik, 
1995; Vapnik, 1995; Zheng et al., 2010). This technique 
fixes the classification decision function based on 
structural risk minimum mistake instead of the minimum 
misclassification error on the training set in order to avoid 
the problem of over-fitting (Chen et al., 2007). Moreover, 
SVMs are capable of learning in high-dimensional feature 
spaces and do not require large amounts of training 
samples (Burges, 1998). As a new pattern recognition tool, 
SVMs have been successfully applied in many areas such 
as fruit classification, text categorization, fault diagnostics, 
and object recognition (Pontil and Verri, 1998; Yuan and 
Chu, 2007; Turhan and Serdar, 2013). However, few studies 
about plant species classification using ANN or SVM 
have been reported. Very little information is available, 
especially on the classification of the genus Camellia based 
on ANN or SVM.

This study was undertaken to evaluate the feasibility 
of classifying species from 3 sections of Camellia using 
supervised pattern recognition techniques, BP-ANN, and 
SVM. This would provide a new approach for addressing 
the inconsistencies in Camellia classification.

2. Materials and methods
2.1. Plant materials
The plant materials were collected from the International 
Camellia Species Garden in the city of Jinhua, Zhejiang 
Province, China. Leaf samples for anatomical analyses 
were taken from the third mature leaf of old branches 
that were fully exposed to sunlight, from at least 3 plants 
per species. Healthy leaf samples (Table 1) consisting of 
16 species from section Chrysanthae Chang, 16 species 
from section Tuberculata Chang, and 15 species from 
section Paracamelli Chang were examined in the present 
study following Chang’s classification (Chang, 1998). The 
specimens are deposited in the Chemistry and Life Science 
College of Zhejiang Normal University.
2.2. Anatomical protocol and data collection
2.2.1. Epidermal preparations
Approximately 1 cm2 of tissue was removed from the 
middle area of the leaf and cut horizontally between the 
adaxial and abaxial surfaces into 2 halves. Next, 40% 
sodium hypochlorite solution was added to fully cover 

the material for 10 min at 37 °C. Materials were stained 
in safranin-alcian green and mounted in neutral balsam 
after the mesophyll tissues were removed and the leaf 
epidermis was dehydrated in a graded alcohol series. 
Observations and photomicrographs were taken under a 
light microscope (Olympus PM-10AD, Japan). The data of 
area of adaxial epidermal cell (AAD) and area of abaxial 
epidermal cell (AAB) were evaluated and at least 3 slides 
were made from 3 different leaves for each species.
2.2.2. Transverse leaf sections
Approximately 25 mm2 of tissue were taken from the 
middle part of a leaf and placed in a glass tube, and then 
FAA (commercial formalin, glacial acetic acid, and 70% 
ethanol in the ratio of 0.5:0.5:9.0 parts, respectively) 
solution was added in sufficient quantity to cover the 
material. Samples were stained in safranin-alcian green 
and mounted in neutral balsam after dehydrating and 
embedding in paraffin. The transverse sections were 
obtained at 10 µm of thickness. Slides were examined and 
photographed in the same way as epidermal preparations. 
The thickness of adaxial epidermal cell (TAD), thickness of 
palisade parenchyma (TPP), thickness of total leaf (TTL), 
thickness of spongy parenchyma (TSP), and thickness of 
abaxial epidermal cell (TAB) were measured a minimum 
of 10 times from the 3 slides.
2.3. BP-ANN analysis
2.3.1. BP-ANN algorithm
An ANN is composed of connection nodes with artificial 
intelligence that is a biologically inspired form of 
distributed computation. The connection weight between 
2 nodes is used to determine how much 1 node affects the 
other. BP-ANN was created by generalizing the Widrow–
Hoff learning rule to multiple-layer networks and 
nonlinear differentiable transfer functions. The network 
has 2 stages: a signal forward pass and an error backward 
pass. In the back-propagation algorithm, the gradient-
descent algorithm is used to gradually reduce the error 
through the adjustment of weights. The training process of 
BP-ANN involves the following steps: 

Step 1: Random parameter initialization in BP-ANN.
Step 2: Calculation of the values of hidden layer 

neurons (Hj) according to the vector of input values (Xi), 
weights between the input and hidden layers (wij), and the 
bias of the hidden layer (bj) is given in Eqs. (1) and (2):

 
, (j = 1, 2, 3,…, m),                                 (1)

 
.                                                               (2)
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Step 3: Calculation of the values of the output layer 
neurons (Ok) calculation according to Hj, weights between 
the hidden and output layers (wik), and the bias (bk) is 
given by:

, (k = 1, 2, 3,…, l).                                     (3)

Step 4: Error of network (ek) calculation according to 
Ok and the expected output value Yk is as follows:

ek = Yk – Ok, (k = 1, 2, 3, …, l).                                          (4)

Step 5: Weight (wij and wik) computations and updates 
according to ek and learning rate (η) are given by:

,

(i = 1, 2, 3,…, n; j = 1, 2, 3, …, m),                                
(5)

wjk = wjk + ηH(j)e(k),

(j = 1, 2, 3,…, m; k = 1, 2, 3,…, l).                                
(6)

Step 6: Bias (bj and bk) computations and updates 
according to ek and the learning rate (η) are as follows:

,

(j = 1, 2, 3,…, m),                                                            
(7)

b(k) = b(k) + ek, (k = 1, 2, 3, …, l).                                      (8)

Step 7: Judging whether the iteration algorithm is over 
such as the MSE threshold and the number of maximum 
iteration; if not, returning to Step 2 to continue training.
2.3.2. Optimal BP-ANN configuration
A network structure with input, hidden, and output layers 
was used in this work as shown in Figure 1. The input 
layer consists of many elements of features of leaf anatomy, 
including AAD, TAD, TPP, TTL, TSP, TAB, and AAB. There 
can be more than 1 hidden layer; however, a single hidden 
layer is used because other researchers have demonstrated 
that 1 layer is sufficient for BP-ANN to approximate any 
complex nonlinear function (Cybenco, 1989; Hornik et 
al., 1989; Dogan et al., 2008). The number of nodes in the 
hidden layer varies between 3 and 20 and was empirically 
determined by a trade-off between MSE and speed. Error 
minimization was performed by the Levenberg–Marquardt 
algorithm. The output layer contains 3 discriminative 
neurons corresponding to specific taxon (sect. Chrysantha 

Chang, sect. Tuberculata Chang, and sect. Paracamellia 
Chang), whose number must be equal to the number of 
taxa represented in the learning set. The output format 
was designed in binary format, such that the output layer 
corresponding to the taxon of the leaf under identification 
must reach a value close to 1, whereas the others remain 
close to 0. The class associated with the output neuron that 
reaches the largest value was considered as the class of the 
input. The input data used were normalized to the interval 
[0, 1] before training, as follows:

.                                          (9)

Here, Xmin, Xmax, and Xn correspond to the minimum, 
maximum, and normalized values of the data sample, 
respectively. Training was completed when MSE 
converged and was less than 0.03; training was terminated 
after 8000 epochs if the MSE did not go below 0.03. The 
BP-ANN modeling program was realized using MATLAB 
software (The MathWorks, Inc., Natick, MA, USA, version 
7.9 R2009b) under the computer operating system of 
Windows XP.
2.4. SVM algorithm
SVM originated as an implementation of Vapnik’s 
structural risk minimization principle (Vapnik, 1995). In 
the 2-dimensional case, which could be linearly separable, 
the data are separated by a hyperplane defined by plenty of 
support vectors (grayed out) that are a subset of training 
data used to define the boundary between the 2 classes. 
The simplest model of SVM action is shown in Figure 2A, 
where a thick solid line between the 2 different classes 
(circles and stars) is placed by the SVM and the line is kept 
in such a way that the space between 2 thin straight lines 
(margin) is maximized. We often encounter nonlinearly 
separable data; the SVM solves this problem by mapping 
input data into a high-dimensional feature space using 
a kernel function. By using this method, it is possible to 
identify a hyperplane that allows linear separation, as 
shown in Figure 2B.

The linear boundary can be expressed as:

w . x + b = 0,                                                                  (10)

where w is termed the weight vector and b is the bias.
Assuming that the training data with t number of 

samples are represented by {xi, yi}, i = 1, 2, 3, …, t, we 
attempt to find a function f : Rn → (+1,–1) based on the 
training data. Here, n is the dimensionality of the vector 
and y ∈ (+1,–1) denotes the 2-class label.

In the linear separable case:

w . x + b ≥ +1, for all y ∈ +1,                                       (11)
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w . x + b ≤ –1, for all y ∈ –1.                                          (12)

The 2 inequalities of Eqs. (11) and (12) can be combined 
as:

yi (w . x + b) ≥ 1                                                            (13)

Hence, the maximal distance to the closest point is

formulated as , which can be found by minimizing  

||w||2 subject to the constraint of Eq. (13). The optimization 
procedure uses Lagrange multipliers and quadratic 
programming optimization methods so that the problem 
becomes one of maximizing

                                  (14)

under constraints αi ≥ 0, i =1, 2, 3,…t. Here, are the 
nonnegative Lagrange multipliers.

In the nonlinear separable case:
The training data need to be mapped into a high-

dimensional feature space using a kernel function K (xi, ej) 
≡ Φ  (xi) . Φ  (xj) so that linear separation becomes feasible. 
In this case, a slack variable (, i =1, 2, 3,…, t) is introduced 
to write Eq. (13) as Eq. (15), and the optimization problem 
is stated by Eq. (16):

yi (w . xi + b)–1 + ζi ≥ 0,                                              (15)

.                                                  (16)

Here, C is a penalty parameter of the error term: a 
large value of C means assigning high penalty to errors. 
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Accordingly, the kernel function plays a very important 
role in SVM classification. Four popular kernel functions 
are the following: 

Linear: K (xi, ej) = xi xj.                                                 (17)

Polynomial: K (xi, ej) = (γxi xj + r)d, γ > 0.                              (18)

Radial basis function (RBF):
   K (xi, ej) = exp(γ⎪⎪xi xj ⎪⎪)2, γ > 0.                               (19)

Sigmoid: K (xi, ej) = tanh(γxi xj + r).                                    (20)

Here,  (default = 0) and d are kernel parameters. Thus, 
the problem could be solved by using a kernel function in 
the following classifier:

.                                     (21)

C-SVM algorithms were designed and programmed 
under MATLAB software with the computer operating 
system of Windows XP. SVM algorithms were implemented 
with LIBSVM (Version 3.0), which is a library for support 
vector machines (http://www.csie.ntu.edu.tw/~cjlin/
libsvm). The time for manual and automatic classifications 
at date is less than 80 s.

3. Results
3.1. BP-ANN and SVM models
In this study, 47 species (samples) were used in total: 
25 training set samples were used as the model and the 
remaining 22 samples were used in the prediction phase. 
The 47 samples were divided into 3 categories, and 7 feature 
attributes of samples were introduced, as seen in Figure 3. 
Table 1 shows the list of species that were presented to the 
models.

The optimum number of neurons in the hidden layer 
is selected by experimentation based on learning accuracy 
and speed. Figure 4 shows the changes of MSE and training 

Figure 3. Samples divided into 3 categories and the data of 7 feature attributes of samples. Adaxial epidermal cell (AAD), thickness of 
adaxial epidermal cell (TAD), thickness of palisade parenchyma (TPP), thickness of total leaf (TTL), thickness of spongy parenchyma 
(TSP), thickness of abaxial epidermal cell (TAB), and area of abaxial epidermal cell (AAB).
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time during the prediction with different numbers of 
neurons in the hidden layer. Our results indicate that the 
optimal number of nodes in the hidden layer is 18. Thus, a 
7-18-3 back-propagation network was constructed.

In order to obtain good performance, some SVM 
parameters such as regularization parameter (C) and kernel 
parameter (γ) must be optimized by cross-validation. In 

our work, lg2C and lg2γ were arranged from –5 to 5 with 
an increment of 0.5. Hence, 21 lg2C and lg2γ values (–5, 
–4.5, –4, –3.5, –3, –2.5, –2, –1.5, –1, –0.5, 0, 0.5, 1, 1.5, 
2, 2.5, 3, 3.5, 4, 4.5, 5) were optimized simultaneously by 
cross-validation. The optimal SVM model was determined 
based on the highest accuracy. It can be observed in Figure 
5 that the highest accuracy of 84.00% was achieved when C 

Table 1. Categories and classification of experimental samples from 3 sections of Camellia.

Categories Classification Training set Test set and no.

Sect. Chrysanthae

1 C. nitidissima C. longgangensis (1)

1 C. lungzhouensis C. impressinervis (2)

1 C. multipetala C. fusuiensis (3)

1 C. liomonia C. grandis (4)

1 C. euphlebia C. pingguoensis (5)

1 C. achrysantha C. pinggaoensis (6)

1 C. liberofilamenta C. limonia (7)

1 C. huana C. parvipetala (8)

Sect. Tuberculata

2 C. tuberculata C. acuticalyx (9)

2 C. lipingensis C. atuberculata (10)

2 C. rhytidocarpa C. obovatifolia (11)

2 C. rhytidophylla C. rubimuricata (12)

2 C. leyeensis C. parvimuricata (13)

2 C. anlungensis C. hupehensis (14)

2 C. rubituberculata C. zengii (15)

2 C. acutiperulata C. pyxidiacea (16)

Sect. Paracamellia

3 C. grijsii C. puniceiflora (17)

3 C. confuse C. tenii (18)

3 C. kissi C. microphylla (19)

3 C. fluviatilis C. miyagii (20)

3 C. brevistyla C. odorata (21)

3 C. hiemalis C. phaeoclada (22)

3 C. obtusifolia

3 C. maliflora

3 C. shensiensis
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= 32 and γ = 0.13. Subsequently, the best parameters were 
used to generate the final SVM model.
3.2. BP-ANN classification results
The confusion matrix (Table 2) shows the classification 
results of BP-ANN. Only 3 analyses were misclassified, thus 
obtaining the total accuracy of 86.36%. The classification 
of Sect. Chrysanthae by BP-ANN was the best with a 
100% accuracy rate. Species Camellia rubimuricata Chang 
belonging to Sect. Tuberculata was incorrectly identified, 
showing it as a Sect. Chrysanthae member. Furthermore, 
Camellia tenii and C. odorata from Sect. Paracamellia were 
incorrectly identified as belonging to Sect. Tuberculata 
and Sect. Chrysanthae, respectively. The classification 
accuracies of Sect. Tuberculata and Sect. Paracamellia were 
87.50% and 66.67%, respectively.
3.3. SVM classification results
Linear, polynomial, RBF, and sigmoid classifiers were 
trained and tested using the kernels given by Eqs. (17) 
through (20), respectively. The polynomial degree (d) was 
the combination of the parameters of polynomial SVM 
with d∈ {2,3,4}. Figure 6 shows the classification results 
of different SVMs with optimal parameters. The RBF SVM 

classifier and the sigmoid SVM classifier are better than the 
linear and polynomial SVM classifiers with 90.91% correct 
classification accuracy (Figure 6). The accuracy reached 
100% for the first 16 samples from Sect. Chrysanthae and 
Sect. Tuberculata. However, the last 6 samples (from Sect. 
Paracamellia), No. 18 (C. tenii), and No. 21 (C. odorata) 
were incorrectly classified as Sect. Tuberculata, reducing 
the classification accuracy of Sect. Paracamellia to 66.67%. 
Additionally, the polynomial classifier becomes a linear 
SVM classifier when polynomial degree d is 1. As seen from 
Figures 6A–6D, in the 4 kinds of polynomial classifiers, 
the linear SVM (polynomial degree d = 1) achieved the 
best identification accuracy of 3 categories (86.36%) and 
the accuracy rate decreased as the polynomial degree 
increased (86.36%, 72.73%, 50.00%, and 27.27%).

4. Discussion
4.1. Potential usability
Camellia is commercially the most important genus of 
the family Theaceae. It has been difficult to select suitable 
features for accurate classification of different species 
within this genus as there is great diversity at the section 
level. However, leaf characteristics have been frequently 
used to address inconsistencies in Camellia classification 
(Yang and Qi, 2005). With the rapid development of 
science and technology and increasing interdisciplinary 
research, the application of combination tools (such 
as Fourier transform infrared spectroscopy, random 
amplified polymorphic DNA, or numerical methods) with 
leaf anatomical data to solve classification discrepancies is 
very advantageous. In the present paper, for the first time, 
we employed 2 supervised pattern recognition techniques 
(BP-ANN and SVM) to achieve high classification 
accuracy when classifying Camellia species, especially 
using the RBF-SVM classifier in comparison with the 
Camellia taxonomic systems of Chang (1998). Compared 
with other methods, such as the LVQ classifier and 
DAN2 classifier used by Lu et al. (2012), the RBF-SVM 
classifier in our study produces a more accurate result. 
The techniques, like methods and accuracies of systems, 
used in classification of fruits and vegetables are various 
(Guyer and Yang, 2000; Moshou et al., 2003; Zheng et 
al., 2010), but it is difficult for accuracies to reach the 
classification results of RBF-SVM used in our study. The 
results show that leaf anatomical analysis using RBF-SVM 
can be effectively used to distinguish the genus Camellia. 
Moreover, flora guides like those of Chang (1998) and 
Ming (2000) are commonly used as a comprehensive 
resource to identify Camellia plants (Lu et al., 2012). 
However, the traditional information retrieval processes 
sometimes can be subjective. Thus, the methods used in 
this research could be regarded as extra but effective tools 
to classify new unknown species.
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Table 2. Output values and identification accuracy of the supervised BP-ANNa.

Section Samples
Output values

Identification
C T P

Chrysanthae

C. longgangensis 0.9719 0.0916 0.0097 C
C. impressinervis 0.5526 0.2295 0.2165 C
C. fusuiensis 0.7659 0.1973 0.0028 C
C. grandis 0.4551 0.2138 0.1368 C
C. pingguoensis 0.6193 0.3874 0.0189 C
C. pinggaoensis 0.9767 0.0737 0.0034 C
C. limonia 0.9718 0.1102 0.0053 C
C. parvipetala 0.9923 0.0448 0.0100 C

Accuracy 100%

Tuberculata

C. acuticalyx 0.2680 0.6413 0.0089 T
C. atuberculata 0.0365 0.9395 0.0096 T
C. obovatifolia 0.1104 0.8120 0.0196 T
C. rubimuricata 0.6071 0.1226 0.0808 C
C. parvimuricata 0.0559 0.6725 0.0553 T
C. hupehensis 0.1157 0.8549 0.0223 T
C. zengii 0.0126 0.7703 0.1676 T
C. pyxidiacea 0.0183 0.9348 0.0227 T

Accuracy 87.50%

Paracamellia

C. puniceiflora 0.1571 0.0438 0.8126 P
C. tenii 0.0526 0.9124 0.0171 T
C. microphylla 0.0029 0.1243 0.9844 P
C. miyagii 0.0035 0.1181 0.9878 P
C. odorata 0.5916 0.3721 0.0176 C
C. phaeoclada 0.0286 0.1144 0.8722 P

Accuracy 66.67%

Total accuracy 86.36%

a: Columns C, T, and P contain the output neurons corresponding to sections of Chrysanthae (C), Tuberculata (T), and Paracamellia (P).

–5

0

5

–5

0

5
30

40

50

60

70

80

90

100

log2 C
log2 γ

A
cc

ur
ac

y(
%

)

Figure 5. Classification accuracy in different kernel parameter (C) and regularization parameter (γ) by cross-validation in Camellia 
training model.



JIANG et al. / Turk J Bot

1101

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 
Ac

tu
al 

cla
ssi

�c
at

io
n

Pr
ed

ict
ed

 cl
as

si�
ca

tio
n 

 

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 
 

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 
 

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 

0
5

10
15

20
25

1

1.
2

1.
4

1.
6

1.
82

2.
2

2.
4

2.
6

2.
83

Te
sti

ng
 sa

m
pl

es

Label category

 

 

A
B

C

D
E

F

C 
= 

32
, γ

 =
 0

.1
3

C 
= 

32
, γ

 =
 0

.1
3,

 d
 =

 2
C 

= 
32

, γ
 =

 0
.1

3,
 d

 =
 3

C 
= 

32
, γ

 =
 0

.1
3,

 d
 =

 4
C 

= 
32

, γ
 =

 0
.1

3
C 

= 
32

, γ
 =

 0
.1

3

Li
ne

ar
Po

ly
no

m
ia

l
Po

ly
no

m
ia

l

Po
ly

no
m

ia
l

RB
F

Si
gm

oi
d

Ac
cu

ra
cy

 =
 5

0.
00

%
Ac

cu
ra

cy
 =

 7
2.

73
%

Ac
cu

ra
cy

 =
 8

6.
36

%

Ac
cu

ra
cy

 =
 2

7.
27

%
Ac

cu
ra

cy
 =

 9
0.

91
%

Ac
cu

ra
cy

 =
 9

0.
91

%

Figure 6. The classification results of (A) linear, (B, C, and D) polynomial, (E) RBF, and (F) sigmoid SVM classifiers with the optimal 
parameters using the test set.
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4.2. Effectiveness of BP-ANN and SVM model
The main aim of this study was to evaluate the feasibility of 
identifying species from the various sections of Camellia 
by supervised pattern recognition techniques (BP-ANN 
and SVM) and to determine their ability to assign species 
to respective sections. Both the BP-ANN and SVM models 
were developed using the same training data shown in Table 
1. The BP-ANN architecture was a standard network, with 
1 hidden layer, including 18 nodes with additional direct 
connections from 7 input neurons to 3 output neurons 
(7-18-3). An 86.36% total correct classification accuracy 
was achieved by BP-ANN. The supervised BP-ANN 
correctly identified all the species in Sect. Chrysanthae, 
with no errors in the prediction data, indicating that 
BP-ANN has strong ability to identify and assign species 
from sect. Chrysanthae. This conclusion validates Chang’s 
view on the close evolutionary relationship of species 
in sect. Chrysanthae. The discrimination power of the 
other 2 sections was relatively lower, as shown in Table 
1. C. rubimuricata was separated into sect. Chrysanthae, 
and Camellia tenii and Camellia odorata were assigned 
to sect. Tuberculata and sect. Chrysanthae, respectively. 
The classification results of those 2 species in sect. 
Paracamellia obtained from SVM were also incorrectly 
identified, which indicated that Camellia tenii and C. 
odorata are similar to the other 2 sections. Taxonomy 
itself is a dynamic discipline and no theory can support 
100% accurate classification of any species. We should 
also note that deviation from the classification needs 
to be further investigated to see if a misclassification is 
due to the underlying algorithm’s fitting of data. Some 
misclassified species may indeed have underlying links 
in biological evolutionary principles with species of other 
sections. Therefore, we propose the possible misallocation 
of these species and the need for further research into 
their biological evolution. On the other hand, BP-ANN 
did not reach 100% classification accuracy for genus 
Camellia, but the performance of the BP-ANN could be 
improved by adding more characteristics and attributes as 
input. One hidden layer is usually sufficient for ANNs to 
approximate any nonlinear function (Hagan and Menhaj, 
1994); thus, the use of a single hidden layer in our study 
is reasonable. In comparison, SVM classification resulted 

in models showing slightly higher prediction accuracy 
(Figure 6). The optimal SVM model was determined by 
cross-validation; we selected the best parameters, C = 
32, γ = 0.13, for SVM classifiers. As seen from the whole 
in Figure 6, the RBF SVM classifier and sigmoid SVM 
classifier are better than the polynomial SVM classifier for 
identification results. Since the polynomial SVM classifier 
becomes a linear SVM classifier when the polynomial 
degree d is 1, the linear SVM classifier achieves the 
best identification accuracies among polynomial SVM 
classifiers. In fact, the improvement in the classification 
accuracy is not much when the polynomial degree is more 
than 2.

Compared to the BP-ANN, the SVM has some 
advantages. The BP-ANN approach is based on the 
empirical risk minimization principles and suffers from 
the problem of over-fitting. However, the global optimum 
can be derived by SVM and the over-fitting model can 
be easily controlled by the choice of a suitable margin. 
Therefore, SVM possess excellent generalization in theory, 
which gets a better performance than the BP-ANN model 
in prediction set. Taking into account the accuracy of these 
2 systems, it can be concluded that supervised pattern 
recognition techniques are valuable tools for taxonomic 
classification of Camellia species.

In conclusion, leaf anatomy data based on 7 attributes 
of 47 Camellia species were initially input to construct 2 
classification models, BP-ANN and SVM. The overall 
results demonstrate that leaf anatomy data coupled with 
SVM can reliably classify different Camellia species into 
respective sections. Compared to BP-ANN, the SVM 
shows better classification accuracy. It can therefore 
be concluded that the use of leaf anatomy data together 
with a SVM has a high potential to classify species from 
different sections of Camellia, or potentially can be used 
for classification of other plant taxa.
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