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ABSTRACT 
In this paper, a new set of speech feature parameters 
based on multirate signal processing and the Teager 
Energy Operator is developed. The speech signal is 
first divided into nonuniform subbands in mel-scale us- 
ing a multirate filter-bank, then the Teager energies of 
the subsignals are estimated. Finally, the feature vec- 
t,or is constructed by log-compression and inverse DCT 
computation. The new feature parameters have a ro- 
bust speech recognition performance in car engine noise 
which is low pass in nature. 

1. INTRODUCTION 

It is shown in [l-61 that speech can be modeled as a 
linear combination of AM-FM signals in some cases. 
Each resonance, or formant, is represented by an AM- 
FM signal of the form 

s ( t )  = a(t)  cos[d(f)] = a ( t )  cos[jdfwi(T)dT + 4(0 ) ] .  

(1) 
where a ( t )  is a time varying amplitude signal and w,(t) 
is the instantaneous frequency given by wi ( t )  = d4(t)/dt.  
This model allows the amplitude and resonance fre- 
quency to vary instaiitaneously within one pitch period. 
In [3-6], i t  is also shown that the Teager Energy Oper- 
ator (TEO) can track the modulation energy and iden- 
tify the instantaneous amplitude and frequency. The 
TEO is defined by 

s c [ s ( t ) ]  = [ S ( t ) ] 2  - s(t)S(t).  

where 9 = 2.  In the case of AM-FM signal of Equation 
(11, 

!Pc [s ( t ) ]  x a ' ( t ) W ; ( t ) .  (3) 

assuming that, the bandwidth of a ( t )  is much smaller 
than that of w i ( t )  [6] .  
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The idea that \E, is an energy measure is motivated 
by the fact that an undamped oscillator consisting of a 
mass m and a spring of constant k has a displacement 
z(t)  = Acos(w0t + e ) ,  with WO = m. The instan- 
taneous energy EO of this undamped oscillator is the 
sum of its kinetic and potential energies and equals the 
constant 

(4) m 2 Eo = -(Awo) . 
2 

In this case, !P,[z(t)] = ( A W ~ ) ~ .  So the energy of the 
linear oscillator is proportional to !@c[z(t)] [6]. 

In this paper, new feature parameters based on the 
nonlinear model of (1) are developed using the TEO. 
The speech signal is first divided into nonuniform sub- 
bands in mel-scale using a multirate filter bank. Then, 
in each subband, the Teager energies are estimated. Fi- 
nally, the feature vector is constructed by log-compression 
and inverse DCT computation. 

The idea behind using TEO instead of the com- 
monly used instantaneous energy, is to take advan- 
tage of the modulation energy tracking capability of 
the TEO. This leads to a better representation of the 
formant information in the feature vector compared to 
the MELCEP [7] and SUBCEP [8] parameters in which 
the regular instantaneous energy is used. 

In Section 2 we formally define the TEOCEP fea- 
tures and in Section 3 we present some properties of 
the TEO. In Section 4, we use the new parameters for 
speech recognition under car engine noise which is of 
low pass nature. Since the modulation energy of the 
car noise is very low compared to that of the speech 
signal, the TEOCEP's show better recognition perfor- 
mance than MELCEP's and SUBCEP's. 

2. THE TEOCEP FEATURE PARAMETERS 

In our method, multirate subband decomposition [8- 
lo], is used in a t,ree structure to divide the speech 
signal s(n) according to the mel-scale as shown in Fig. 
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Figure 1: The siib-band frequency decomposition of 
the speech signal 

( l ) ,  and 21 sub-signals sl(n), 1 = l , . . . , L  = 21, are 
obtained. The filter bank of a biorthogonal wavelet 
transform is used in the analysis [ll]. The lowpass 
filter has the transfer function 

1 9 -1 1 a(t.) = - + -(z + 2) - - ( z - ~  + z 3 ) .  (5) 2 32 32 

and the corresponding high-pass filter has the transfer 
function 

1 9 -1 1 H~(z) = - - -(z + 2') + 3 2 ( ~ - ~  + z3) .  (6 )  2 32 

For every sub-signal, the average Teager energy el 

- NI 

is estimated. In (7), .\'I is the number of samples in 
the lt'l band, and Q,[.] is the discrete-time version of 
the continuous-time TEO which is obtained by approx- 
imating derivatives with the two-sample backward (or 
forward) difference [s (n)  - s(n - 1)]/T where T is the 
sampling period. Without any loss of generality, T can 
be set to one, and the discrete-time version of the TEO 
is given by 

Q<~[S(TL) ]  = s ' ) ( I I )  - ~ ( n  + l ) s (n  - 1). (8) 

In this paper, the discrete version is used so from now 
on the suhcript 'd' is dropped. 

Although it is possible that the instantaneous Tea- 
ger energy have negative values in very rare circum- 
stances, the average value el is a positive quantity for 
most nat,iiral signals [4.12]. Nonetheless, the magni- 
tude of the Teager energy is used to ensure the non- 
negativity of el. Log compression and inverse DCT 
computation is finally applied to obtain the TEO-based 
cepstmim coefficients. 

k(1 - 0 . 5 ) ~  I' 

TC(k )  = log(c,) cos[ 1 ;  k = 1 ,  ..., N .  
I= I 

(9) 
We call the new features TEOCEP's. The first 12 
TC(X:) coefficients are used in the feature vector. Twelve 
more coefficients obtained from the first-order differen- 
tials are also appended. A final feature vector with 

dimension 24 is obtained and is used for training and 
recognition. 

The SUBCEP parameters used in [8] differ from the 
TEOCEP's just in the definition of the energy measure 
used in Equation (7). In [8], 

. N I  

is used instead of el. 
It is shown that the SUBCEP's perform slightly 

better than the well-known MELCEP features [8-lo]. 
For this reason, the performance of the TEOCEP's are 
evaluated with respect to that of SUBCEP's. 

3. PROPERTIES OF THE TEAGER 
ENERGY OPERATOR 

The TEO is an efficient tool for nonlinear speech pro- 
cessing as the speech is composed of a superposition 
of AM-FM signals. To examine the behaviour of the 
TEO in the presence of noise, we calculate the mean of 
*[s(n)]  or simply Qs(n)  

E{Qs(n)}  = E{s"n)} - E{s(n + l)s(n - 1)) (11) 

Assuming that the speech is stationary within the cur- 
rent frame, 

E { Q s ( n ) }  = W O )  - RS(2). (12) 

where R,(lc) is the autocorrelation function of s(n). 

Figure 2: Power Spectrum Density of the car noise sig- 
nal recorded inside a Volvo 340 on a rainy asphalt road 
by the Institute for Perception- TNO, The Netherlands 

In this paper, me are interested in voice dialing ap- 
plications and consider the colored car engine noise. 
The spectrum of t,he car noise ~ ( 7 1 )  is rriostly concen- 
trated in low frequencies as shown in Figure 2. Thus, 
its correlation function varies vcxy smoothly and it is 
almost flat near the origin for several lags. For this 
noise signal, the first three autocorrelation lags are es- 
timated as 
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4. SIMULATION RESULTS 

Figure 3: Spectrum of the car noise v(n) (dashed line) 
i d  the spectrum of the Teager energy 9[v(n)]  (con- 
tinuous linc) 

Since R,,(O) x R,(l)  M R,(2), we have 9[v(n)]  M 0. 
This leads to the spectrum of 9[v(n)]  shown in Figure 
3, which is almost flat and negligible compared to the 
spectrum of the noise U(.). 

Clearly, for a typical speech signal, s(n), the first 
three autocorrelation lags are not as close as in the car 
engine noise case. For example 

(14) 
&(1) = 0.7415 R,(O) 
R,(2) = 0.4584 R,(O) 

for the author's /a/. 
Let the observed signal be ~ ( n )  = s(n)+v(n), where 

s(n) is the noise frce speech signal and v(n) is a zero 
mean additive noise. 

The Teager energy of the noisy speech signal z(n) 
is given by 

9 [ z ( n ) ]  = 9[s (n ) ]  + 9[v(n)] + 2G[s(n),v(n)] (15) 

where ; E [ s ( r ~ ) . u ( t L ) ] = s ( ~ ~ ) I . o - 3 s ( n - i ) - ~ s ~ ~ + ~ ~ ~ ~ ~ - i ) ,  
is the cross-9 energy of s ( n )  and v(n) .  

Since ~ ( n )  and ~ ( n )  are zero mean and indepen- 
dent,. then the expected value of their cross-9 energy 
is zero. Noreover. 9 [ v ( n ) ]  is negligible if the speech 
resonance frequency fall within the current analysis 
band [3]. Therefore 

E{W.(n)l} = -f3{9[s(n)l) (16) 

On the other hand, with the commonly used instan- 
taneous enrrgy, the noise bias persists and is propor- 
tional to the noise energy, 

E{s"n)]} = R,(O) + R,(O) (17) 

As discussed in Section 2. TEOCEP's are obtained 
via rnultiresolut,ion analysis. If a speech formant falls 
within an iIniklysis h n d  then its Teager energy is much 
higher t,hm t,he Teager energy of the noise. Due to this 
reason, t,hc formant information is well represented in 
the TEOCEP feat,ure set. 

A continuous density Hidden Markov Model based speech 
recognition system with 5 states and 3 Gaussian mix- 
ture densities is used in simulation studies. The recog- 
nition performances of the TEOCEP feature parame- 
ters are evaluated using the TI-20 speech database of 
TI-46 Speaker Dependent Isolated Word Corpus which 
is corrupted by various types of additive noise. The 
TI-20 vocabulary consists of ten English digits and ten 
control words. The data is collected from 8 male and 8 
female speakers. There are 26 utterances of each word 
from each speaker, where 10 designated as training to- 
kens and 16 designated as testing tokens. 

(dB) TEOCEP SUBCEP 
99.66 99.15 
99.26 99.05 

Table 1: The average recognition rates of speaker de- 
pendent isolated word recognition system with SUB- 
CEP and TEOCEP features for various SNR levels 
with Volvo noise recording. 

Speaker dependent isolated word speech recognition 
simulations are described in Table 1 and Table 2 for 
Volvo car noise and white noise, respectively. The car 
noise is recorded inside a Volvo 340 on a rainy asphalt 
road by the Institute for Perception- TNO, The Nether- 
lands. In the car noise case, the superiority of the 
TEOCEP's over the SUBCEP's is obvious especially 
at low SNR values. However, in white noise, just a 
slight improvement is achived at low SNR values. This 
can be theoretically predicted because for white noise 
v(n), the autocorrelation function R,,(k) = 0 for k # 0. 

In Table 3. speaker independent experiment results 
with the Volvo car noise are shown. The utterances of 
five men and five women were used for training. The ut- 
terances of the rest. speakers arc used to test the perfor- 
mance of the system. Again the TEOCEP parameters 
outperform the SUBCEP's especially a t  low SNR's. 

5. CONCLUSION 

In this paper. new featJim paramctcrs, TEOCEP's. for 
speech recognition are introduced. The new features 
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97.79 98.37 
87.07 
86.12 85.17 

Table 2: The average recognition rates of speaker de- 
pendent isolated word recognition system with SUB- 
CEP iind TEOCEP features for various SNR levels 
with white noise. 

SNR. 
IdB) TEOCEP SUBCEP 

Table 3: The average recognition rates of speaker inde- 
pendent isolated word recognition system with SUB- 
CEP and TEOCEP features for various SNR levels 
n-ith tblvo noise recording. 

are based on the Teager Energy Operator and the mul- 
tirate sub-band analysis providing a robust recognition 
performance under car noise. 
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