The o/p time constant is RC which creates a
3dB cut-off frequency $= w_c = \frac{1}{2\pi RC} = \frac{1}{2\pi C}$
for $L = 0$. The question is:

Can we extend the BW of an amplifier (w_c) by adding an inductor L with a suitable value in series with the drain resistor R. In this proposed solution, we are creating a parallel resonant circuit with a lossy inductor driven by a current source.
The circuit is equivalent to

\[R_p = \frac{(Q^2+1)}{Q^2} R \]

\[L_p = \frac{Q^2+1}{Q^2} L_s \] & \[Q = \frac{wL}{R} \]

which is an exact expression at any \(w \) and only at that \(w \).

If we now draw the phasor diagrams for frequencies at which \(R, \frac{1}{\omega C} \) & \(wL \) are not very much different from each other:

![Phasor Diagrams](image)

At frequencies approaching \(w_1 \) or going beyond it (i.e. the value \(\frac{1}{\omega C} \) being not very much different from \(R \)) a value of \(L \) can be chosen such that \(JB_1 \) compensates \(j\omega C \) to some extent, which results at a value of \(G_1 < \frac{1}{R^2} \) (because \(Q > 0 \)) and therefore creating an overall impedance greater than the impedance of the output load without \(L \) (maybe perhaps greater than \(R \)). Therefore the response in the vicinity of \(w_1 \) is increased.
This is a low Q circuit, therefore exact derivation is required.

\[
Z(j\omega) = \frac{(R + j\omega L)}{1 + j\omega CR} = \frac{R + j\omega L}{1 + j\omega CR - \frac{1}{j\omega C}} = R \left(\frac{1 + j\omega \frac{L}{R}}{1 - \frac{L^2 C}{R}} \right)
\]

\[
\frac{Z(j\omega)}{R} = \frac{1 + j\omega \left(\frac{L}{R} \right)}{1 - \frac{L^2 C}{R} + j\omega CR}
\]

Let $\tau = \frac{L}{R}$, $\tilde{\tau} = RC = \frac{1}{\omega_1}$

\[
m = \frac{\tilde{\tau}}{\tau} = \frac{RC}{L/R} = \frac{1}{\omega_1} \frac{\tau}{L} = \frac{R^2 C}{L}
\]

\[
\Rightarrow L = \tau R, \quad C = \frac{m^2 \tau}{R} \Rightarrow LC = \frac{\tau R \frac{m^2 \tau}{R}}{m^2} = m \tau^2 = m \frac{1}{\omega_1^2}
\]

and $\tau = \frac{1}{m \omega_1} = \frac{L}{R}$

\[
\Rightarrow \left| \frac{Z(j\omega)}{R} \right| \text{ becomes}
\]

\[
\left| \frac{Z(j\omega)}{R} \right| = \left[\frac{1 + (\omega \tau)^2}{(1 - \omega^2 \tau^2 m^2)^2 + (\omega^2 \tau^2 m^2)^2} \right]^{1/2}
\]

or by defining $m_n = \frac{w}{m \omega_1}$

\[
\frac{Z(j\omega)}{R} = \left[\frac{1 + m_n^2 w_n^2}{(1 - m_n^2 w_n^2)^2 + w_n^2} \right]^{1/2}
\]

by defining this ratio as $G_n(j\omega)$
We are now trying to find the new 3 dB point with the introduced L. Therefore we can find the bandwidth extension ratio ω_n by equating $|G_n(j\omega_n)|$ to $\frac{1}{V_2^n}$ or $|G_n(j\omega_n)|^2 = \frac{1}{2}$ and solving for ω_n taking m as the parameter defining the ratio of time constants

$$m = \frac{T_c}{T} = \frac{\omega_n}{\omega_1}$$

where $\omega_1 = \frac{1}{RC}$ & $\omega_L = \frac{1}{R}$ or the ratio of the cut-off frequencies.

$$\frac{1}{2} = \frac{1 + \frac{\omega_{n3}^2}{m^2}}{(1 - \frac{\omega_{n3}^2}{m^2})^2 + \omega_{n3}^2}$$

where ω_{n3} is the 3 dB point of the normalized frequency or the bandwidth extension ratio.

letting $d = \omega_{n3}^2$

$$\frac{1}{2} = \frac{1 + \frac{d}{m^2}}{(1 - \frac{d}{m^2})^2 + d} \quad \Rightarrow 1 - 2 \frac{d}{m} + \frac{d^2}{m^2} + d = 2 + \frac{2d}{m^2}$$

$$\frac{d^2}{m^2} - d \left[1 - \frac{2}{m} - \frac{2}{m^2} \right] \frac{1}{\omega_c} = 0$$

$$\omega_{n3} = \sqrt{\frac{(m^2 - 2m - 2)^2 + 4m^2}{4}}$$
\[
\frac{w_{3\text{db}}}{w_1} = w_{3\text{db}} = \left[-\frac{m^2}{Z} + m + 1 + \sqrt{\left(\frac{m^2}{Z} + m + 1\right)^2 + m^2} \right]^{1/2}
\]

where \(w_{3\text{db}}\) is the 3 dB radial frequency. We take only the positive quadratic since the negative one results at a negative frequency.

For different values of the index \(m\), we get different response curves which can approximately be plotted as:

- \(m = 2.41\) (maximally flat)
- \(m = 2\)
- \(m = 1.41\) (maximally flat)
- \(m = 3.1\) (Best group delay)
- \(m = \infty\) (without an inductor)
Series Peaking

Gain $G(j\omega) = \frac{Z_{in}(j\omega) \cdot \frac{Z_c}{Z_c + Z_L}}{Z_{out}} = G(j\omega)$

\[
G(j\omega) = \frac{1}{(1 - \omega^2 L_2 C_L) + j\omega R_L C_L}
\]

Letting $\omega_1 = \frac{1}{R_L C_L}$, $m = \frac{T_c}{\tau} = \frac{R_C}{L/R}$

$\tau = \frac{L_2}{R_L}$

$T_c = R_L C_L = \frac{1}{\omega_1}$ again

$L_2 C_L = \frac{1}{m \omega_1^2}$ and $R_L C_L = \frac{1}{\omega_1}$ are obtained
defining \(G_n(j\omega) = \frac{G(j\omega)}{R_n} \), it becomes

\[
G_n(j\omega) = \frac{1}{\left(1 - \frac{w^2}{w_1^2 m} \right) + j\omega \frac{w_n}{w_1}} = \frac{1}{\left(1 - \frac{w_n^2}{m} \right) + j\omega n}
\]

where \(w_n = \frac{w}{w_1} \)

\[
|G_n(j\omega)|^2 = \frac{1}{\left(1 - \frac{w_n^2}{m} \right)^2 + w_n^2} = \frac{1}{1 - 2\frac{w_n^2}{m} + \frac{w_n^4}{m^2} + w_n^2}
\]

at the 3 dB point \(|G_n(j\omega)|^2 = \frac{1}{2} \Rightarrow \)

\[
\frac{1}{2} = 1 - w_n^2 \left(1 - \frac{m}{m} \right) + \frac{w_n^4}{m^2}
\]

letting \(w_n^2 = d \)

\[
\frac{1}{m^2} d^2 + \left(1 - \frac{2}{m} \right) d - 1 = 0 \Rightarrow d^2 + d(m^2 - 2m) - m^2 = 0
\]

\[
a = 1 \quad b = m^2 - 2m \quad c = -m^2
\]

\[
d_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - \frac{\Delta}{a}}}{a} = \frac{2m - m^2}{2} \pm \frac{(2m - m^2)^2}{4} + m^2
\]

\[
taking only the positive quadratic again as \(w_n \) should be a real number (negative quadratic results in imaginary \(w_n \))
\]

\[
w_n^2 = d = m - \frac{m^2}{2} + \frac{\sqrt{m^2(2 - m)^2 + 4m^2}}{4}
\]

\[
= m - \frac{m^2}{2} + \left(\frac{4m^2 - 4m^3 + m^4 + 4m^2}{4} \right)^{\frac{1}{2}}
\]

\[
w_n = d^{\frac{1}{2}} = \left[m - \frac{m^2}{2} + \left[\frac{8m^2 - 4m^3 + m^4}{4} \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}
\]
\[w_{n3} = \left[m - \frac{m^2}{2} + \left[2 m^2 - m^3 + \frac{m^4}{4} \right]^{1/2} \right]^{1/2} \]

for \(m = 2 \) \(\Rightarrow w_{n3} = \sqrt{2} \)

for \(m = 3 \) \(\Rightarrow w_{n3} = 1.36115 \)
There are other peaking arrangements.

Amplifier with shunt & series peaking

Shunt and double-series peaking exchanges increased delay with bandwidth

\[L = \frac{R_c^2 C_L}{2(1+k)} \]

\[k = \frac{1}{3} \] Butte north - type maximally flat supre

\[k = \frac{1}{2} \] maximally flat group delay

Amplifier with T-coil BW enhancement