
A. Enis Cetin

Lecture Notes on Discrete-Time
Signal Processing

EE424 Course @ Bilkent University

May 7, 2015

BILKENT

Foreword

This is version 1 of my EE 424 Lecture Notes. I am not a native English speaker.
Therefore the language of this set of lecture notes will be Globish. I will later (hope-
fully) revise this version and make it English with the help of my native English
speaker son Sinan.

I have been studying, teaching contributing to the field of Discrete-time Signal
Processing for more than 25 years. I tought this course at Bilkent University, Uni-
versity of Toronto and Sabanci University in Istanbul. My treatment of filter design
is different from most textbooks and I only include material that can be covered in
a single semester course.

The notes are organized according to lectures and I have X lectures.
We assume that the student took a Signals and Systems course and he or she is

familier with Continuous Fourier Transform and Discrete-time Fourier Transform.
There may be typos in the notes. So be careful!
I also thank Berk Ozer for his contributions to this set of lecture notes.

Ankara, October 2011 A. Enis Cetin

v

Contents

1 Introduction, Sampling Theorem and Notation . 1
1.1 Shannon’s Sampling Theorem . 1
1.2 Aliasing . 6
1.3 Relation between the DTFT and CTFT. 8
1.4 Continuous-Time Fourier Transform of xp(t) 9
1.5 Inverse DTFT . 11
1.6 Inverse CTFT . 11
1.7 Filtering Analog Signals in Discrete-time Domain 12
1.8 Exercises . 12

2 Multirate Signal Processing . 17
2.1 Interpolation . 17
2.2 Interpolation by an integer M . 23
2.3 Decimation by a factor of 2 . 23
2.4 Decimation by M . 29
2.5 Sampling Rate Change by a factor of L/M . 29
2.6 Interpolation Formula . 29
2.7 Downsampler and Upsampler are Linear Operators 30
2.8 Computer Project . 30
2.9 Exercises . 31

3 Discrete Fourier Transform (DFT) . 35
3.1 DFT Definition . 35
3.2 Approximate Computation of CTFT using DFT 37

3.2.1 Computer Project: DTMF (Dual/Dial-Tone-Multi-
Frequency) . 40

3.3 Convolution using DFT . 41
3.4 Circular Convolution . 42

3.4.1 Computation of DFT of Anticausal Sequences 45
3.5 Inverse DFT of an Infinite Extent Signal . 47
3.6 DFT and Inverse DFT using Matrix Notation 49

vii

viii Contents

3.7 Parseval’s Relation . 52
3.8 Mini Projects . 52
3.9 Exercises . 54

4 Fast Fourier Transform (FFT) Algorithms . 57
4.1 Introduction . 57
4.2 DFT Computation by Matrix Multiplication . 57
4.3 Decimation-in-Frequency FFT Computation Algorithm 58
4.4 Decimation-in-Time FFT Computation Algorithm 64
4.5 FFT for an arbitrary N . 68
4.6 Convolution using DFT (FFT) . 70
4.7 Exercises . 70
4.8 Computer Projects . 72
4.9 Exercises . 73

5 Applications of DFT (FFT) . 75
5.1 Introduction . 75
5.2 Convolution using DFT (FFT) . 75
5.3 Overlap and Add Method . 76
5.4 Discrete Cosine Transform (DCT) . 77
5.5 Relationship between DFT and DCT . 78

5.5.1 Relation between DFT and DCT-1 . 79
5.5.2 Relation between DFT and DCT-2 . 79

6 FIR Filter Design and Implementation . 81
6.1 Linear-Time Invariant Systems . 81

6.1.1 Design of FIR Filters Using a Rectangular Window 82
6.1.2 Window-Based FIR Filter Design . 84
6.1.3 High-pass, Band-pass, Notch and Band-stop Filter Design . . 85

6.2 Causal Filter Design . 85
6.3 Equiripple FIR Filter Design . 88

6.3.1 Equiripple FIR Filter Design by using the FFT based method 89
6.4 Design of Differentiators and Hilbert Transformers 94

6.4.1 Differentiator . 94
6.4.2 Hilbert Transformer . 95

6.5 Exercises . 95

7 Recursive IIR Filter Design . 99
7.1 Implementation of Analog Systems using Discrete-Time Processing 99
7.2 The Bilinear Transform . 102
7.3 IIR Filter Design using the Bilinear Transform 104
7.4 Butterworth Filters . 107
7.5 Chebyshev Filters . 110
7.6 Elliptic Filters . 111
7.7 Phase Response of Recursive IIR Filters . 112
7.8 Implementation of Recursive IIR Filters . 113

Contents ix

7.8.1 Direct Form I Realization (Signal Flow Diagram): 114
7.8.2 Direct Form II Realization (Signal Flow Diagram): 115
7.8.3 Lattice Filter: . 117

7.9 IIR All-Pass Filters . 118
7.9.1 Input/Output relation . 118
7.9.2 Stability condition . 119

7.10 Frequency Transformation of Low-Pass IIR Filters to Other Filters . 119
7.10.1 Low-pass filter to low-pass filter . 120
7.10.2 Low-pass to high-pass transformation 121
7.10.3 Low-pass to band-pass filter . 122
7.10.4 Low-pass to band-stop filter . 122

7.11 Exercises . 122

8 Goertzel’s Algorithm . 125
8.1 Implementation of Goertzel’s Algorithm . 126

9 Random Signals, Wiener Filtering and Speech Coding 129
9.1 Introduction . 129
9.2 Stationary Random Processes . 131

9.2.1 Estimation of Autocorrelation from Data 137
9.3 Linear Minimum Mean-Squared-Error (LMMSE) Predictor 138
9.4 White Noise and MA and AR Random Processes 140
9.5 Quantization and A to D Conversion . 144
9.6 LPC-10 Algorithm (Earliest Voice Coder / Vocoder) 147
9.7 Exercises . 150
9.8 DTMF Tone Detection by Low-pass and High-pass Filters 155

9.8.1 FIR Filter Design . 155
9.8.2 Generation of DTMF Tone . 155
9.8.3 Lowpass and Highpass Filters . 156

9.9 DTMF Tone Detection using Goertzel Algorithm 156
9.9.1 DTMF Tone Detection using Goertzel Algorithm in

MATLAB . 156
9.10 Classification of Coins using Cepstrum . 157

9.10.1 Generation of Sound Vectors . 157
9.10.2 Training Phase: Generation of Feature Vectors in MATLAB157
9.10.3 Testing Phase: 1-Nearest Neighbour Classifier in MATLAB 158

References . 159
References . 159

Chapter 1
Introduction, Sampling Theorem and Notation

The first topic that we study is multirate signal processing. We need to review Shan-
non’s sampling theorem, Continuous-time Fourier Transform (CTFT) and Discrete-
time Fourier Transform (DTFT) before introducing basic principles of multirate sig-
nal processing. We use the Shannon sampling theorem to establish the relation be-
tween discrete-time signals sampled at different sampling rates.

Shannon’s sampling theorem has been studied and proved by Shannon and other
researchers including Kolmogorov in 1930’s and 40’s. Nyquist first noticed that
telephone speech with a bandwidth of 4 KHz can be reconstructed from its samples,
if it is sampled at 8 KHz at Bell Telephone Laboratories in 1930’s.

It should be pointed out that this is not the only sampling theorem. There are
many other sampling theorems.

We assume that student is familiar with periodic sampling from his third year
Signals and Systems class. Let xc(t) be a continuous-time signal. The subscript ”c”
indicates that the signal is a continuous-time function of time. The discrete-time
signal: x[n] = xc(nTs), n = 0,±1,±2,±3, . . . where Ts is the sampling period.

1.1 Shannon’s Sampling Theorem

Let xc(t) be a band-limited continuous-time signal with the highest frequency wb.
The sampling frequency ws should be larger than ws > 2wb to construct the original
signal xc(t) from its samples x[n] = xc(nTs), n = 0,±1,±2,±3, The angular
sampling frequency ωs = 2π/Ts is called the Nyquist sampling rate.

Example: Telephone speech has a bandwidth of 4 kHz. Therefore the sampling frequency
is 8 kHz, i.e., we get 8000 samples per second from the speech signal.

Example: In CD’s and MP3 players, the audio sampling frequency is fs = 44.1 kHz.

If the signal is not band-limited, we apply a low-pass filter first and then sample
the signal. A-to-D converters convert audio and speech into digital form in PC’s

1

2 1 Introduction, Sampling Theorem and Notation

Fig. 1.1 The continuous-time signal xc(t) and its continuous-time Fourier Transform Xc(jw). In
general, Fourier Transform (FT) of a signal is complex but we use a real valued plot to illustrate
basic concepts. This is just a graphical representation. It would be clumsy to plot the both the real
and imaginary parts of the FT.

and phones etc and they have a built-in low-pass filter whose cut-off frequency is
determined according to the sampling frequency.

The discrete-time signal x[n] = xc(nTs), n = 0,±1,±2,±3, . . . with the sam-
pling period Ts =

1
fs
= 2π

ws
, ws = 2π fs is equivalent to the continuous-time signal:

xp(t) =
∞

∑
n=−∞

xc(nTs)δ (t−nTs) (1.1)

where δ (t− nTs) is a Dirac-delta function occurring at t = nTs. The signal xp(t) is
not a practically realizable signal but we use it to prove the Shannon’s sampling
theorem. The sampling process is summarized in Figure 1.2. The signal xp(t) and
the discrete-time signal x[n] are not equal because one of them is a discrete-time
signal the other one is a continuous-time signal but they are equivalent because they
contain the same samples of the continuous time signal xc(t):

xp(t)≡ x[n], xp(t) 6= x[n] (1.2)

The continuous-time signal xp(t) can be expressed as follows:

xp(t) = xc(t)p(t), (1.3)

where

1.1 Shannon’s Sampling Theorem 3

Fig. 1.2 The signal xp(t) contains the samples of the continuous-time signal xc(t).

p(t) =
∞

∑
n=−∞

δ (t−nTs)

is a uniform impulse train with impulses occurring at t = nTs, n= 0,±1,±2,±3,
The continuous-time Fourier Transform of xp(t) is given by

Xp(jw) =
1

2π
P(jw)∗Xc(jw)

where P(jw) is the CTFT of the impulse train p(t)

P(jw) =
2π

Ts

∞

∑
k=−∞

δ (w− kws)

P(jw) is also an impulse train in the Fourier domain (see Fig. 1.3). Notice that
Fourier domain impulses occur at w = kws and the strength of impulses are 1/Ts.
Convolution with an impulse only shifts the original function therefore

Xc(jw)∗δ (w−ws) = Xc(j(w−ws))

Similarly,
Xc(jw)∗δ (w− kws) = Xc(j(w− kws))

As a result we obtain

Xp(jw) =
1
Ts

∞

∑
k=−∞

Xc(j(w− kws))

4 1 Introduction, Sampling Theorem and Notation

Fig. 1.3 P(jw) is the CTFT of signal p(t).

which consists of shifted replicas of Xc(jw) occurring at w= kws,k= 0,±1,±2,±3, . . .
as shown in Figure 1.4. Notice that it is assumed that ws−wb >wb in Fig. 1.4, so that

Fig. 1.4 The Xp(jw) which is the CTFT of signal xp(t) with the assumption ws > 2wb.

there is no overlap between (1/Ts)Xc(jw) and (1/Ts)Xc(jw±ws). This means that
the original signal xc(t) can be recovered from its samples xp(t) by simple low-pass
filtering:

Xc(jw) = Hc(jw)Xp(jw) (1.4)

where Hc(jw) is a perfect low-pass filter with cut-off ws/2 and an amplification fac-
tor Ts. Continuous-time to discrete-time (C/D) conversion process is summarized in
Figure 1.5. Notice that we do not compute Fourier Transforms during signal sam-
pling (C/D conversion). We use the Fourier analysis to prove Shannon’s sampling
theorem.. In practice:

1.1 Shannon’s Sampling Theorem 5

Fig. 1.5 Summary of signal sampling and signal reconstruction from samples.

• We cannot realize a perfect low-pass filter. We use an ordinary analog low-pass
filter to reconstruct the continuous-time signal from its samples. Therefore, the
reconstructed signal x̃c(t) 6= xc(t) but it is very close to the original signal pro-
vided that we satisfy the Nyquist rate ws > 2wb. A practical signal reconstruction
system is shown in Fig. 1.6.

• The signal xp(t) is not used as an input to the low-pass filter during reconstruc-
tion, either, but a staircase signal is used. This is because we can not generate
impulses.

• In Analog to Digital (A/D) converters, there is a built-in low-pass filter with cut-
off frequency fs

2 to minimize aliasing.
• In digital communication systems samples x[n] are transmitted to the receiver

instead of the continuous-time signal xc(t). In audio CD’s samples are stored
in the CD. In MP3 audio, samples are further processed in the computer and
parameters representing samples are stored in the MP3 files.

• In telephone speech, fs = 8 kHz, although a typical speech signal has frequency
components up to 15 KHz. This is because we can communicate or understand
the speaker even if the bandwidth is less than 4KHz. Telephone A/D converters
apply a low-pass filter with a 3dB cut-off frequency at 3.2 KHz before sampling
the speech at 8KHz. That is why we hear ”mechanical sound” in telephones.

• All finite-extent signals have infinite bandwidths. Obviously, all practical mes-
sage signals are finite extent signals (even my mother-in-law cannot talk forever).
Therefore, we can have approximately low-pass signals in practice.

• We use the angular frequency based definition of the Fourier Transform in this
course:

Xc(jw) =
∫

∞

−∞

xc(t)e− jwtdt

6 1 Introduction, Sampling Theorem and Notation

where w = 2π f . In this case the inverse Fourier Transform becomes

xc(t) =
1

2π

∫
∞

−∞

Xc(w)e jwtdw

In most introductory telecommunications books they use

X̂(f) =
∫

∞

−∞

xc(t)e− j2π f tdt

which leads to the inverse Fourier Transform:

xc(t) =
∫

∞

−∞

X̂(f)e j2π f td f .

Fig. 1.6 Practical digital to Analog (D/A) conversion: Signal reconstruction from samples x[n] =
xc(nTs), n = 0,±1,±2,±3, Ideal analog low-pass filter does not have a flat response in pass-
band but this is very hard to achieve in practice because the low-pass filter is constructed from
analog components.

1.2 Aliasing

We cannot capture frequencies above ws
2 when the sampling frequency is ws.

When ws < 2wb the high frequency components of Xc(jw) are corrupted during
the sampling process and it is impossible to retrieve xc(t) from its samples x[n] =
xc(nTs). This phenomenon is called aliasing (see Figure 1.7). I will put an aliased
speech signal into course web-page. Visit Prof. Cevdet Aykanat’s web-page and
take a look at his jacket using Firefox. Unusual patterns in his jacket are due to

1.2 Aliasing 7

Fig. 1.7 Aliasing occurs when ws < 2wb.

undersampling (see Fig.2.13). Firefox engineers do not know basic multi-rate signal

Fig. 1.8 Prof. Cevdet Aykanat of Bilkent Universiy.

processing theory that we will study in this course (perhaps there are no electrical

8 1 Introduction, Sampling Theorem and Notation

Fig. 1.9 Prof. Cevdet Aykanat’s aliased image. Take a look at the artificial patterns in his jacket
because of aliasing. The image in Fig. 1.8 is horizontally and vertically downsampled by a factor
of 2.

engineers among Firefox developers). We contacted them in December 2010 and
they said that they would fix this ”bug” in the future. On the other hand Google’s
Chrome and MS-Explorer provide smoother patterns because they use a low-pass
filter before downsampling. Visit the same web-page using MS-Explorer or Google-
Chrome.

1.3 Relation between the DTFT and CTFT

The Discrete-Time Fourier Transform (DTFT) and CTFT are two different trans-
forms but they are related to each other. The CTFT X(jΩ) of the continuous-time
signal xc(t) is given by

Xc(jΩ) =
∫

∞

−∞

xc(t)e− jΩ tdt (1.5)

DTFT X(e jω) of a discrete-time signal x[n] is defined as follows:

X(e jω) =
∞

∑
n=−∞

x[n]e− jωn (1.6)

Notice that I need to use two different angular frequencies in the above two equa-
tions. From now on I will use Ω for the actual angular frequency which is used in
the CTFT and ω for the normalized angular frequency of the DTFT, respectively.
This is the notation used in Oppenheim and Schaefer’s book [2]. In McClellan’s
book they use ω for actual angular frequency and ω̂ for the normalized angular fre-
quency [3]. So the Fourier Transform of a sampled version xp(t) of a band-limited
signal xa(t) is shown in Figure 2.14.

The normalized angular frequency ω = π corresponds to the actual angular fre-
quency Ωs/2 because

1.4 Continuous-Time Fourier Transform of xp(t) 9

Fig. 1.10 The CTFT of xp(t). Sampling frequency Ωs > 2Ωb. This is the same plot as the Fig. 1.4.

ω =
Ωs

2
Ts =

1
2

(
2π

Ts

)
Ts = π

Therefore the highest frequency that we can have in discrete-time Fourier Transform
is the half of the sampling frequency.

1.4 Continuous-Time Fourier Transform of xp(t)

The signal xp(t) is a continuous-time signal but its content is discrete in nature. It
just contains impulses whose strength are determined by the analog signal samples.
As you know xp(t) can be expressed as follows:

xp(t) =
∞

∑
n=−∞

xa(nTs)δ (t−nTs)

Let us now compute the CTFT Xp(jΩ) of xp(t):

Xp(jΩ) =
∫

∞

−∞

(
∞

∑
n=−∞

xa(nTs)δ (t−nTs)

)
e− jΩ tdt

=
∞

∑
n=−∞

xa(nTs)
∫

∞

−∞

δ (t−nTs)e− jΩ tdt

10 1 Introduction, Sampling Theorem and Notation

=
∞

∑
n=−∞

xa(nTs)e− jΩnTs

∫
∞

−∞

δ (t−nTs)dt

Therefore the CTFT Xp(jΩ) of xp(t) can be expressed as a sum as follow

Xp(jΩ) =
∞

∑
n=−∞

x(nTs)e− jΩTsn, (1.7)

Now, consider the discrete-time signal x[n] = x(nTs) which is equivalent to the
continuous-time signal xp(t). The discrete-time Fourier Transform (DTFT)of x[n]
is defined as follows

X(e jω) =
∞

∑
n=−∞

x[n]e− jωn

This is the same as Equation (7) when we set ω = ΩTs.
As you see, DTFT did not come out of blue and ω is called the normalized an-

gular frequency. The normalization factor is determined by the sampling frequency
fs or equivalently by the sampling period Ts.

Fig. 1.11 The DTFT X(e jω) of x[n]. It has the same shape as the CTFT of xp(t). Only the hori-
zontal axis is normalized by the relation ω = ΩTs (The amplitude A is selected as 1: A = 1).

Since the CTFT Xp(jΩ) is periodic with period Ωs the DTFT X(e jω) is 2π peri-
odic. This is due to the fact that ω = ΩTs. The normalized angular frequency ω = π

corresponds to the actual angular frequency Ωs/2 because

ω =
Ωs

2
Ts =

1
2

(
2π

Ts

)
Ts = π

1.6 Inverse CTFT 11

Therefore, ω = π is the highest frequency that we can have in discrete-time Fourier
Transform. The normalized angular frequency ω = π corresponds to the actual an-
gular frequency of Ωs/2 which is the half of the sampling frequency.

Here is a table establishing the relation between the actual angular frequency and
the normalized frequency.

ω Ω

ω0 ω0/Ts = Ω0
0 0
π Ωs/2
2π Ωs

When the sampling frequency is 2Ωs, the highest normalized frequency π corre-
sponds to Ωs.

1.5 Inverse DTFT

Inverse DTFT is computed using the following formula

x[n] =
1

2π

∫
π

−π

X(e jω)e jωndω, n = 0,±1,±2, ... (1.8)

Sometimes we may get an analytic expression for the signal x[n] but in general we
have to calculate the above integral for each value of n to get the entire x[n] sequence.

Since the DTFT is 2π periodic function limits of the integral given in Eq. (1.8)
can be any period covering 2π .

1.6 Inverse CTFT

Inverse CTFT of Xc(jΩ) is obtained using the following formula

xc(t) =
1
2

∫
∞

−∞

Xc(jΩ)e jΩ tdΩ (1.9)

In some books the forward and the inverse CTFT expressions are given as follows:

X̂c(f) =
1
2

∫
∞

−∞

xc(t)e− j2π f tdt (1.10)

and
xc(t) =

∫
∞

−∞

X̂c(f)e j2π f td f (1.11)

Let Ω = 2π f in Eq. (1.9). As a result dΩ = 2πd f and we obtain Eq. (1.11).

12 1 Introduction, Sampling Theorem and Notation

This confuses some of the students because the CTFT of cos(2π fot) is 0.5(δ (f −
fo)+ δ (f + fo) according to (1.11) and π(δ (Ω − 2π fo)+ δ (Ω + 2π fo) according
to (1.9). This is due to the fact that the CTFT is defined in terms of the angular
frequency in (1.9) and in terms of frequency in (1.11), respectively.

1.7 Filtering Analog Signals in Discrete-time Domain

It is possible to use sampling theorem to filter analog (or continuous-time) signals
in discrete-time domain.

Let us assume that xc(t) is a band-limited signal with bandwidth Ω0. We want
to filter this signal with a low-pass filter with cut-off frequency of Ωc =

Ω0
2 . In this

case, we sample xc(t) with Ωs = 2Ω0 and obtain the discrete-time filter:

x[n] = xc(nT s), n = 0,±1,±2, . . . (1.12)

The angular cut-off frequency Ω0
2 corresponds to normalized angular frequency

of ωc:

ωc =
Ω0

2
Ts =

Ω0

2
2π

2Ω0
=

π

2
(1.13)

Therefore, we can use a discrete-time filter with cut-off frequency ωc =
π

2 to filter
x[n] and obtain x0[n]. Finally, we use a D/A converter to convert x0(t) to the analog
domain and we achieve our goal. In general, if the cut-off frequency of the analog
filter is Ωc then the cut-off frequency of the discrete-time filter ωc = ΩcTs. Simi-
larly, we can perform band-pass, band-stop, and high-pass filtering in discrete-time
domain. In general, this approach is more reliable and robust than analog filtering
because analog components (resistors, capacitors and inductors) used in an analog
filter are not perfect [1].

We can even low-pass, band-pass and band-stop filter arbitrary signals in discrete-
time domain. All we have to do is to select a sampling frequency Ωs well-above the
highest cut-off frequency of the filter. Practical A/D converters have built-in analog
low-pass filters to remove aliasing. Therefore, they remove the high-frequency com-
ponents of the analog signal. In discrete-time domain the full-band corresponds to 0
to Ω2

2 of the original signal.

1.8 Exercises

1. Consider the following LTI system characterized by the impulse response h[n] ={
− 1

2 , 1︸︷︷︸
n=0

,− 1
2

}
.

(a) Is this a causal system? Explain.

1.8 Exercises 13

(b) Find the frequency response H(e jω) of h[n].
(c) Is this a low-pass or a high-pass filter?

(d) Let x[n] =

{
1︸︷︷︸

n=0

,2,2

}
. Find y[n].

2. Let xc(t) be a continuous time signal with continuous time Fourier transform
Xc(jΩ).
Plot the frequency domain functions X(e jω) and X1(e jω).

3. Let the sampling frequency be fs = 8 kHz. Normalized angular frequency ω0 =
π/4 corresponds to which actual frequency in kHz?
4.

H(z) =
z+0.8

z2−1.4z+0.53
(a) Plot the locations of poles and zeros on the complex plane.
(b) How many different LTI filters may have the given H(z). What are their proper-
ties? Indicate the associated regions of convergence.
(c) If the system is causal, is it also stable?
(d) Make a rough sketch of the magnitude response |H(e jω)|. What kind of filter is
this?
(e) Give an implementation for the causal system using delay elements, vector
adders and scalar real multipliers.

14 1 Introduction, Sampling Theorem and Notation

(f) Let H1(z) = H(z2). Roughly plot |H1(e jω)| in terms of your plot in part (d).
(g) Repeat part (e) for H1.
5. Let the sampling frequency be fs = 10 kHz. Actual frequency is f0 = 2 kHz.
What is the normalized angular frequency ω0 corresponding to f0 = 2 kHz?
6. Given

H(z) =
1

1− 1
2 z−1

(a) Find the time domain impulse responses corresponding to H(z).
(b) Indicate if they are stable or not.
7. Given xa(t) with continuous time Fourier Transform: (a) Plot Xp(jΩ) where

(b)Let the sampling frequency be fsd = 4 kHz. Plot Xpd(jΩ) where
(c) Plot the DTFT of x[n] = {xa(nTs)}∞

n=−∞
.

(d) Plot the DTFT of x[n] = {xd(nTsd)}∞

n=−∞
.

(e) Can you obtain xd [n] from x[n]? If yes, draw the block diagram of your system
obtaining xd [n] from x[n]. If no, explain.
(f) Can you obtain x[n] from xd [n]? If yes, draw the block diagram of your system
obtaining x[n] from xd [n]. If no, explain.
8. Given xa(t). We want to sample this signal. Assume that you have an A/D con-
verter with a high sampling rate. How do you determine an efficient sampling fre-
quency for xa(t)?
9. Let Xa(jΩ) be the CTFT of xa(t):

1.8 Exercises 15

We sample xa(t) with ωs = 4ω0 which results in xp(t). Plot Xp(jΩ).

10. Let h[n] =

{
1
4 , 1︸︷︷︸

n=0

, 1
4

}
. Calculate and plot the frequency response.

11. Let x(t) be a continuous time signal (bandlimited) with maximum angular fre-
quency Ω0 = 2π2000 rad/sec. What is the minimum sampling frequency Ωs which
enables a reconstruction of x(t) from its samples x[n]?
12. Consider the continuous-time signal x(t) = sin(2πat)+ sin(2πbt), where b > a.
(a) Plot the continuous-time Fourier-Transform X(jΩ) of x(t).
(b) What is the lower bound for the sampling frequency so that x(t) can be theoreti-
cally reconstructed from its samples?
(c) Plot the block-diagram of the system which samples x(t) to yield the discrete-
time signal x[n] without aliasing. Specify all components. Hint: use impulse-train.
(d) Plot the block-diagram of the system which reconstructs x(t) from x[n]. Specify
all components.
13. Consider the FIR filter y[n] = h[n]∗x[n], where h[n] = δ [n+1]−2δ [n]+δ [n−1].
(a) Compute output of x[n] = δ [n]−3δ [n−1]+2δ [n−2]+5δ [n−3].
(b) Calculate the frequency response H(e jω) of h[n].

16 1 Introduction, Sampling Theorem and Notation

(c) Determine a second order FIR filter g[n] so that the combined filter c[n] = g[n]∗
h[n] is causal. Calculate c[n].
(d) Compute the output of the input sequence given in part (a) using the filter c[n].
Compare with the result of part (a).
(e) Calculate the frequency response Hc(e jω) of the filter c[n]. Compare with H(e jω)
from part (b).
14. Consider the IIR filter y[n] = x[n]+ y[n−1]− y[n−2].
(a) Compute output of y[n], n = 0, . . . ,8 of this filter for x[n] = 4δ [n]−3δ [n−1]+
δ [n−2]. Assume y[n] = 0 for n < 0.
(b) Determine y[k+1+6n] for k = 0, . . . ,5, n≥ 0. E.g. y[1+6n] = . . . , y[2+6n] =
. . . , . . . , y[6+6n] =
(c) Compute the z-transform H(z) of the IIR filter.
(d) Compute the corresponding frequency response H(e jω).
(e) Plot the flow-diagram of the filter.

Chapter 2
Multirate Signal Processing

Multirate signal processing is used to modify windows in a computer screen or to
enlarge or to reduce the sizes of images in a computer screen. It is also used in
wavelet theory [7] and telecommunications.

We first study interpolation.

2.1 Interpolation

There are many ways to interpolate a discrete-time signal or a sequence of numbers.
The straightforward approach is to use the linear interpolation in which the average
of the consecutive samples are taken as the interpolated signal values. In this way,
we reduce the sampling rate from Ts to Ts/2 or equivalently, we increase the angular
sampling frequency from Ωs to 2Ωs. If the signal has N samples, the interpolated
signal has 2N samples.

We assume that the discrete-time signal x[n] is obtained from an analog signal
xc(t)1 by sampling. We also assume that xc(t) is a band-limited signal as shown in
Fig. 2.1 .

We have two discrete-time signals associated with the continuous-time signal
xc(t) in Figure 2.1. These are x[n] and xi[n]:

x[n] = xc(nTs) sampled with Ωs

xi[n] = xc(n
Ts

2
) sampled with 2Ωs

The signal xi[n] contains the samples of x[n] because its sampling rate is Ts/2.
We want to obtain xi[n] from x[n] using discrete-time domain processing. This is

called discrete-time interpolation of x[n] by a factor of L = 2.
Let x̃p(t) be the continuous-time signal equivalent to xi[n], i.e.,

1 I use both xa(t) and xc(t) for continuous-time signals.

17

18 2 Multirate Signal Processing

Fig. 2.1 xc(t) and its CTFT Xc(jΩ) . The interpolation problem: obtain samples marked with ”x”
from the samples marked with ”o”.

xi[n]≡ x̃p(t) = xa(t)×
∞

∑
n=−∞

δ (t−n
Ts

2
) =

∞

∑
n=−∞

xa(nTs/2)δ (t−n
Ts

2
)

The CTFT X̃p(jΩ) of x̃p(t) is shown in Fig. 2.2

Fig. 2.2 The CTFT X̃p(jΩ) of x̃p(t)

The CTFT X̃p(jΩ) is related with the DTFT Xi(e jω) = ∑
∞
n=−∞ xi[n]e− jωn as

shown in Fig. 2.3: Since the sampling period is Ts/2 the highest normalized an-
gular frequency π corresponds to Ωs. Therefore, the highest frequency component
of the signal xi[n] is now ωo/2 as shown in Figure 2.3

2.1 Interpolation 19

Fig. 2.3 The DTFT Xi(e jω) of xi[n].

The Fourier transform of x[n] is shown in Fig. 2.4.

Fig. 2.4 The DTFT X(e jω) of x[n].

We cannot obtain xi[n] from x[n] via low-pass filtering or any other filtering op-
eration. We need to use a system called ”up-sampler” first to increase the number
of samples of x[n]. This is done by simply inserting a zero valued sample between
every other sample of x[n] as follows:

xu[n] =

{
x[n/2] , n even
0 , n odd

20 2 Multirate Signal Processing

The upsampling operation can be also considered as a modification of the sampling
rate. In other words, the upsampler changes the sampling rate from Ts to Ts/2. Block
diagram of an upsampler by a factor of L=2 is shown in Figure 2.5.

Fig. 2.5 Upsampler by a factor of L=2. It inserts a zero-valued sample between every other sample
of x[n].

The effective sampling rate of xu[n] is Ts/2 as xi[n]. Let us compute the DTFT of
xu[n] and see if we can obtain xi from xu.

Xu(e jω) =
∞

∑
n=−∞

xu[n]e− jωn (2.1)

which can be simplified because all odd indexed samples of xu[n] are equal to zero.
Therefore

Xu(e jω) = xu[0]e− jω0 + xu[1]e− jω1 + xu[−1]e jω1 + xu[2]e− jω2 + xu[−2]e jω2 + ...

or

Xu(e jω) =

=x[0]︷︸︸︷
xu[0]+

=0︷︸︸︷
xu[1]e− jω +

=x[1]︷︸︸︷
xu[2]e− j2ω + · · ·

+ xu[−1]︸ ︷︷ ︸
=0

e jω + xu[−2]︸ ︷︷ ︸
=x[−1]

e j2ω + · · ·

This is because xu[n] = 0 for all odd n values and xu[n/2] = x[n] for all even n values,
therefore we have

Xu(e jω) = x[0]+ x[1]e− jω2 + x[−1]e jω2 + ... (2.2)

2.1 Interpolation 21

and

Xu(e jω) =
∞

∑
n=−∞

x[n]e− j2ωn (2.3)

or
Xu(e jω) = X(e j2ω) (2.4)

The notation is somewhat clumsy but we have (G(w) = H(2w)) type relation be-
tween the two DTFT’s in Equation (11). Therefore Xu(e jω) has a period of π as
shown in Figure 2.6. We can simply use a low-pass filter with cut off π/2 to get rid

Fig. 2.6 The DTFT Xu(e jω) of xu[n].

of the high-frequency components of xu[n] and obtain xi[n]. Notice that the DTFT
of the low-pass filter is also 2π periodic.

We need to amplify the low-pass filter output by a factor of 2 to match the am-
plitudes of Fig. 2.3 and Fig. 2.6. Therefore a basic interpolation system consists of
two steps: First upsample the input signal, then apply a low-pass filter with cut off
π/2, and an amplification factor of 2. The block diagram of the Interpolation by a
factor of 2 system is shown in Figure 2.7. The discrete-time low-pass filter should
be a perfect low-pass filter. In practice we cannot implement a perfect low-pass filter
because the impulse response of an ideal low-pass filter extends from minus infin-
ity to plus infinity. We have to design a practical low-pass filter approximating the
perfect low-pass filter in some sense [8]. We will discuss the design of discrete time
filters later in Chapter 4.

Here are some remarks:

• Upsampler is a linear operator but it is not a time-invariant system. Therefore it
does not have an impulse response.

• Upsampler can be represented by a matrix and upsampling operation can be im-
plemented using matrix-vector multiplication. See Ref. [7] for further details.

22 2 Multirate Signal Processing

Fig. 2.7 Interpolation by a factor of L=2. Notice that the filter has an amplification factor of 2.

• As an exercise prove that the upsampler is a time varying system.

Example: You can use the simple low-pass filter

h[n] = {1/4,h[0] = 1/2,1/4}

as an interpolating low-pass filter. This filter has a frequency response

H(e jω) = 0.5+0.5cos(ω)

It is not a great low pass filter but it is a low-pass filter. This filter is obviously
periodic with period 2π .

Since H(e j0) = 1 we need to amplify the filter by a factor of 2. Therefore, the
filter g[n] = 2h[n] = {1/2,g[0] = 1,1/2}.

The input/output (I/O) relation for this filter is

y[n] = 0.5x[n+1]+ x[n]+0.5x[n−1] (2.5)

When we use this filter in Figure 2.7, we obtain the following result:

xi[n] = x[n/2] f or even n (2.6)

xi[n] = 0.5x[(n−1)/2]+0.5x[(n+1)/2] f or odd n

This is simply linear interpolation. We take the average of two consecutive samples
of x[n] to estimate the odd indexed samples of xi[n]. We can use filters with much
nicer frequency response to perform interpolation and achieve better interpolation
results. As pointed out earlier we will discuss FIR filter design later.

2.3 Decimation by a factor of 2 23

The filter in Eq. (12) is an anticausal filter but anticausality is not a major problem
in discrete-time filtering. You can simple compute y[n] whenever x[n+ 1] becomes
available.

2.2 Interpolation by an integer M

We need to use an upsampler by M first before low-pass filtering. Upsampler intro-
duces an M−1 zeros between every other sample of x[n].

Fig. 2.8 Interpolation by a factor of M.

As a result the DTFT domain relation between Xu(e jω) and X(e j2ω) is given by

Xu(e jω) = X(e jMω) (2.7)

Therefore Xu(e jω) has a period of 2π/M because X(e jω) is periodic with period 2π

as shown in Figure 2.9.
By inserting zeros we also introduce high-frequency components as discussed in

the previous section. We must remove the high frequency components by using a
low-pass filter. The cut-off frequency of the low-pass filter must be π/M. It should
amplify the input signal by a factor of M.

2.3 Decimation by a factor of 2

To reduce the number of samples of a given signal or image we can drop some of the
samples. However, we cannot arbitrarily drop samples because we may suffer from
aliasing because dropping samples corresponds to an increase in sampling period (or
equivalently, it corresponds to a decrease in sampling frequency). A typical example
is shown in Figure 2.13. Prof. Aykanat’s jacket has artificial stripes and lines. This
is due to aliasing.

24 2 Multirate Signal Processing

Fig. 2.9 Interpolation by a factor of M.

We use the down-sampling block shown in Figure 2.10 to represent the sampling
rate change. In Figure 2.10 the system is a downsampling block by a factor of two,
i.e., the output xd [n] = x[2n].

Fig. 2.10 Downsampling by a factor of L=2.

2.3 Decimation by a factor of 2 25

Example:

xd [n] = x[2n]

x[n] = {a,b,c,d,0,0, · · ·}
xd [n] = {a,c,0,0, · · ·}
xd [0] = x[0], xd [1] = x[2], xd [2] = x[4]

The effective sampling frequency is reduced by a factor of 2 by the downsampler.
Since x[n] has a sampling period of Ts (fs, Ωs = 2π fs) the down-sampled signal

xd [n] has a sampling period of 2Ts (
fs
2 ,

Ωs
2).

In Figure 2.9 the DTFT Xd(e jω) of the signal xd [n] is shown (the bottom plot).
The DTFT Xd(e jω) is obtained from Xpd(jΩ) which is the CTFT of xpd(t). The
signal xpd(t) is equivalent to xd [n]:

xd [n]≡ xpd(t) = xa(t)
∞

∑
n=−∞

δ (t−n2Ts)

where xpd(t) is obtained from xa(t) via sampling with period 2Ts. Therefore, the
DTFT Xd(e jω) is equivalent to Xpd(jΩ). Since Ωo >

Ωs
2 , we may have aliasing as

shown in Figure 2.11. When Ωo >
Ωs
4 , there must be aliasing in the downsampled

signal. You cannot simply throw away samples!
By comparing the bottom plot of Fig. 2.11 with the DTFT of x[n] shown in Fig.

1.11 we conclude that

Xd(e jw) =
1
2
(X(e

jw
2 +X(e

jw+2π

2)) (2.8)

The first component in Eq 2.8 X(e
jw
2) has a period of 4π and centered at w = 0.

The second component X(e
jw+2π

2) is also periodic with period 4π but it is centered
at ∓2π . Neither X(e

jw
2) nor X(e

jw+2π

2) are valid DTFT expressions by themselves
because they are not periodic with period 2π . But Xd(e jw) in Eq. 2.8 is periodic with
period 2π and it is the DTFT of xd [n].

If we had the continuous-time signal xc(t) we would low-pass filter this signal
by an analog low-pass filter with cut-off frequency of Ωs/4 before sampling it with
a sampling frequency of Ωs/2 to avoid aliasing. This analog filter can be imple-
mented in discrete-time domain with a low-pass filter with a cut-off frequency of
π/2 because Ωs/4 corresponds to the normalized angular frequency of π/2 when
the sampling frequency is Ωs. Therefore, we have to low-pass filter x[n] with a low-
pass filter with a cut-off frequency of π/2 before down-sampling as shown in Figure
2.12.

Decimation by 2: Low-pass + Downsampling by 2
First low-pass filter the signal x[n] with cut-off frequency π/2 and then down-

sample by a factor of 2. The term ”decimation” is a technical term and it refers to
low-pass filtering and downsampling.

26 2 Multirate Signal Processing

Fig. 2.11 The DTFT Xd(e jω) of the signal xd [n] (bottom plot).

Decimation is a lossy operation in general because we low-pass filter the input
first. As a result we remove the high-frequency components for good. After low-pass
filtering it is not possible to retrieve the high-frequency bands of the input signal.

Example: The following low-pass filter can be used both in interpolation and
decimation. In interpolation, it has to be amplified by a factor of 2!

2.3 Decimation by a factor of 2 27

Fig. 2.12 Decimation by a factor of 2 is a two-stage operation.

Fig. 2.13 Prof. Cevdet Aykanat’s properly decimated image. This image is a blurred version of
the original image Fig. 1.8 but it does not have artificial patterns as Fig 2.13 . The image in is
horizontally and vertically decimated by a factor of 2.

h[n] = {h[0] = 1/4,1/2,1/4}← Causal

H(e jω) =
2

∑
k=0

h[k]e− jω̂k

=
1
4

e− jω̂0 +
1
2

e− jω̂1 +
1
4

e− jω̂2

= e− jω̂
(

1
4

e jω̂ +
1
2
+

1
4

e− jω̂
)

=

(
1
2
+

1
2

cos(ω̂)

)
e− jω̂

The magnitude response of this filter is:

∣∣H(e jω)
∣∣= ∣∣∣∣12 +

1
2

cos(ω̂)

∣∣∣∣ ∣∣∣e− jω̂
∣∣∣= 1

2
+

1
2

cos(ω̂)

and the phase response of the filter is given by:

28 2 Multirate Signal Processing

φ(ω̂) =−ω̂ mod(2π)

It is not a great half-band low-pass filter but it is a low-pass filter. Example: Here is
a better half-band low-pass filter:

h[n] = {h[0] =−1/32,0,9/32,1/2,9/32,0,−1/32} (2.9)

This filter also has a cut-off frequency of π/2. That is why it is called ”half-band”
because the full-band refers to [0,π]. The frequency response of this filter is shown
in 2.14. The filter has a linear phase as shown in Fig. 2.14

Fig. 2.14 Magnitude and the phase response of the filter given in Eq. (2.9).

The anticausal filter

ha[n] = {−1/32,0,9/32,h[0] = 1/2,9/32,0,−1/32} (2.10)

has the same magnitude response as shown in Fig. 2.14 but its phase response is
zero: φa(w) = 0.

2.6 Interpolation Formula 29

2.4 Decimation by M

Decimation by integer M > 2 is achieved in two-stages as in decimation by a factor
of 2 case. First low-pass filter the signal x[n] with cut-off frequency π/M and then
downsample by a factor of M.

Decimation is a lossy operation in general. This is because of the low-pass filter-
ing operation. We remove the high-frequency components of the original filter using
the low-pass filter. However, low-pass filtering is necessary to avoid aliasing.

2.5 Sampling Rate Change by a factor of L/M

You should first interpolate the original signal by L and then decimate. This is be-
cause the decimation operation is a lossy operation. When you remove the high-
frequency components of the original signal by the low-pass filter you cannot re-
trieve those frequency components back. On the other hand we do not remove any
signal component during interpolation.

Another advantage of this process is that you can combine the low-pass filters
and perform this operation using a single low-pass filter.

Example: We first interpolate the input signal by a factor of L. Therefore, we
insert L-1 zeros between every other sample of the input signal. Therefore we ef-
fectively decrease the sampling period from Ts to Ts/L. We low-pass filter the zero-
padded signal with a low-pass filter with cut-off frequency π/L. This completes the
interpolation stage. The interpolated signal is first low-pass filter with cut-off π/M
by the decimation filter. Therefore we can combine the two filters and perform a
single convolution (or filtering), if we use a low-pass filter with cut-off frequency
of ωc = min(π/M,π/L). The amplification factor of the low-pass filter should be L,
which is the amplification factor of the interpolation filter. After low-pass filtering
we down-sample by a factor of M. Therefore the new sampling period becomes MTs

L
after down-sampling. The corresponding sampling frequency becomes L fs

M .
In discrete-time domain, if the original signal has a length of N, it will have a

length of NL after interpolation. After decimation its length will be NL/M.

2.6 Interpolation Formula

Digital to analog conversion part of Shannon’s sampling theorem states that, the
bandlimited continuous-time signal xc(t) can be recovered exactly from its samples
by perfect low-pass filtering of the signal xp(t) = ∑xc(nTs)δ (t−nTs). This leads to
the well-known WhittakerShannon interpolation formula:

xc(t) =
∞

∑
n=−∞

x[n] · sinc
(

t−nTs

Ts

)
(2.11)

30 2 Multirate Signal Processing

where x[n] = xc(nTs),n = 0, is the discrete-time signal. The interpolation formula
tells us that we can determine any value of xc(t) from the samples x[n] but it is
not implementable because (i) it is an infinite sum and (ii) the sinc function is an
infinite-extent function. Therefore WhittakerShannon interpolation formula is not
practical at all!

2.7 Downsampler and Upsampler are Linear Operators

The last remark that I have before closing this chapter is that both the down-sampler
and the upsampler are linear operators but they are both time-varying operators.

2.8 Computer Project

1. Download the shirt.jpg(Fig. 2.15) and shirt-small.jpg(Fig. 2.16) images and load
them into Matlab by using the following function:

imagename = imread('filename.jpg');
Comment on the sizes of image matrices. What are the width and height of the
images? What do these numbers correspond to?
2. On these images, find the color values of the pixels at locations (x= 230,y= 230)
and (x = 148,y = 373).
3. Write the shirt.jpg image from Matlab into your hard drive. You can use imwrite
function to do this. Use bitmap file format by the following code:

imwrite(imagename,'filename.bmp','bmp');
To find more info about imwrite function, you can type help imwrite in Mat-
lab.
4. Compare the file sizes of shirt.bmp (from step 3) and shirt.jpg images. Which file
is larger? Comment on differences.
5. View wall.jpg(Fig. 2.17), and observe the patterns on the wall. Comment on the
patterns that you observed.
6. What is decimation? Explain in one or two sentences.
7. Decimate the shirt.jpg image horizontally by using the following filter: [0.250.50.25].
In order to do this first apply the filter to the rows and then down-sample the columns
by 2. Comment on the size of the resulting image matrix.
8. Decimate the shirt.jpg image vertically by using the following filter: [0.25;0.5;0.25].
Comment on the size of the resulting image matrix.
9. Now, first decimate the shirt.jpg horizontally and then decimate the resulting im-
age vertically. What are the width and height values of the final image? Also observe
the final image and compare it with shirt-small.jpg. Comment on the differences.
10. Are down-sampling and up-sampling Linear Time Invariant (LTI) systems?
Prove your answers.

''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW1/shirt.jpg''
''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW1/shirt_small.jpg''
''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW1/wall.jpg''

2.9 Exercises 31

Fig. 2.15 Image of a shirt

2.9 Exercises

1. Given the following input/output relation:

y[n] =
1
2

x[n]+
1
4

x[n−1]

(a) Is this system linear? Prove your answer.
(b) Is this system time-invariant? Prove your answer.
(c) Find the impulse response.
(d) Consider the ‘downsampler by 2’. Is it linear? Prove your answer.
(e) Is down-sampler time-invariant?
(f) Let x[n] = δ [n]. What is v[n]?
2. Given X(e jω) = F {x[n]} (a) y[n] = x[2n]. Plot Y (e jω).

32 2 Multirate Signal Processing

Fig. 2.16 Small image of the shirt

Fig. 2.17 Wall Image

(b) Is it possible to retrieve x[n] from y[n]? Explain your answer.

3. Let x[n] =

{
. . . ,1, 1︸︷︷︸

n=0

,1,2,2,2,1

}
and given the low-pass filter h[n] =

 1
4 ,

1
2︸︷︷︸

n=0

, 1
4

.

(a) Decimate x[n] by a factor of 2 using the above low-pass filter.

2.9 Exercises 33

(b) Interpolate x[n] by a factor of 2 using the same low-pass filter.
(c) Plot the frequency response of h[n].
4. Draw the block diagram of the system which rescales x[n] by α = 3

5 .
5. Let xd [n] be the downsampled version of x[n] (see Fig. 2.10).

Xd(e jw) =
∞

∑
n=−∞

xd [n]e− jwn

where xd [n] = xd [2n]. Define p[n] = 1
2 (1+(−1)n). Use p[n] to establish the relation

between X(e jw) and Xd(e jw)

Chapter 3
Discrete Fourier Transform (DFT)

3.1 DFT Definition

The Discrete Fourier Transform (DFT) of a finite extent signal x[n] is defined as
follows

X [k],
N−1

∑
n=0

x[n]e− j 2π
N kn , k = 0,1, . . . ,N−1 (3.1)

where N is called the size of the DFT. The DFT X [k] of x[n] is a sequence of complex
numbers. That is why we use square brackets in (3.1). Obviously, x[n] is assumed to
be zero outside the input data window n= 0,1, . . . ,N−1 in Eq. (3.1). Signal samples
can be computed from the DFT coeficients using a similar equation as follows:

x[n] =
1
N

N−1

∑
k=0

X [k]e j 2π
N kn , n = 0,1, . . . ,N−1 (3.2)

which is called the Inverse DFT (IDFT). We will prove the IDFT equation later.
Here are some remarks about DFT:

• It is a finite sum, therefore it can be computed using an ordinary computer.
• The DFT X [k] is computed at discrete indices k = 0,1, . . . ,N−1 unlike the DTFT

X(e jω) which has to be computed for all real ω between 0 and 2π .
• The DFT computation is basically a matrix-vector multiplication. We will discuss

the computational cost of DFT computation in the next chapter.

Let x[n] be a finite-extent signal, i.e., x[n] = 0 for n < 0 and n≥ L(≤N−1) then

DTFT: X(e jω) =
L−1

∑
n=0

x[n]e− jωn , ω is a cont. variable

DFT: X [k] =
L−1

∑
n=0

x[n]e− j 2π
N kn , k = 0,1, . . . ,N−1

35

36 3 Discrete Fourier Transform (DFT)

Therefore the relation between the DTFT and DFT for a finite extent signal is given
by the following relation

X [k] = X(e jω)
∣∣
ω= 2π

N k , k = 0,1, . . . ,N−1 (3.3)

In other words, the DFT contains the samples of DTFT computed at angular fre-
quency values ω = 2π

N k for k = 0,1, . . . ,N−1, when x[n] is a finite-extent signal as
shown in Figure 3.1.

Fig. 3.1 Relation between the DFT and the DTFT of a finite extent signal x[n]

Theorem 1: The DFT has a period of N (when we compute DFT outside the range
k = 0,1, . . . ,N−1).

This is because the DTFT is 2π periodic and we sample the DTFT at N locations.
You can also use the definition of DFT to prove the above theorem as follows:

X [N] =
N−1

∑
n=0

x[n]e− j 2π
N Nn =

N−1

∑
n=0

x[n]

X [0] =
N−1

∑
n=0

x[n]e− j 2π
N 0n =

N−1

∑
n=0

x[n]

X [N + l] =
N−1

∑
n=0

x[n]e− j 2π
N (N+l)n =

N−1

∑
n=0

x[n]

=1︷ ︸︸ ︷
e− j 2π

N Nn e− j 2π
N ln

= X [l] =
N−1

∑
n=0

x[n]e− j 2π
N ln

The conjugate symmetry property of DFT is described in the following theorem:
Theorem: For real signals X [k] = X∗[−k] and X [N− l] = X∗[l].

3.2 Approximate Computation of CTFT using DFT 37

A straightforward implication of the above result in terms of magnitudes and
phases of the DFT coefficients are given as follows:

X [N− l] = X∗[l]⇒ |X [N− l]|= |X [l]| and ^X [N− l] =−^X [l]

This is because X(e jω) is 2π periodic and X(e jω) = X∗(e− jω).
Another important implication of the conjugate symmetry property is that the

DFT coefficients X [1],X [2] to X [N/2] (even N) determines the remaining set of
DFT coefficients for real x[n].

3.2 Approximate Computation of CTFT using DFT

We can use the DFT to approximately compute the CTFT of a continuous time
signal. To establish the relation between the CTFT and the DFT let us review the
sampling theorem once again. Let us assume that xc(t) is a band-limited signal with
bandwith Wc as shown in Fig. 3.2. We sample the signal with Ωs > 2Ωc and obtain
Xp(jΩ) which is the CTFT of xp(t). The signal xp(t) is defined in Chapter 1. The
CTFT Xp(jΩ) is shown in Fig. 3.3.

Fig. 3.2 The CTFT of the bandlimited signal xc(t).

The DTFT X(e jω) discrete time signal x[n] = xc(nTs),n = 0,±1,±2, ... is shown
in Fig. 3.4. The CTFT Xp(jΩ) is equivalent to X(e jω) except that the horizontal
axis is normalized according to ω = ΩTs. The signal x[n] is an infinite extent signal
because all band-limited signals are infinite extent signals. However, they decay to
zero as n tends to infinity or negative infinity. Therefore we can select an appropriate
finite window of data such that x[n] is approximately 0 for n≥ N andn < 0 (we may
shift the data to fit into the range n = 0,1, ...,N− 1). After this truncation we can
compute the N-point DFT of x[n] and assume that

38 3 Discrete Fourier Transform (DFT)

Fig. 3.3 The CTFT of the signal xp(t).

Fig. 3.4 The DTFT of the signal x[n] (top plot) and the corresponding DFT coefficients X [k]
(bottom plot- this plot will be corrected. please see Fig 3.1 for the correct plot).

X [k]∼= X(e jω)
∣∣
ω= 2π

N k , k = 0,1, . . . ,N−1 (3.4)

as shown in Figure 3.4 (bottom plot).
Since X(e jω) samples are related with CTFT samples, you can approximately

compute CTFT samples as well! For example, X [N/2], (N even) corresponds to

3.2 Approximate Computation of CTFT using DFT 39

X(e jπ) which, in turn, corresponds to X(jΩs/2), i.e.,

X(jΩs/2)∼= TsX [N/2]

and in general

X [k]∼=
1
Ts

Xc(j
2πk
NTs

), f or k = 0,1,2, ...,N/2 (3.5)

Therefore it is possible to compute the CTFT using the DFT. Since there are com-
putationally efficient algorithms for computing the DFT the Fourier analysis is an
important tool for signal analysis.

It is also possible to use the Rieman sum to approximate the Fourier integral but
this will not lead to a different result. Rieman sum simply becomes the DFT after
some algebraic manipulations.
Example: DFT of a sinuoidial signal:

Let us assume that the sinusoid xc(t) = cos(2π2000t), −∞ < t < ∞ is sampled
with sampling frequency fs = 8 KHz. The CTFT of this sinusoid consists of two
impulses

Xc(jΩ) = π(δ (Ω −Ωo)+δ (Ω +Ωo))

where Ωo = 2π2000.
In practice we can neither compute impulses using a computer nor we can gen-

erate a sinusoid from −∞ to ∞. In practice, we observe or create a finite duration
sinusoid x̃c(t) = xc(t)w(t) where

w(t) =

{
1 0 < t < To

0 otherwise

is a finite-duration time window. The CTFT W (jΩ) of a box function w(t) is a
sinc type waveform. Therefore the CTFT X̃c(jΩ) of x̃c(t) is formed by convolving
Xc(jΩ) and the sinc-type Fourier transform. As a result we get two sincs centered
at Ωo and−Ωo. Therefore we can assume that X̃c(jΩ) is more or less a bandlimited
Fourier Transform because sincs decay to zero as Ω tends to infinity and minus
infinity. Therefore, we can approximately estimate the CTFT of X̃c(jΩ) using the
samples

x[n] = x̃c(nTs) , n = 0,1, . . . ,N−1 NTs ≈ To.

for a large N such as N = 1024. The DTFT of x[n] should exhibit two peaks at
ωo = ΩoTs = 2π2000 1

8000 = π

2 and −ωo. As a result we should observe a peak at
k = N

4 in N point DFT X [k]. From the location of the peak N
4 in DFT domain, we

can determine the actual frequency (2KHz) of the sinusoid. We should also observe
another peak at N−N/4 due to the conjugate symmetry property of the DFT.

Here is a table establishing the relation between the DFT index k, and the nor-
malized frequency ω and the actual frequency Ω :

40 3 Discrete Fourier Transform (DFT)

Ω 0 2π2000 2π4000 −2π2000 −2π4000
ω 0 π/2 π 3π/2 π

k 0 N/4 N/2 3N/4 N/2

Here is another example:
In Figure 3.5 the N=64 point DFT of x[n] = cos(0.2πn), n = 0,1, ...,N− 1 is

shown.

Fig. 3.5 The magnitude plot of 64 point DFT X [k] of the signal x[n] = cos(0.2πn) (bottom plot).
Samples of the sinusoid are plotted in the top plot.

3.2.1 Computer Project: DTMF
(Dual/Dial-Tone-Multi-Frequency)

When we dial a phone number we generate a dual-tone sound consisting of two
sinusoids. For example when we press ”5” we produce

[x5(t)] = cos(Ωbt)+ cos(Ω2t), 0 < t ≤ To

The following frequency values are used to generate the DTMF signals.

3.3 Convolution using DFT 41

cos(Ω1t) cos(Ω2t) cos(Ω3t)
cos(Ωat) 1 2 3
cos(Ωbt) 4 5 6
cos(Ωct) 7 8 9
cos(Ωdt) ∗ 0 #

where f1 = 1209Hz, f2 = 1336Hz, f3 = 1477Hz, and f4 = 1633Hz, and fa =
697, fb = 770, fc = 852, and fd = 941Hz. Since the speech is sampled at 8KHz
all of the frequencies of sinusoids are between 0 and 4 KHz, i.e.,

0 < Ω1,Ω2,Ω3,Ωa,Ωb,Ωc,Ωd < 2π4KHz

and the corresponding normalized angular frequency values are:

ωb = Ωb ·Ts and ω2 = Ω2 ·Ts

where Ts = 1/8000sec.
Therefore, when you take the N point DFT (let N=1024) you observe two sig-

nificant peaks between k = 0 and k = N/2 in the DFT spectrum plot. Let the peaks
be k∗1 and k∗2, respectively. From k∗1 and k∗2 it is possible to estimate Ω values and
determine the number dialed!

To determine a regular phone number, you have to compute the DFT in short-
time windows. DFT based approach is not the only approach to determine DTMF
frequencies. There are other algorithms to determine DTMF tones.

3.3 Convolution using DFT

Given two discrete-time signals

x1[n], n = 0,1, . . . ,M−1 ,

and
x2[n], n = 0,1, . . . ,L−1 .

Let x[n] be their convolution:

x[n] = x1[n]∗ x2[n], n = 0,1, . . . ,N−1;

where N = M+L−1. The length of the convolved signal is longer than the lengths
of x1[n] and x2[n]. Let X [k] be the N = M+L−1 point DFT of x[n]. In this case,

X [k] = X1[k] ·X2[k], k = 0,1, . . . ,N−1 . (3.6)

where X1[k] and X2[k] are N-point DFT’s of x1[n] and x2[n], respectively. The above
relation given in (3.6) is also valid when N ≥M+L−1.

42 3 Discrete Fourier Transform (DFT)

Let us define the signal xp[n] using the IDFT relation as follows:

xp[n] =
1
N

N−1

∑
k=0

X [k]e j 2π
N kn (3.7)

Since any signal computed using the DFT equation or IDFT equation is periodic
with period N1. the signal xp[n] is a periodic signal with period N and

xp[n] = x[n], n = 0,1,2, ...,N−1 (3.8)

In other words, the signal xp[n] is a periodic extension of the convolution result x[n].
This is because it is defined using the IDFT equation (??).

In general, inner product (dot product) of two DFT vectors corresponds to circu-
lar convolution of the corresponding signals in time domain. This subject is covered
in the next section.

3.4 Circular Convolution

Let us now discuss what happens when we use an arbitrary DFT size, say K.

x1[n]
K−DFT←→ X̄1[k]

x2[n]
K−DFT←→ X̄2[k]

Clearly, K−point DFTs X̄1[k] and X̄2[k] are different from N−point DFTs X1[k] and
X2[k], respectively. Let us define

X3[k] = X̄1[k] · X̄2[k] , k = 0,1, . . . ,K−1 . (3.9)

Inverse DFT of X3 produces

x3[n] = x1[n] K©x2[n] ,n = 0,1, ...,K−1

which is the K−point circular convolution of x1 and x2.

x3[n] =
K−1

∑
l=0

x1[l]x2[(n− l)K], n = 0,1, ...,K−1 (3.10)

where (n− l)K represents the value of (n-l) modulo K. Therefore we restrict the set
of indices to n= 0,1, ...,K−1. Outside this index range we can only get the periodic
extension of x3[n].

Let us present the proof of circular convolution theorem (3.9)-(3.10). Let x3[n] =
x1[n] K©x2[n] be defined as follows:

1 The proof of this statement is very similar to the proof of Theorem 1.

3.4 Circular Convolution 43

x3[n] =
K−1

∑
l=0

x1[l]x2[(n− l)K] .

Let us compute the K-point DFT of x3[n] as follows:

X3[k] =
K−1

∑
n=0

(
K−1

∑
l=0

x1[l]x2[(n− l)K]

)
e− j 2π

K kn , k = 0,1, . . . ,K−1 .

We change the order of summations and obtain:

X3[k] =
K−1

∑
l=0

x1[l]
K−1

∑
n=0

x2[(n− l)K]e− j 2π
K kn , k = 0,1, . . . ,K−1

X3[k] =
K−1

∑
l=0

x1[l]
K−1

∑
m=0

x2[mK]e− j 2π
K k(m+l) .

We can take e− j 2πkl
K outside the inner sum and obtain:

X3[k] =
K−1

∑
l=0

x1[l]e− j 2π
K kl

︸ ︷︷ ︸
K−1

∑
m=0

x2[m]e− j 2π
K km

︸ ︷︷ ︸
X3[k] = X̄1[k] · X̄2[k] , k = 0,1, . . . ,K−1

which proves the statements in (3.9)-(3.10).
When K < M+L−1, we cannot use the DFT to compute the regular convolution

of x1 and x2 but we can compute the circular convolution of x1 and x2. In general,
we should try to avoid the circular convolution because some of the samples of
the circular convolution turn out to be corrupted. Circular convolution produces the
same coefficients of regular convolution when K ≥M+L−1. Circular convolution
is useful when we filter streaming data in DFT domain (we will discuss this in
Chapter 5).

Let us consider the following example. Given two sequences x[n] and h[n]:

x[n] =

{
1, n = 0,1
0, otherwise

h[n] =

{
0.9n, n = 0,1, . . . ,4
0, otherwise

In this case, the regular convolution y[n] = x[n]∗h[n] has a length of 6 = 5+2−1.
Let us also compute the 6−point circular convolution of x[n] and h[n]

44 3 Discrete Fourier Transform (DFT)

x3[n] = x[n] 6©h[n]

For n = 0, x3[0] =
5

∑
n=0

h[n]x[(0−n)6] = h[0]x[(0)6] = 0.90 = 1 = y[0] ,

for n = 1, x3[1] =
5

∑
n=0

h[n]x[(1−n)6] = h[0]x[(1)6]+h[1]x[(0)6] = 1+0.9 = y[1] ,

for n = 2, x3[2] =
5

∑
n=0

h[n]x[(2−n)6] = h[1]x[(1)6]+h[2]x[(0)6] = 0.9+0.92 = y[2] ,

for n = 3, x3[3] =
5

∑
n=0

h[n]x[(3−n)6] = h[2]x[(1)6]+h[3]x[(0)6] = 0.92 +0.93 = y[3] ,

for n = 4, x3[4] = 0.94 +0.93 = y[4] ,

for n = 5, x3[5] =
5

∑
n=0

h[n]x[(5−n)6] = h[4]x[(1)6] = 0.94 = y[5] ,

and for n = 6, x3[(6)6] = x3[0] .

Therefore x3[n] = y[n], for n = 0,1, . . . ,5.
For M = 5 we have a problem. Let x2[n] be the 5−point circular convolution of

x[n] and h[n]:
x2[n] = x[n] 5©h[n] .

Let us compute x2[0]:

For n = 0, x2[0] =
4

∑
n=0

h[n]x[(0−n)5] = h[0]x[(0)5]+h[4]x[(−4)5]

= h[0]x[(0)5]+h[4]x[1] = 1+0.94

which is not equal to y[0]. However,

for n = 1, x2[1] = y[1]
for n = 2, x2[2] = y[2]
for n = 3, x2[3] = y[3]
and for n = 4, x2[4] = y[4] .

It turns out that:
x2[0] = y[0]+ y[5] ←− corrupting term

Since there is no room for y[5], it turned around the modulo circle and settled on
y[0].

Let y[n] = x1[n]∗ x2[n] and x3[n] = x1[n] M©x2[n]. The circular convolution results
in x3[n], that is periodic with period M, and it is related with y[n] as follows:

3.4 Circular Convolution 45

x3[n] =
∞

∑
l=−∞

y[n− lM] = y[n]+ y[n−M]+ . . .

+ y[n+M]+ . . . (3.11)

y[n] and its shifted versions are overlapped and added to obtain x3[n]. This obviously
corrupts some samples of x3 when M is shorter than the length of y[n].

3.4.1 Computation of DFT of Anticausal Sequences

Equations (3.1) and (3.2) assume that the discrete-time signal x[n] are causal se-
quences. Let us consider the following example.
Example: Compute the DFT of a two-sided signal x[n] = {e,d, a︸︷︷︸

n=0

,b,c}.

There are two ways to compute the DFT.

• Shift this signal x̄[n] = x[n−2] and compute the N-point DFT of x̄[n] and use the
relation X̄(e jω) = X(e jω)e− j2ω to determine X [k], therefore

X̄ [k] = X [k])e− j2(2πk)/N ,k = 0,1, ...,N−1. (3.12)

Therefore, we can compute the DFT of the causal sequence and use the above
equation to determine the N-point DFT of x[n]:

X [k] = X̄ [k])e jm(2πk)/N ,k = 0,1, ...,N−1. (3.13)

where m is the amount of time shift (which is m = 2 in this example).
• There is a second way. This is based on the periodic nature of DFT and IDFT.

Assume a periodic extension of x[n] as follows:

xp[n] =
∞

∑
l=−∞

x[n− lN], N ≥ 5

= x[n]+ x[n−5]+ x[n+5]+ . . .

where it is assumed that N = 5. The first period of xp[n] is given as follows:

xp[n] = { a︸︷︷︸
n=0

,b,c,e,d}, for n = 0,1, . . . ,4 .

After this step, we can compute the N−point DFT:

x̄[n] N−DFT←→ X̄ [k]

xp[n]
N−DFT←→ X̄p[k]

46 3 Discrete Fourier Transform (DFT)

Magnitudes of X̄ [k] and X̄p[k] are equal to each other, i.e., |Xp[k]| = |X̄ [k]|. Only a
linear phase difference term exists between the two DFTs. This subject is covered
in the following property of DFT.
Periodic Shift Property of DFT:

x[n] N−DFT←→ X [k]

x[(n−m)N]
N−DFT←→ X [k]e− j 2π

N km

An ordinary time shift of x[n] may produce non-zero terms after the index N.
Therefore, we need the modulo operation (n−m)M to keep all the coefficients of
x[(n−m)M] in the range of n = 0,1, . . . ,N−1.
Linearity Property:
For all α,β ∈ R; and signals x1 and x2, we have

x1[n]
N−DFT←→ X1[k]

x2[n]
N−DFT←→ X2[k]

αx1[n]+βx2[n]
N−DFT←→ αX1[k]+βX2[k], k = 0,1, . . . ,N−1

Therefore, the DFT is a linear transform. Notice that you cannot linearly combine
an N-point DFT with and L-point DFT.
Example: Compute the N−point DFT of the following signal x[n]:

x[n] =

{
1, n = m
0, otherwise

We compute the DFT coefficients one by one:

X [0] =
N−1

∑
n=0

x[n]e− j 2π
N kn =

N−1

∑
n=0

x[n] = x[m] = 1

X [1] =
N−1

∑
n=0

x[n]e− j 2π
N kn = x[m]e− j 2π

N 1m = e− j 2π
N m =W m

N ,

where WN = e− j 2π
N . Similarly,

X [2] =W 2m
N = e− j 2π

N 2m , . . .

and X [N−1] =W (N−1)m
N .

Therefore,
X [k] =W km

N = e− j 2π
N km , k = 0,1, . . . ,N−1 (3.14)

Let us compute the IDFT of the DFT coefficients given in (3.14):
Inverse DFT produces an interesting identity:

3.5 Inverse DFT of an Infinite Extent Signal 47

x[n] =

{
1, n = m
0, otherwise

=
1
N

N−1

∑
k=0

e− j 2π
N kme− j 2π

N kn = δ (n−m)

N−1

∑
k=0

e− j 2π
N (n−m)k =

{
N, for n−m = 0,±N,±2N, . . .

0, otherwise

Periodic extension is due to the fact that the IDFT expression also produces a peri-
odically extended signal when n is computed outside the range 0≤ n≤ N−1.
Example: Compute the DFT of

x[n] = cos
(

2πrn
N

)
, 0≤ n≤ N−1, r = 0,1, . . . ,N−1 .

We can express x[n] in the following form using Euler’s formula:

x[n] =
1
2
(
W−rn

N +W rn
N
)

Let us compute the DFT of each term separately.

X [k] =
1
2

N−1

∑
n=0

W (r−k)n
N +

1
2

N−1

∑
n=0

W (r+k)n
N

We can now use the previous example and get

X [k] =

N/2, k = r
N/2, k = N− r
0, otherwise

3.5 Inverse DFT of an Infinite Extent Signal

Let x[n] be an arbitrary signal with DTFT X(e jω). We sample X(e jω) in the Fourier
domain at N locations as follows:

X [k] = X(e jω)
∣∣
ω=W k

N
, k = 0,1, . . . ,N−1 .

Since x[n] can be an infinite extent signal, we may have an infinite sum as shown
below:

X [k] = X(e j 2π
N k) =

∞

∑
n=−∞

x[n]e− j 2π
N kn

We can divide the infinite sum into finite sums:

48 3 Discrete Fourier Transform (DFT)

X [k] = · · ·+
2N−1

∑
n=N

x[n]e− j 2π
N kn +

−1

∑
n=−N

x[n]e− j 2π
N kn +

N−1

∑
n=0

x[n]e− j 2π
N kn + · · ·

=
∞

∑
l=−∞

lN+N−1

∑
n=lN

x[n]e− j 2π
N kn

Define a new variable as n = m+ lN

X [k] =
∞

∑
l=−∞

N−1

∑
m=0

x[m+ lN]e− j 2π
N km

=
N−1

∑
m=0

(
∞

∑
l=−∞

x[m+ lN]

)
e− j 2π

N km , k = 0,1, . . . ,N−1 .

The last equation is the DFT of ∑
∞
l=−∞

x[m+ lN]. Let us define the signal xp[m]
based on this signal as follows

xp[m] =
∞

∑
l=−∞

x[m+ lN] (3.15)

The signal xp[m] is the overlapped and added versions of x[m], x[m + N], x[m−
N], x[m + 2N], Therefore, xp[m] is some sort of time-aliased version of x[n].
It is also periodic with period N when extended outside the index range n =
0,1, . . . ,N− 1. That is because any sequence obtained using the IDFT relation has
to be periodic with period N.
Property of IDFT: The signal xp[n] defined using the IDFT relation

xp[n] =
1
N

N−1

∑
k=0

X [k]e j 2π
N kn

is periodic with period N.
Consider

xp[n+N] =
1
N

N−1

∑
k=0

X [k]e j 2π
N k(n+N)

=
1
N

N−1

∑
k=0

X [k]e j 2π
N kn

because e j 2πN
N k = 1 for all integer k. Similarly, xp[n] = xp[n+ lN] for all integer l.

Example: (a) Compute the 2−point DFT of x = {1,1}.

X [0] = 1+1 = 2

X [1] = 1+1e− j 2π
2 1·1 = 0

(b) Compute the 3−point DFT of x = {1,1}.

3.6 DFT and Inverse DFT using Matrix Notation 49

X3[0] = 1+1 = 2

X3[1] = 1+1e− j 2π
3 1·1 = 1+ e− j2π/3

X3[2] = 1+1e− j 2π
3 1·2 = 1+ e− j4π/3

As you see X [k] 6= X3[k] for all k except k = 0. This is because

X [k] = X(e jω)
∣∣
ω= 2πk

2
, k = 0,1

and
X3[k] = X(e jω)

∣∣
ω= 2πk

3
, k = 0,1,2

Although, X [k] and X3[k] are samples of X(e jω) they can be different from each
other because they sample X(e jω) at different frequency locations.

3.6 DFT and Inverse DFT using Matrix Notation

The N-point DFT can be expressed as a matrix vector multiplication as follows:
X [0]
X [1]

...
X [N−1]

=

1 1 · · · 1

1 e− j 2π
N · · · e− j 2π(N−1)

N

...
...

...

1 e− j 2π(N−1)
N · · · e− j 2π(N−1)2

N

x[0]
x[1]

...
x[N−1]

The N by N transform matrix WN

WN =

1 1 · · · 1

1 e− j 2π
N · · · e− j 2π(N−1)

N

...
...

...

1 e− j 2π(N−1)
N · · · e− j 2π(N−1)2

N

is called the forward DFT matrix. Notice that the last row can be simplified[
1 e− j 2π(N−1)

N e− j 2π(N−2)
N · · · e− j 2π

N

]
. It can easily be shown that DFT is a symmetric

matrix.
Similar to the forward DFT, Inverse DFT can be expressed as a matrix vector

multiplication:
x[0]
x[1]

...
X [N−1]

= W−1
N

X [0]
X [1]

...
X [N−1]

50 3 Discrete Fourier Transform (DFT)

where WN
−1 is the inverse DFT matrix which can be expressed in terms of WN as

follows
W−1

N =
1
N

W∗
N (3.16)

where ∗ denotes complex conjugate transpose. This is because the DFT matrix is an
orthogonal matrix. Furthermore, the DFT is a symmetric matrix therefore there is
no need to take the transpose of WN. Since the inverse DFT matrix is the complex
conjugate of the forward DFT matrix, we directly obtain the forward DFT formula
from Equation (3.13) as follows:

x[n] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N n , n = 0,1, . . . ,N−1 (3.17)

Therefore, for finite extent sequences, there is no need to compute the inverse DTFT
expression

x[n] =
1

2π

∫
π

−π

X(e jω)e jωndω ← inverse DTFT (3.18)

which is an integral.
What happens if n is outside the index set 0,1, . . . ,N−1

x[N] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N N =

1
N

N−1

∑
k=0

X [k]

x[0] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N 0 =

1
N

N−1

∑
k=0

X [k]

x[N +1] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N (N+1) =

1
N

N−1

∑
k=0

X [k]e j 2πk
N = x[1]

x[−1] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N (−1) =

1
N

N−1

∑
k=0

X [k]e j 2πk
N (N−1) = x[N−1]

Periodic extension: xp[n]

xp[n] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N n , n = 0,±1,±2, . . .

xp[n] = x[n], n = 0,1,2, . . . ,N−1 ← Basic period

xp[n] =
∞

∑
l=−∞

x[n− lN] ← in general

3.6 DFT and Inverse DFT using Matrix Notation 51

x[n] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N n , n = 0,1, . . . ,N−1

x[n] =
1
N

N−1

∑
k=0

W−kn
N , n = 0,1, . . . ,N−1

Proof: Forward DFT is given as follows:
X [0]
X [1]

...
X [N−1]

=

1 1 · · · 1

1 e− j 2π
N · · · e− j 2π(N−1)

N

...
...

...

1 e− j 2π(N−1)
N · · · e− j 2π(N−1)2

N

x[0]
x[1]

...
x[N−1]

The last row is

[
1 e− j 2π(N−1)

N e− j 2π(N−2)
N · · · e− j 2π

N

]
.

• WN is a symmetric matrix.
• Rows of WN are orthogonal to each other.

W−1
N =

1
N

WH
N =

1
N
(W∗

N)
T =

1
N

W∗
N

Therefore;

x[n] =
1
N

N−1

∑
k=0

X [k]e j 2πk
N n , n = 0,1, . . . ,N−1

Example:

x[n] =

{
1 n = 0
0 otherwise

=⇒ X [k] =? k = 0,1, . . . ,N−1

X [0] =
N−1

∑
n=0

x[n] = 1

X [1] =
N−1

∑
n=0

x[n]e− j 2π1
N n = 1.e− j 2π1

N 0 + 0 + · · · + 0 = 1

...

X [N−1] =
N−1

∑
n=0

x[n]e− j 2π(N−1)
N n = 1.e− j 2π(N−1)

N 0 + 0 + · · · + 0 = 1

Inverse DFT expression:

52 3 Discrete Fourier Transform (DFT)

x[n] =
1
N

N−1

∑
k=0

1︸︷︷︸
X [k]

e j 2πk
N n =

{
1 n = 0,±N,±2N, . . .

0 ow (n = 1,2, . . . ,N−1)

3.7 Parseval’s Relation

Parseval’s relation for DTFT:

∞

∑
n=−∞

|x[n]|2 = 1
2π

∫
π

−π

∣∣X(e jω)
∣∣2 dω

Parseval’s relation for DFT:

N−1

∑
n=0
|x[n]|2 = 1

N

N−1

∑
k=0
|X [k]|2

Proof:

x[n] N−DFT←→ X [k], k = 0,1, . . . ,N−1

x∗[−n] N−DFT←→ X∗[k], k = 0,1, . . . ,N−1

x∗[n] N−DFT←→ X∗[−k], k = 0,1, . . . ,N−1

v[n] = x[n] N©x∗[−n] N−DFT←→ V [k] = X∗[k]X∗[k] = |X [k]|2 , k = 0,1, . . . ,N−1

v[n] =
N−1

∑
l=0

x[l]x∗[(l−n)N]

v[0] =
N−1

∑
l=0

x[l]x∗[l] =
N−1

∑
n=0
|x[l]|2

v[n] =
1
N

N−1

∑
k=0

V [k]e j 2π
N kn

v[0] =
1
N

N−1

∑
k=0
|X [k]|2 ·1 =

N−1

∑
l=0
|x[l]|2

�

3.8 Mini Projects

PART 1. DTMF (Dual/Dial-Tone-Multi-Frequency)

Which teaching assistant am I trying to call: dtmf.wav

''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW1/DTMF.wav''

3.8 Mini Projects 53

• You can read the above file using wavread function in Matlab.
• You have to identify the corresponding 4−digit dialed number (XXXX).
• Show all your work and plot all necessary graphics in the report.

Summary:
A DTMF signal consists of the sum of two sinusoids - or tones - with frequen-

cies taken from two mutually exclusive groups. Each pair of tones contains one
frequency of the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and one frequency of
the high group (1209 Hz, 1336 Hz, 1477 Hz) and represents a unique symbol.

Example: Following is a DTMF signal in continuous time domain

x(t) = sin(2π flowt)+ sin(2π fhight)

choosing flow = 697 Hz and fhigh = 1209 Hz, you’ll have the dial tone for symbol
{1}.

PART 2.

Which dial tone do need to use to prevent Hugo to be hit by the rock and then
falling down: hugo.jpg

Write a short Matlab code to generate the DTMF signal. Plot the FFT of the
DTMF signal that you generated. Clearly indicate the sampling frequency of the
generated signal.
Note: Hugo is a superhero however he cannot jump over the rock.

''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW1/hugo.jpg''

54 3 Discrete Fourier Transform (DFT)

3.9 Exercises

1. (a) Let xa(t) = sin2π1000t + cos2π1000t. Plot Xa(jΩ)
(b) This signal is sampled with fs = 8 kHz, and x[n] = xa(nTs), n = 0,±1,±2, . . . is
obtained. Plot X(e jω).
(c) Assume that we have x[n], n = 0,1, . . . ,1023. Approximately plot |X [k]| which
is the 1024−point DFT of x[n].

2. (a) Use N = 5 point DFT to compute the convolution of x[n] =

{
1︸︷︷︸

n=0

,2,2

}
and

h[n] =

−
1
2︸︷︷︸

n=0

,1,− 1
2

.

(b) Can you use N = 4 point DFT to compute y[n] = h[n]∗x[n]? Explain. Find v[n] =
IDFT−1

4 {H4[k]X4[k]} where H4[k] and X4[k] are 4−point DFT’s of h[n] and x[n],
respectively.

3. Find the (a) DTFT X(e jω) and (b) 32−point DFT of x[n] =

 1
4 ,

1
2︸︷︷︸

n=0

, 1
4

4. Given x1[n] =

{
1︸︷︷︸

n=0

,1,0,0

}
and x2[n] =

{
1︸︷︷︸

n=0

,1,1,1

}
(a) Compute the 4−point DFT’s of x1 and x2.
(b) Compute the 4−point circular convolution of x1 and x2 using DFT.
(c) What should be the size of DFT such that the circular convolution produces the
actual convolution result?

5. Given x[n] =

{
1
4 ,

1
2 , 1︸︷︷︸

n=0

, 1
2 ,

1
4

}
(a) Compute the 8−point DFT of x[n].
(b) Find X(e jω). What is the relation between X(e jω) and the 8−point DFT X [k]?

(c) Let Y [k] =

 1︸︷︷︸
k=0

,1,1,1, . . . , 1︸︷︷︸
k=1023

. Find y[n].

(d) Let y[n] =

[
1︸︷︷︸

n=0

,1,1,1, . . . , 1︸︷︷︸
n=1023

]
. Find Y [k].

(e) Prove that X [k] = X∗[N− k] where x is real.
6. Let xc(t)= cos2π450t. This signal is sampled with fs = 1.5kHz: x[n] = xc(nTs), n=
0,±1, . . . where Ts = 1/ fs. We have 512 samples of x[n].
(a) Plot X(e jω) of x[n], n = 0,±1,±2, . . .
(b) Approximately plot the DFT magnitude |X [k]|. The DFT size is N = 512.

3.9 Exercises 55

7. Calculate 10 elements of y[n] = x1[n] 5©x2[n] where x1[n] = 1︸︷︷︸
n=0

,2 and x2[n] =

−1︸︷︷︸
n=0

,0,3.

8. Compute the DFT of x[n] =
{ 1

2 ,0,
1
2

}
by first calculating the DTFT and sampling

it (N = 10).

9. Write down the 6− point periodic extension xp[n] of x[n] =

 a︸︷︷︸
n=0

,b

.

10. Find the 3−point DFT of x[n] =

1, 0︸︷︷︸
n=0

,1

. Verify your result by calculating

the IDFT.

11. Convolve x1[n] =

{
−1, 2︸︷︷︸

n=0

,1

}
and x2[n] =

 0︸︷︷︸
n=0

,1,3

12. Design a low-pass filter with these requirements:

13. Design a high-pass filter with these requirements:

14. Let y[n] = n[n−m], (a) which FIR filter yields this h[n]?, (b) compute H(e jω).
15. Given x[n] = δ [n+1]+2δ [n]+δ [n−1] and y[n] = 3δ [n−2]−2δ [n−3].
(a) Compute z[n] = x[n]∗ y[n].
(b) Compute the 4-point DFT X [n] of x[n].

56 3 Discrete Fourier Transform (DFT)

(c) Compute the 4-point DFT Y [n] of y[n].
(d) Compute z[n] by DFT and compare your result with part (a).

Chapter 4
Fast Fourier Transform (FFT) Algorithms

4.1 Introduction

Fast Fourier Transform (FFT) is not a transform. It is an algorithm to compute the
DFT. As you will see in the next section, the FFT based implementation of DFT re-
quires about (N log2 N) complex multiplications compared to direct implementation
which requires N2 complex multiplications.
FFT algorithm made Fourier analysis of signals feasible because N log2 N is much
smaller than N2 when N is large. For example, N2 = 1048576, on the other hand
N log2 N = 1024×10 = 10240 for N = 1024. FFT is a recursive algorithm. It com-
putes N-point DFT using N

2 -point DFTs. N
2 -point DFTs are then computed using

N
4 -point DFTs etc.

4.2 DFT Computation by Matrix Multiplication

As we discussed in Chapter 3 the N-point DFT:

X [k] =
N−1

∑
n=0

x[n]e− j 2πk
N n, k = 0,1, . . . ,N−1 (4.1)

is essentially a matrix-vector multiplication:

X = WNx

where X = [X [0] X [1] . . . X [N−1]]T , x = [x[0] x[1] . . . x[N−1]]T and the matrix

57

58 4 Fast Fourier Transform (FFT) Algorithms

WN =

1 1 · · · 1

1 e− j 2π
N · · · e− j 2π(N−1)

N

...
...

...

1 e− j 2π(N−1)
N · · · e− j 2π(N−1)2

N

The matrix WN is the N−point DFT matrix representing the following set of com-
putations.

X [0] =
N−1

∑
n=0

x[n]e− j 2π
N 0n

X [1] =
N−1

∑
n=0

x[n]e− j 2π
N 1n (4.2)

...

X [N−1] =
N−1

∑
n=0

x[n]e− j 2π
N (N−1)n

Each equation in (4.2) corresponds to an inner product (or a dot product) and N
complex multiplications are required to calculate each X [k] value. Therefore, the
total computational cost is N2 complex multiplications to obtain the complete DFT
domain data X [0], X [1], . . . , X [N−1].
Therefore direct implementation cost of DFT is N2 complex multiplications and
N(N−1) complex additions.
Example: If N = 1024 = 210 ⇒ N2 ≈ 103 × 103 = 106 complex multiplications
are required. On the other hand, decimation in frequency FFT algorithm requires
O((N/2) log2 N) complex multiplications≈ 103

2 log2 1024≈ 104

2 and N log2 N ≈ 104

complex additions. Therefore, FFT algorithm is really a fast algorithm. When N is
large, computational savings are really significant.

4.3 Decimation-in-Frequency FFT Computation Algorithm

This algorithm is developed by Cooley and Tukey in 1960s. It is a divide and con-
quer type algorithm and it requires N = 2p, p is an integer. Let us express the DFT
sum given in (4.2) in two parts:

X [k] =
N/2−1

∑
n=0

x[n]W kn
N +

N−1

∑
n=N/2

x[n]W kn
N ,

where WN = e− j 2π
N . We define n= l+N/2 and rewrite the above equation as follows:

4.3 Decimation-in-Frequency FFT Computation Algorithm 59

X [k] =
N/2−1

∑
n=0

x[n]W kn
N +

N/2−1

∑
l=0

x [l +N/2]W kl
N W kN/2

N ,

where W kN/2
N = (−1)k and it can go outside the second sum:

X [k] =
N/2−1

∑
n=0

x[n]W kn
N + (−1)k

N/2−1

∑
n=0

x [n+N/2]W kn
N ,

where we replace l by n. To combine the two summations into a single sum:

X [k] =
N/2−1

∑
n=0

(
x[n]+ (−1)kx [n+N/2]

)
W kn

N , k = 0,1,2, . . . ,N−1

The next step is to divide DFT coefficients into two groups according to their in-
dices. This is called decimation in even and odd frequency samples. We do not throw
away any samples as in Chapter 2. Therefore, it is actually downsampling X [k] into
even and odd samples. The first group contains even indexed DFT coefficients

X [2l] =
N/2−1

∑
n=0

(
x[n]+ (−1)2lx [n+N/2]

)
W 2ln

N , l = 0,1,2, . . . ,N/2−1

where k is replaced by 2l and the second group contains odd indexed DFT coeffi-
cients

X [2l+1] =
N/2−1

∑
n=0

(
x[n]+ (−1)2l+1x [n+N/2]

)
W (2l+1)n

N , l = 0,1,2, . . . ,N/2−1

where k is replaced by 2l+1.
Even indexed N−point DFT coefficients can be expressed as follows:

X [2l] =
N/2−1

∑
n=0

g[n]W ln
N/2 , l = 0,1,2, . . . ,N/2−1 (4.3)

where g[n] = x[n]+ x [n+N/2] and W ln
N/2 = e− j 2πln

N/2 = e− j 2π2ln
N = W 2ln

N . So, (4.3) is

the N
2 -point DFT of the sequence g[n], n = 0,1,2, . . . ,N/2−1.

G[l] =
N/2−1

∑
n=0

g[n]W ln
N/2 , l = 0,1,2, . . . ,N/2−1

where G[l] = X [2l]. The odd indexed N−point DFT coefficients can be also ex-
pressed as N/2−point DFT. Notice that

60 4 Fast Fourier Transform (FFT) Algorithms

X [2l +1] =
N/2−1

∑
n=0

h[n]W 2ln
N W n

N , l = 0,1,2, . . . ,N/2−1 (4.4)

where h[n] = x[n]− x [n+N/2] since (−1)2l+1 =−1. Eq. (4.4) is the N
2 -point DFT

of the sequence

h[n] = (x[n]− x [n+N/2])W n
N , n = 0,1, . . . ,N/2−1

Therefore,

H[l] =
N/2−1

∑
n=0

h[n]W ln
N/2 , l = 0,1, . . . ,N/2−1

where H[l] = X [2l + 1]. This process is described in Fig 4.1. The flow-graph of
Eq. 4.3 and 4.4 are shown in Fig. 4.1. Equations (4.3) and (4.4) represent the main
idea behind the recursive decimation-in-frequency FFT algorithm. At this stage,
the computational cost of implementing the DFT is N

2 +2
(N

2

)2
= N2

2 + N
2 complex

multiplications, which is less than N2 for N ≥ 4(N = 2p). Since this is adventageous
we can continue dividing N

2−point DFTs into N
4−point DFTs. The flow graph of

expressing N-point DFTs is shown in Fig. 4.2 for N = 8. Use (4.3) and (4.4) to
divide each N

2−point DFT into two N
4−point DFTs. Then, the computational cost

becomes N
2 +4

(N
4

)2 complex multiplications. For N = 8, N
4 = 2.

For N = 2, we have the so-called ‘butterfly’:

B[k] =
1

∑
n=0

b[n]W kn
N , k = 0,1

B[0] = b[0]+b[1]

B[1] = b[0]W 0
N +b[1]W 1

N=2 = b[0]−b[1]

which is the main computational unit of the FFT algorithms and the last DFT
stage of the N = 8 point DFT. The N = 8 = 23 point DFT can be computed in
p = 3 = log2 8 stages and in each stage we perform N

2 = 4 complex multiplica-
tions. Therefore, the computational cost of the decimation-in-frequency algorithm
for N = 2p-point DFT: N

2 .p = N2 log2 N complex multiplications.
Butterflies are the building blocks of the radix-2 FFT algorithm, N = 2p. The

term radix-2 is used for FFTs constructed from 2-point butterflies.
In decimation-in-frequency algorithm, the input vector goes in an orderly fash-

ion. But we shuffle the DFT coefficients after each stage. It turns out that the FFT
output comes out in bit-reversed order as shown in Fig. 4.4. Therefore it is very easy
to rearrange the DFT coefficients. For example, the forth output of the decimation in
frequency algorithm is X [6] = X [110]. The bit reversed version of 110 is 011 which
is equal to 3. This works for all N = 2p.

One complex multiplication is equivalent to 4 real multiplications. So the cost of
N-FFT is 2N log2 N real multiplications for a complex input x[n].

4.3 Decimation-in-Frequency FFT Computation Algorithm 61

Fig. 4.1 Flowgraph of decimation-in-frequency algorithm of an N = 8-point DFT computation
into two N

2 = 4-point DFT computations.

Fig. 4.2 Flowgraph of decimation-in-frequency algorithm of an N = 8-point DFT computation in
terms of four N

4 = 2-point DFT computations

62 4 Fast Fourier Transform (FFT) Algorithms

Fig. 4.3 Flowgraph of a 2-point butterfly computation used in decimation in frequency algorithm.

Fig. 4.4 Flowgraph of decimation-in-frequency decomposition of an N = 8-point DFT computa-
tion. It consists of log2 N = 3 stages

Fig. 4.5 Flowgraph of the N = 2-point DFT.

4.3 Decimation-in-Frequency FFT Computation Algorithm 63

Fig. 4.6 DFT coefficients come out shuffled after decimation in frequency FFT algorithm, but they
can be easily organized.

64 4 Fast Fourier Transform (FFT) Algorithms

4.4 Decimation-in-Time FFT Computation Algorithm

Decimation-in-time algorithm is another way of computing DFT in a fast manner.
The computational cost of decimation-in-time algorithm is also N log2 N complex
multiplications for an N-point DFT computation.

Similar to the decimation-in-frequency algorithm, we form two sums from Eq.
4.1 but this time we group the even and odd indexed time-domain samples. The DFT
sum of Eq. 4.1 can be expressed in two parts as follows:

X [k] =
N−1

∑
n=0

n even

x[n]e− j 2π
N kn +

N−1

∑
n=0
n odd

x[n]e− j 2π
N kn k = 0,1, . . . ,N−1

In the first sum we have the even indexed samples, and in the second sum we have
the odd indexed samples, respectively. Therefore, we replace n by 2l in the first sum
and n by 2l +1 in the second sum, respectively.

X [k] =
N/2−1

∑
l=0

x[2l]e− j 2π
N k2l +

N/2−1

∑
l=0

x[2l +1]e− j 2π
N k(2l+1)

and

X [k] =
N/2−1

∑
l=0

x[2l]W 2kl
N + W k

N

N/2−1

∑
l=0

x[2l +1]W 2kl
N

Notice that W 2kl
N = e− j 2π

N 2kl = e− j 2π

N/2 kl
=W kl

N/2. Therefore,

X [k] =
N/2−1

∑
l=0

x[2l]W kl
N/2 + W k

N

N/2−1

∑
l=0

x[2l +1]W kl
N/2 (4.5)

In equation Eq. 4.5 the first sum is the N/2−point DFT of x[2l] and the sec-
ond sum is the N/2−point DFT of x[2l +1], respectively. Therefore, we expressed
N−point DFT in terms of two N/2−point DFTs as follows

X [k] = G[k] + W k
NH[k] , k = 0,1, . . . ,N−1 (4.6)

where G[k], k = 0,1, . . . ,N/2− 1 is the N/2−point DFT of x[2l] and H[k], k =
0,1, . . . ,N/2−1 is the N/2−point DFT of x[2l +1], respectively. In (4.6), we also
need G[N/2], G[N/2+1], . . . ,G[N−1] and H[N/2], H[N/2+1], . . . ,H[N−1]. We
take advantage of the periodicity of DFT and do not compute these DFT coefficients
because G[k+N/2] = G[k] and H[k+N/2] = H[k].

The flowdiagram based on Eq. (4.6) is shown in Fig. 4.7 for N = 8. Similar to
decimation-in-frequency algorithm, we can recursively continue computing N

2 point
DFTs using N

4 -point DFTs etc. Flowgraphs of decimation-in-time FFT algorithm is
shown in Figures 4.8 and 4.10. There are log2 N stages.

4.4 Decimation-in-Time FFT Computation Algorithm 65

The basic building block of decimation-in-time algorithm is also a butterfly as
shown in Fig. 4.9.

In decimation-in-time algorithm, input samples have to be shuffled according to
the following rule: x[6] = x[(110)2]⇒ X [(011)2] = X [3]. Inputs are in bit-reversed
order, whereas the outputs are regular.

Fig. 4.7 Flowgraph based on Eq. (4.6): This is a decimation-in-time decomposition of an N = 8-
point DFT computation into two N

2 = 4-point DFT computations. Notice that G[k] and H[k] are
periodic with period N

2 = 4.

66 4 Fast Fourier Transform (FFT) Algorithms

Fig. 4.8 Flowgraph of decimation-in-time algorithm of an N = 8-point DFT computation into four
N
4 = 2-point DFT computations

Fig. 4.9 Flowgraph of a typical N
4 = 2−point DFT as required in the last stage of decimation-in-

time algorithm.

4.4 Decimation-in-Time FFT Computation Algorithm 67

Fig. 4.10 Flowgraph of complete decimation-in-time decomposition of an 8−point DFT compu-
tation.

68 4 Fast Fourier Transform (FFT) Algorithms

4.5 FFT for an arbitrary N

If N can be expressed as a multiplication of two integers p and q, i.e., N = p · q,
then we can take advantage of this fact to develop an FFT algorithm similar to the
algorithms described in Section 4.2 and 4.3.
Example: p = 3

X [k] =
N−1

∑
n = 0,3,6, . . .︸ ︷︷ ︸

n=3l

x[n]W kn
N +

N−1

∑
n = 1,4,7, . . .︸ ︷︷ ︸

n=3l+1

x[n]W kn
N +

N−1

∑
n = 2,5,8, . . .︸ ︷︷ ︸

n=3l+2

x[n]W kn
N

X [k] =
N/3−1

∑
l=0

x[3l]W k3l
N +

N
3 −1

∑
l=0

x[3l +1]W k(3l+1)
N +

N/3−1

∑
l=0

x[3l +2]W k(3l+2)
N

X [k] =
N/3−1

∑
l=0

x[3l]W kl
N/3 + W k

N

N
3 −1

∑
l=0

x[3l +1]W kl
N/3 + W 2k

N

N
3 −1

∑
l=0

x[3l +2]W kl
N/3

where we take N/3−point DFTs:

X [k] = G[k]+W k
NH[k]+W 2k

N V [k] k = 0,1, . . . ,N−1 (4.7)

where

G[k] is the N/3– point DFT of {x[0],x[3], . . . ,x[N−3]}
H[k] is the N/3– point DFT of {x[1],x[4], . . . ,x[N−2]}
V [k] is the N/3– point DFT of {x[2],x[5], . . . ,x[N−1]}

In (4.7), we need G[k],H[k] and V [k], k = N/3, . . . ,N−1. We do not compute these
values. We simply use the periodic nature of DFT to generate the missing DFT
coefficients: G[k] = G[k+N/3] = G[k+2N/3], k = 0,1,2,

After this single stage decomposition, we compute the N−point DFT of x[n]
using three N

3 –point DFTs. The total computational cost is 3
(N

3

)2
+ 2N < N2 for

large N.
In general, we factor N into its primes and

N = p ·q · · ·r︸ ︷︷ ︸
l primes

(4.8)

and perform the DFT in l stages because we have l prime numbers forming N.
It turns out that radix–4 DFT is the most efficient FFT because in 4–point DFT

we do not perform any actual multiplication:

X [k] =
3

∑
n=0

x[n]e− j 2πkn
4 , k = 0,1,2,3

4.5 FFT for an arbitrary N 69

Fig. 4.11 Flowgraph of complete decimation-in-time decomposition of an 8−point DFT compu-
tation.

because e− j 2πkn
4 can take only j,− j,1, and -1. The 4-point DFT is described in

matrix form as follows:
X [0]
X [1]
X [2]
X [3]

=

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

x[0]
x[1]
x[2]
x[3]

The computational cost in terms of number of multiplications is also Order(N logN).

70 4 Fast Fourier Transform (FFT) Algorithms

4.6 Convolution using DFT (FFT)

Since FFT is a fast algorithm it may be feasible to compute convolution or filtering
in the DFT domain. Let us consider the following convolution operation:

y[n]︸︷︷︸
length L1+L2−1

= h[n]︸︷︷︸
length L1

∗ x[n]︸︷︷︸
length L2

N−DFT←−−−→ Y [k] = H[k]X [k]︸ ︷︷ ︸
N>L1+L2−1

where h[n] is the impulse response of the filter and x[n] is the input. We can
compute y[n] in DFT domain as follows:

1. Compute H[k] (Computational cost: N
2 log2 N) This step may not be necessary

in some cases because we can store H[k] instead of h[n] in the memory of the
computer.

2. Compute X [k] (Computational cost: N
2 log2 N)

3. Compute H[k]X [k] , f or k = 0,1, . . . ,N−1 (Computational cost: N)
4. Compute DFT−1 [H[k]X[k]] (Computational cost: N

2 log2 N)

Therefore the total cost is N +3 N
2 log2 N complex ⊗ = 4N +6N log2 N real ⊗.

In general for long (or large order) filters, convolution using FFT can be more
advantageous. One has to compute the required number of multiplications in time
domain and frequency domain and compare the cost for each specific case. Consider
the following two examples:

Example: Filter order L1 = 11 and the length of the signal L2 = 900. y[n] =
∑

L1−1
k=0 h[k]x[n− k].

For a single y[n], we need to perform 11 ⊗. Total cost of time domain convolution
≤ L1 · (L1 +L2−1) = 11 ·910≈ 10000 ⊗. Frequency domain convolution requires
(N = 1024) 4N+6N log2 N ≈ 4000+60000⊗. Time domain convolution is better
in this example.

Example: Filter order L1 = 101 and L2 = 900. Time domain convolution ≈
100 ·910≈ 90000⊗. Frequency domain convolution≈ 4N+6N log2 N = 64000⊗.
Frequency domain convolution is computationally better.

4.7 Exercises

1. x[n] is defined as x[n] = sin
(2π4n

N

)
where N = 16.

a) Find the 16−point DFT of x[n] analytically.
b) Calculate the 16−point DFT of x[n] using Matlab.

2. Find the N−point DFTs of x1[n] and x2[n] where the sequences have the length N
and 0≤ n≤ N−1.

x1[n] = cos2
(

2πn
N

)
and x2[n] = cos3

(
2πn
N

)

4.7 Exercises 71

3. x[n] = {5,3,−2,4,3,−7,−1,6} is defined for 0≤ n≤ 7. X [k] is the 8−point DFT
of x[n]. Determine the following values:

a) X [0]
b) X [4]

4. Given the sequence x[n] = δ [n]+3δ [n−1]+2δ [n−2], X [k] is the 6− point DFT
of x[n]. Moreover, Y [k] = X2[k] where Y [k] is the DFT of y[n].

a) Find values of y[n] for 0≤ n≤ 5.
b) If X [k] is defined to be the N−point DFT of x[n], what should be the minimum

value of N so that y[n] = x[n]∗ x[n].

72 4 Fast Fourier Transform (FFT) Algorithms

4.8 Computer Projects

PART 1.

1. Divide a speech signal or music signal into frames of size N = 64.

2. Compute the N−point DFT of each frame.
3. Save only first L = 20 DFT coefficients.
4. Reconstruct the frame from these L coefficients. (Do not disturb the symmetry
of DFT during inverse DFT computation. X [k] = X∗[N− k] for real signals, N = 64
here. Pad zeros for missing DFT coefficients.)
5. Comment on the quality of reconstructed and the original speech signal.
6. What is the effective data compression ratio? Note that DFT coefficients may be
complex valued!
7. Repeat the above experiment for L = 10 and L = 5.
8. Repeat all above with DCT instead of DFT.

Hints:
1. Pad zeros at the end of the original signal in order to get the number of total
samples to have a multiple of N = 64.
2. Effective Data Compression Rate (EDCR) can be calculated by:

EDCR=
number of samples in the original signal

numberofsavedrealcoefficients+(2×number of saved complex coefficients)

PS: You may use this formula for “per frame” or for the whole signal. These will
give actually the same result.
3. You will save first L coefficients of DFT/DCT of original frame. And set the
remaining coefficients to zero. Then, in reconstruction step of a frame, you should be
careful about the conjugate symmetry of the DFT signal which is X [k] = X∗[N−k].
PS: The first coefficient of DFT is always real, and X [0] = X∗[N] = X [N] by the
above formula!
4. Using these L coefficients and corresponding (L−1) conjugate symmetric coef-
ficients, (in between of these are all zeros), you take the IDFT of each frame. Due
to numerical mistakes, the IDFT might be complex valued with the imaginary parts
in the order of 10−18−10−20. You may ignore the imaginary parts and use the real
parts of the reconstructed signal samples.

Please make comments and state any conclusions in your report. Plot the original
signal and reconstructed signals to get some idea about the compression quality.
Also listen to those signals and make comments about intelligibility. You may use

soundsc(signal name,8000)
command to listen them in Matlab.

''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW3/ali_eve_git.wav''
''http://www.ee.bilkent.edu.tr/~ee424/Homeworks%20and%20Projects/HW3/music_signal.wav''

4.9 Exercises 73

PART 2.

Compare DCT based method with DFT based method.

4.9 Exercises

1. x[n] is defined as x[n] = sin
(2π4n

N

)
where N = 16.

a) Find the 16−point DFT of x[n] analytically.
b) Calculate the 16−point DFT of x[n] using Matlab.

2. Find the N−point DFTs of x1[n] and x2[n] where the sequences have the length N
and 0≤ n≤ N−1.

x1[n] = cos2
(

2πn
N

)
and x2[n] = cos3

(
2πn
N

)
3. x[n] = {5,3,−2,4,3,−7,−1,6} is defined for 0≤ n≤ 7. X [k] is the 8−point DFT
of x[n]. Determine the following values:

a) X [0]
b) X [4]

4. Given the sequence x[n] = δ [n]+3δ [n−1]+2δ [n−2], X [k] is the 6− point DFT
of x[n]. Moreover, Y [k] = X2[k] where Y [k] is the DFT of y[n].

a) Find values of y[n] for 0≤ n≤ 5.
b) If X [k] is defined to be the N−point DFT of x[n], what should be the minimum

value of N so that y[n] = x[n]∗ x[n].

5. Draw the flow-diagram of the N = 6−point Decimation-in-time Discrete Fourier
Transform algorithm. Show your equation and work.
6. Let xc(t) be a continuous time signal. Xc(jΩ) is the continuous time Fourier
transform of xc(t). xc(t) is sampled: x[n], xc

(
n 1

8000

)
, n = 0,±1,±2, . . .

(a) Plot X(e jω) = F {x[n]}.
(b) Let v[n] be the down-sampled version of x[n] by 2. Plot X(e jω).
(c) Let x[n], n = 0,±1,±2, . . . ,±511,±512 is available. X [k] is the 1024-point DFT

74 4 Fast Fourier Transform (FFT) Algorithms

of [x[−511],x[−510], . . . ,x[512]]. Approximately plot |X [k]| versus k.
(d) Let

u[n] =

{
v[n/2] if n even
0 if n odd

Plot U(e jω).
(e) What is the computational cost of computing X [k] is the Fast Fourier Transform
(FFT) is used in part (c)?
7. (a) Describe an N−point DFT using two N/2−point DFT’s (N is divisible by 2).
(b) Let X(e jω = 1

2 +
1
2 cosω). X [k] is defined as X [k] = X(e jω

∣∣
ω= 2πk

64
, k= 0,1, . . . ,63.

Find x[n] = 1
N ∑

N−1
k=0 X [k]e j 2πkn

N , n = 0,1,2, . . . ,63 = N−1
8. (a) Draw the flow-graph of N = 6−point decimation-in-time Fast Fourier Trans-
form (FFT) algorithm.

(b) Let x[n] =

{
1
2 , 1︸︷︷︸

n=0

, 1
2

}
. Calculate the N = 6−point DFT of x[n] using the flow-

graph in (a).
9. Given a discrete-time sequence x[n], n = 0, . . . ,8; the 9−point DFT shall be com-
puted.
(a) Derive a decimation-in-time FFT method for this task.
(b) Plot the corresponding FFT flow-graph.
(c) Compare the computational complexity of calculating the FFT method devel-
oped in part (a) with regular 9−point DFT.

Chapter 5
Applications of DFT (FFT)

5.1 Introduction

The FFT algorithm makes the DFT a practical tool in many applications. According
to G. Strang FFT is the most important numerical algorithm of the 20th century.

We consider two applications in this chapter:

• Implementation of LTI systems in DFT domain and
• waveform coding.

In Section 2 we study convolution using DFT and show that it may be computation-
ally more efficient to use the DFT domain convolution when the filter order is large.
In Section 3, we discuss how streaming data can be filtered in DFT domain and in
Section 4, we discuss how DFT can be used in coding of digital waveforms. Actu-
ally, DFT is not used in waveform coding but Discrete Cosine Transform (DCT) is
used. We establish the relation between DFT and the DCT in Section 4. DCT is the
transform used in JPEG image coding and MPEG family of video coding standards.

5.2 Convolution using DFT (FFT)

y[n]︸︷︷︸
length L1+L2−1

= h[n]︸︷︷︸
length L1

∗ x[n]︸︷︷︸
length L2

N−DFT←−−−→ Y [k] = H[k]X [k]︸ ︷︷ ︸
N>L1+L2−1

Implementation:

1. Compute H[k] (Comp. Cost: N
2 log2 N) (This step may not be necessary in some

cases because we can store H[k] instead of h[n] in the memory of the computer.)
2. Compute X [k] (Comp. Cost: N

2 log2 N)
3. Compute H[k]X [k] , k = 0,1, . . . ,N−1 (Comp. Cost: N)
4. Compute DFT−1 [H[k]X[k]] (Comp. Cost: N

2 log2 N)

75

76 5 Applications of DFT (FFT)

Total = N +3 N
2 log2 N complex ⊗ = 4N +6N log2 N real ⊗.

For long (or large order filters) perform convolution using FFT.
For each case, carry out a computational cost analysis and decide!
Ex: Filter order L1 = 11 and L2 = 900. y[n] = ∑

L1−1
k=0 h[k]x[n− k].

For a single y[n], we need to perform 11 ⊗. Total cost of time domain convolution
≤ L1 · (L1 +L2−1) = 11 ·910≈ 10000 ⊗. Frequency domain convolution requires
(N = 1024) 4N+6N log2 N ≈ 4000+60000⊗. Time domain convolution is better
in this example.

Ex: Filter order L1 = 101 and L2 = 900. Time domain convolution≈ 100 ·910≈
90000 ⊗. Frequency domain convolution ≈ 4N +6N log2 N = 64000 ⊗. Frequency
domain convolution is computationally better.

5.3 Overlap and Add Method

In the previos section we learned how to convolve two finite extent signals in DFT
domain. In this section we cover what happens when x is a very long duration signal
or a streaming signal, i.e., new samples of x arrive in time.

Let x[n] be a long duration signal (or it may be streaming). We divide the input
signal x into small windows and perform convolutions with the windowed data. This
means that we need some memmory space to store the streaming data. Whenever
we have enough date we perform the convolution in the DFTdomain. As a result we
introduce some delay but the delay may be tolerable in some applications.

Overlap and add method is based on the linearity of the convolution:

y[n] = (x1[n]+ x2[n]+ x3[n]+ ...)∗h[n]

y[n] = x1[n]∗h[n]+ x2[n]∗h[n]+ x3[n]∗h[n]+ ...

where we divided the signal x[n] into sub-signals

x[n] = x1[n]+ x2[n]+ x3[n]+ ...

and

x1[n] = x[n]w[n] = [x[0], x[1], . . . ,x[L−1]]
x2[n] = x[n]w[n−L] = [x[L], x[L+1], . . . ,x[2L−1]]
and

x3[n] = x[n]w[n−2L] = [x[2L], x[2L+1], . . . ,x[3L−1]]

Notice that w[n] is a rectangular window of length L:

5.4 Discrete Cosine Transform (DCT) 77

w[n] =

{
1 , n = 0,1, . . . ,L−1
0 , otherwise

Each convolution
yi[n] = xi[n]∗h[n] , i = 1,2, . . .

has a length of L+M−1 where h[n] has a length of M.
We can use N ≥ L+M−1 length DFT to compute y[n] by computing yi[n] , i =

1,2, . . .
y[n] = y1[n]+ y2[n]+ y3[n]+ . . .

Therefore, the input signal x[n] is divided into windows of length L. After using N−
point DFTs, we obtain y1[n], y2[n],

Since the starting points of y1[n] is 0, y2[n] is L, y3[n] is 2L, the method is called
”overlap and add” method.

Another related streaming data filtering method is called the overlap and save
method. You can find detailed information about the ”overlap and save” method in
references [1]-[5].

5.4 Discrete Cosine Transform (DCT)

General Transformation Topic

X [k] =
N−1

∑
n=0

x[n]φ ∗k [n] and x[n] =
1
N

N−1

∑
k=0

X [k]φk[n]

Orthogonal Basis
1
N

N−1

∑
n=0

φk[n]φ ∗m[n] =

{
1 if k = m
0 if k 6= m

In the case of DCT, we have cosine basis. Cosines are

• real functions
• even symmetric
• periodic

In DFT, periodicity of the transformed signal is assumed.
In DFT, what we do is to form a periodic sequence from the finite length signal.
In DCT, we form an even symmetric and periodic sequence from the finite length

signal.
Example: x[n] = { a︸︷︷︸

n=0

,b,c,d}

78 5 Applications of DFT (FFT)

x̃1[n] = {a,b,c,d,c,b,a,b,c,d,c,b,a}
x̃2[n] = {a,b,c,d,d,c,b,a,a,b,c,d,d,c,b,a,a}
x̃1[n] = {a,b,c,d,0,−d,−c,−b,−a,−b,−c,−d,0,d,c,b,a}
x̃1[n] = {a,b,c,d,0,−d,−c,−b,−a,−a,−b,−c,−d,0,d,c,b,a,a}

All of the above signals are periodic with N = 16 or less and they have even sym-
metry.

The first step in DCT is to form one of these periodic, even symmetric sequences.
Therefore, we have four different definitions of DCT. Most commonly used ones are
DCT-1 and DCT-2 which includes x̃1[n] and x̃2[n].

x̃1[n] = xα [(n)2N−2]+ xα [(−n)2N−2] where xα [n] = α[n]x[n] and

α[n] =

{
1/2 if n = 0, n = N−1
1 otherwise

denotes the weighting of the endpoints because doubling occurs at the endpoints.
DCT-1 is defined as

XC1[k] = 2
N−1

∑
n=0

α[n]x[n]cos
(

πkn
N−1

)
, 0≤ k ≤ N−1

x[n] =
1

N−1

N−1

∑
k=0

α[k]XC1[k]cos
(

πkn
N−1

)
, 0≤ n≤ N−1

x̃2[n] = x[(n)2N] + x[(−n− 1)2N]. No modifications since the end points do not
overlap.

DCT-2 is defined as

XC2[k] = 2
N−1

∑
n=0

α[n]x[n]cos
(

πk(2n+1)
2N

)
, 0≤ k ≤ N−1

x[n] =
1
N

N−1

∑
k=0

β [k]XC2[k]cos
(

πk(2n+1)
2N

)
, 0≤ n≤ N−1

where

β [k] =

{
1/2 if k = 0
1 if 1≤ k ≤ N−1

5.5 Relationship between DFT and DCT

Obviously for different definitions of DCT (as DCT-1 and DCT-2), there exist dif-
ferent relationships.

5.5 Relationship between DFT and DCT 79

5.5.1 Relation between DFT and DCT-1

From the former sections, we know that

x̃1[n] = xα [(n)2N−2]+ xα [(−n)2N−2] n = 0,1, . . . ,2N−3

where xα [n] = α[n]x[n].
Assume that Xα [k] is the (2N−2)−point DFT of xα [n].

X1[k] = Xα [k]+X∗α [k] = 2Re{Xα [k]} k = 0,1, . . . ,2N−3

= 2
N−1

∑
n=0

α[n]x[n]cos
(

2πkn
2N−2

)
= XC1[k]

where X1[k] is (2N−2)−point DFT of x̃1[n]
Example: x[n] = {a,b,c,d} ⇒

x̃1[n] = {a/2,b,c,d/2,0,0}+{a/2,0,0,d/2,c,b}
= {a,b,c,d,c,b}

X1[k] =
5

∑
n=0

x̃1[n]e
− j2πkn

6

= a+be
− j2πk

6 + ce
− j4πk

6 +d(−1)k

+be
− j10πk

6 + ce
− j8πk

6

= a+2bcos
(

2πk
6

)
+2ccos

(
4πk

6

)
+d(−1)k

Conclusion: DCT-1 of an N−point sequence is identical to the (2N−2)−point DFT
of the symmetrically extended sequence x̃1[n], and it is also identical to twice the
real part of the first N points of the (2N−2)−point DFT of the weighted sequence
xα [n].

5.5.2 Relation between DFT and DCT-2

x̃2[n] = x[(n)2N]+ x[(−n−1)2N]

Let X [k] be the 2N−point DFT of N−point signal x[n]. Then,

80 5 Applications of DFT (FFT)

X2[k] = X [k]+X∗[k]e
j2πk
2N

= e
jπk
2N

[
X [k]e

− jπk
2N +X∗[k]e

jπk
2N

]
= e

jπk
2N 2Re

{
X [k]e

− jπk
2N

}
= e

jπk
2N Re

{
2

2N−1

∑
n=0

x[n]e
− j2πkn

2N e
− jπk

2N

}

= e
jπk
2N Re

{
2

2N−1

∑
n=0

x[n]e
− jπk(2n+1)

2N

}

= e
jπk
2N 2

N−1

∑
n=0

x[n]cos
(

πk(2n+1)
2N

)
︸ ︷︷ ︸

XC2[k]

X2[k] = e
jπk
2N XC2[k], k = 0,1, . . . ,N−1

Chapter 6
FIR Filter Design and Implementation

We first review the Linear-Time Invariant (LTI) systems and convolution. In this
chapter we focus on the design of LTI systems which have Finite-extent Impulse
Responses (FIR). The goal is to find appropriate LTI system parameters such that
the filter meets some pre-specified requirements in the frequency domain.

6.1 Linear-Time Invariant Systems

In LTI systems the relation between the input x and the output y is given by the
convolution sum

y[n] =
∞

∑
k=−∞

h[k]x[n− k]

y[n] =
∞

∑
k=−∞

x[k]h[n− k]

where h is the impulse response of the system, i.e., the response that we get for the
input δ [n]. In FIR systems the above sum becomes a finite sum. Here is an example:
Example: h[n] = { 1︸︷︷︸

n=0

,2} ←− FIR

Find the I/O relation for h[n]
FIR: Finite-Extent Impulse Response

y[n] = h[0]x[n]+h[1]x[n−1]
y[n] = 1x[n]+2x[n−1]

In Finite-extent Impulse Response (FIR) systems, the LTI system performs a run-
ning average of the input. In general, h[n] = {a−R,a−R+1, . . . , a0︸︷︷︸

n=0

,a1, . . . ,aL,}

leads to the input/output (I/O) relation:

81

82 6 FIR Filter Design and Implementation

y[n] =
L

∑
k=−R

ak x[n− k] (6.1)

where h[k] = ak for k =−R, . . . ,L which is an anti-causal FIR filter. In discrete-time
domain anti-causality is not problem in many cases. Here are some FIR filters:

y[n] =
R−1

∑
k=0

h[k]x[n− k] Causal FIR

y[n] =
R−1

∑
k=0

akx[n− k] where h[k] = ak

y[n] =
L

∑
k=−L

bkx[n− k] Non-causal FIR where h[k] = bk, k = 0,±1, . . . ,±L.

6.1.1 Design of FIR Filters Using a Rectangular Window

In this chapter, we study the design of low-pass, band-pass, high-pass, band-stop
and notch filters.

Design Problem: Find the impulse response h[n] satisfying some requirements
in DTFT domain. We consider the design of a low-pass filter design as an example.
Example: Low-pass filter design:
An ideal low-pass filter Hid(e jω) = 1 for −ωc ≤ ω ≤ ωc and zero otherwise within
−π and π . Since the DTFT is 2π periodic ω = 0,±2π,±4π, ... are all equivalent to
each other.

hid [n] =
1

2π

∫
π

−π

Hid(e jω)e jωndω

hid [n] =
1

2π

∫
ωc

−ωc

e jωndω =
sin(ωcn)

πn
n = 0,±1,±2, . . .

Clearly, hid [n] is of infinite extent. Therefore, we cannot implement the convolu-
tional sum to realize this filter. One possible approach is to truncate hid [n] and obtain
an FIR filter:

hT [n] =

{
hid [n], n = 0,±1,±2, . . . ,±L
0, otherwise

←− FIR non-causal

This is basically rectangular windowing because

hT [n] = hid [n]×w[n]

where w is the anti-causal rectangular window

6.1 Linear-Time Invariant Systems 83

w[n] =

{
1, n = 0,±1,±2, . . . ,±L
0, otherwise

This approach is straightforward but it leads to the well-known Gibbs effect in fre-
quency domain. We have no control over the frequency response.
Second Approach: Least-Squares Approach Let us try another approach. We try
to minimize the mean square error

min
1

2π

∫
π

−π

∣∣HL(e jω)−Hid(e jω)
∣∣2 dω =

∞

∑
n=−∞

|hL[n]−hid [n]|2

L

∑
n=−L

|hL[n]−hid [n]|2 +
∞

∑
n=L+1

|hid [n]|2 +
−L−1

∑
n=−∞

|hid [n]|2

where we used the Parseval relation. The equivalent minimization problem is as
follows

min
L

∑
n=−L

hL[n]︸︷︷︸
real

− hid [n]︸ ︷︷ ︸
real, known

2

= B

∂B
∂hL[k]

= 0 k = 0,±1,±2, . . . ,±L

=⇒ hL[k] =

{
hid [k], k = 0,±1,±2, . . . ,±L
0, otherwise

This design method produced nothing new! It is the same as the rectangular win-
dow(or Truncation) design. This approach causes the Gibbs phenomenon because
we try to approximate ideal filters with sudden jumps in frequency domain with
smooth functions (sinusoids).

Table 6.1 Window properties

Window Type Transition width of the mainlobe Peak sidelobe (dB below the mainlobe)
Rect 4π/2L+1 -13
Bartlett (Tri.) 8π/2L+1 -27
Hanning 8π/2L+1 -32
Hamming 8π/2L+1 -43
Blackman 12π/2L+1 -58

84 6 FIR Filter Design and Implementation

Fig. 6.1 Hw(e jω) = Hid(e jω)⊗Wr(e jω).

6.1.2 Window-Based FIR Filter Design

hw[n] = hid [n] ·w[n] where w[n] is a window of length 2L+ 1 and centered around
n = 0. (hid [n] is symmetric wrt n = 0 for low-pass, high-pass and band-pass filters).
Example:
Hanning window:

whn[n] =
1
2
+

1
2

cos
2πn

M−1
M = 2L+1, n =−L, . . . ,0, . . . ,L

Hamming window:

wh[n] = 0.54+0.46cos
2πn

M−1
M = 2L+1, n =−L, . . . ,0, . . . ,L

Triangular window: The one with wT [±L] = 0
Bartlett window: The one with wT [±L] 6= 0 but wT [±(L+1)] = 0
Blackman window (Causal): wb[n] = 0.42−0.5cos 2πn

M−1 +0.08cos 4πn
M−1

Assume that the window is rectangular.

Wr(e jω) =
L

∑
n=−L

1.e− jωn = 1+ e jω + e− jω + e j2ω + e− j2ω + · · ·+ e jLω + e− jLω

= 1+2(cos(ω)+ cos(2ω)+ · · ·+ cos(Lω))

Since hw[n] = hid [n].w[n], the frequency response of the filter is given by

Hw(e jω) = Hid(e jω)⊗Wr(e jω),

where ⊗ represents circular convolution with period 2π , as illustrated in Fig. 6.1.
Frequency response of the rectangular filter is shown in Fig. 6.2. It has a mainlobe
and slidelobes. The width of the mainlobe determines how fast the filter frequency
response goes from pass band to stopband (or from stopband to passband). The peak
of the sidelobe causes ripples of the Gibbs effect.

As L increases, width of the mainlobe decreases.
Wider Mainlobe =⇒ Slow Transition from Passband to Stopband (If W (e jω)= δ (ω) =⇒
Instant Transition)
Lower Peak Sidelobe =⇒ Reduced Gibbs Effect!

6.2 Causal Filter Design 85

−π 0 π

1

2

3

4

5

6

7

8

9

10

ω

H
w

(e
jω

)

L = 5

−π 0 π

5

10

15

20

25

30

ω

H
w

(e
jω

)

L = 15

Fig. 6.2 Frequency response of the rectangular window Wr(e jω) when L = 5 and L = 15.

6.1.3 High-pass, Band-pass, Notch and Band-stop Filter Design

In high-pass, band-pass and band-stop FIR filters, the ideal filter is of infinite extent
and anticausal hid [n] = hid [−n] as the low-pass filter. Therefore, window-based FIR
filter design method is the same as the low-pass filter design.

fir file:///C:/Documents%20and%20Settings/kkose/My%20Documents/M...

4 of 6 11/4/2008 1:43 PM

6.2 Causal Filter Design

As pointed out in the previous section, hid [n] is infinite-extent, noncausal and sym-
metric with respect to n = 0 in all of the above filters. Let the (2L + 1)th order
anticausal filter be

hd [n] = w[n]hid [n]

86 6 FIR Filter Design and Implementation

We can obtain a causal filter hc[n] from hd [n] by simply shifting hd [n] L time units
as follows:

hc[n], hd [n−L]

hd [n] = {hd [−L], . . . , h[0]︸︷︷︸
n=0

, . . . ,hd [L]}

Therefore
hc[n] = {hd [−L]︸ ︷︷ ︸

n=0

, . . . ,h[0], . . . , hd [L]︸ ︷︷ ︸
n=2L+1

}

The order of the filter hc[n] is M = 2L+1, which is an odd number. Since hid [n] =
hid [−n], it is better to select M an odd number in low-pass, high-pass, ... filters. Let
us also establish the relation between Hc(e jω) and Hd(e jω):

Hc(e jω) = Hd(e jω)e− jωL ⇐= Linear phase term

Filters have the same magnitude∣∣Hc(e jω)
∣∣= ∣∣Hd(e jω)

∣∣ , ∣∣(e jωL = 1
∣∣

but there is a linear phase term due to the shift in time domain:

φc(e jω) =−ωL ⇐= Linear phase term

Anticausal filter design is also called the zero-phase design because Hc(e jω) is real.
In citeOppenheim, windows are defined for causal filters: e.g.,
Blackman: wb[n] = 0.42−0.5cos 2πn

M−1 +0.08cos 4πn
M−1 n = 0,1, . . . ,M−1

and Hanning: whn[n] = 1
2

(
1− cos 2πn

M−1

)
n = 0,1, . . . ,M−1

In discrete-time processing, causal FIR filters are not as critically important as
continuous-time signal processing. Because, computers or digital signal processors
can store future samples of the input and the output y[n] can be computed whenever
all of the necessary input samples x[n−L],x[n−L+1], . . . ,x[−1],x[0],x[1], . . . ,x[n+
L] are available. In image-processing, causality has no physical meaning. Left and
right samples of the input are available.

Increasing the filter order M leads to better approximation but computational
cost increases. In practice, one may need to design filters with several M values and
check the frequency response until it is satisfactory. Because, we do not have any
control on the resulting frequency response, the following filter order

M̂ =
−20log10

(√
δ1δ2

)
−13

14.6(ωs−ωp)/2π
+1

where δ1 and δ2 are the size of pass-band and stop-band ripples and ωs, ωp are
approximate cut-off frequencies of pass-band and stop-band, respectively.

6.2 Causal Filter Design 87

We have the following general rules for FIR filter design from pass-band to stop-
band

• small, narrow transition region (ωs−ωp)↘⇒ high M↗
• δ1,δ2↘⇒ M↗
• M ↗⇒ high computational load

Example: Design a high-pass filte from a low-pass filter:
If the low-pass filter has a cut-off frequency of ωc, then the high-pass filter with
cut-off ωc is given by:

Hhp(e jω) = 1−Hl p(e jω)

Therefore, we compute the inverse Fourier Transform of both sides and obtain:

hhp[n] = δ [n]−hl p[n] .

Example: The following filter

hl p[n] =

1
4
,

1
2︸︷︷︸

n=0

,
1
4

has a cut-off frequency of ω = π/2. Here is the impulse response of the correspond-
ing high-pass filter

hhp[n] = { 1︸︷︷︸
n=0

}−

1
4
,

1
2︸︷︷︸

n=0

,
1
4

=

−
1
4
,

1
2︸︷︷︸

n=0

,−1
4

Another way to obtain a high-pass filter from a low-pass filter or vice versa is

given by the following relation:

hh[n] = (−1)nhl [n]

In this case

Hh(e jω) =
∞

∑
n=−∞

hl [n]e− jπne− jωn =
∞

∑
n=−∞

hl [n]e− j(ω+π)n

Hh(e jω) = Hl(e j(ω+π))

Example: Consider the following low-pass filter

hl p[n] =

1
4
,

1
2︸︷︷︸

n=0

,
1
4

88 6 FIR Filter Design and Implementation

The transformation hh[n] = (−1)nhl [n] produces the high-pass filter

hhp[n] =

−
1
4
,

1
2︸︷︷︸

n=0

,−1
4

 .

6.3 Equiripple FIR Filter Design

State of the art FIR filter design method is the equiripple FIR filter design method.
It produces the lowest order filter satisfying the specifications described in the fol-
lowing figure.

As pointed out in the previous section, purely real desired frequency response of
low-pass, high-pass, band-pass and band-stop filters are all symmetric (with respect
to ω = 0). This leads to hid [n] = hid [−n]. Therefore:

Hid(e jω) =
∞

∑
n=−∞

hid [n]e− jωn = hid [0]+
∞

∑
n=1

2hid [n]cosωn

For a 2L+1 FIR filter:

HL(e jω) =
L

∑
n=−L

hL[n]e− jωn = hL[0]+
L

∑
n=1

2hL[n]cosωn

Using Chebyshev’s relation Tn(α) = cos(ncos−1 α), we obtain

HL(e jω) =
L

∑
k=0

ak(cosω)k = A(ω)

6.3 Equiripple FIR Filter Design 89

One can use the techniques in polynomial approximation theory to design FIR
filters.

Parks & McClellan solved the following problem (minimize the maximum error
or minimize the maximum possible ripple):

min
hL[n]

(
max
ω∈F
|E(ω)|

)
where the frequency range F is given by[0≤ ω ≤ ωp]∪ [ωs ≤ ω ≤ π]

E(ω) =
[
Hid(e jω)−A(ω)

]
W (ω)

W (ω) =

{
δ2
δ1

= 1
K , 0≤ ω ≤ ωp

1 , ωs ≤ ω ≤ π

You have a complete control over the frequency specs.
firpm is the equiripple FIR filter design tool in Matlab. Matlab’s firpm requires

that you specify ωp,ωs, and the filter order and the desired magnitude values in
pass-band and stop-band. It produces an equiripple filter based on the specs. How-
ever, the pass-band and stop-band ripples cannot be specified. For desired δ1 and δ2
levels, one can use Kaiser’s formula to estimate the filter order. Therefore, it may be
necessary to run firpm several times to obtain the best design.

Typical solutions: Filter order 2L+1 = 7, maximum 2L+1+3 alternations.
Case 1): 10 = L+ 3 alternations in the frequency response. Extremum at π and 0,
also ωp and ωs.
Case 2): L+2 alternations. Extremum only at ω = π, ωp and ωs.
Case 3): Same as Case (2) but extremum only at ω = 0, ωp and ωs.
Case 4): L+2 alternations with extrema at ω = 0, ωp, ωs and ω = π .
Alternation at ω = ωi means that Eω = max

ω∈F
E(ω). The maximum number of alter-

nations in a low-pass or high-pass filter design is 2L+ 1+ 3 =⇒ Equiripple FIR.

6.3.1 Equiripple FIR Filter Design by using the FFT based method

Another way to obtain equiripple FIR filters is based on typical engineering de-
sign approach called the method of projections onto convex sets, whose principles
were established by famous 20th century Hungarian-American mathematician John
von Neumann and Russian mathematician Bregman. We want the real frequency
response H(e jω) to satisfy the above bounds in pass-band and stop-band. Since
H(e jω) = H(e− jω), we have h[n] = h[−n] which is a time domain constraint.

We can express the freqeuncy domain specs as follows

Hid(e jω)−Ed(ω)≤ H(e jω)≤ Hid(e jω)+Ed(ω) for all ω.

90 6 FIR Filter Design and Implementation

6.3 Equiripple FIR Filter Design 91

where

Hid(e jω) =

{
1 ω ∈ Fp = [−ωp,ωp]

0 ω ∈ Fs = [−π,ωs]∪= [ωs,π]

Ed(ω) =

{
δp ω ∈ Fp

δs ω ∈ Fs

We want to have an FIR filter. Therefore, this information introduces a new time
domain constraint on the desired impulse response:

h[n] = 0 for n > L, n <−L, (or |n|> L)

This means that the filter order is 2L+1. (In the article by Cetin et al [8], filter order
is 2N +1. We use N for the FFT size so I’ll use L for the filter size.)

Iterative Procedure:

Initial step: Start with an arbitrary h0[n] but it should satisfy h0[n] = h0[−n].
At the k-th iteration, we have the k-th approximation hk[n]

• Compute the DTFT of hk[n] and obtain Hk(e jω) (We have to use FFT).
• Impose the frequency domain constraints on Hk(e jω) (This is the frequency do-

main projection operation)

Gk(e jω) =

Hid(e jω)+Ed(ω) if Hk(e jω)> Hid(e jω)+Ed(ω)

Hid(e jω)−Ed(ω) if Hk(e jω)< Hid(e jω)−Ed(ω)

Hk(e jω) otherwise.

As a result, Gk(e jω) may be discontinuous.
• Compute the inverse FT of Gk(e jω) and obtain gk[n] (gk[n] = gk[−n] and real).

Use FFT size of N > 10L.
• Impose the time-domain constraint (FIR constraint). This is the time-domain pro-

jection. The next iterate is given by

hk+1[n] =

{
gk[n] for n =−L, . . . ,−1,0,1, . . . ,L
0 otherwise

Repeat the above procedure hk+1[n] until ‖hk[n]−hk+1[n]‖ < ε where ε is a small
number. limk→∞ hk[n] is the equiripple solution, if it exists and unique. It gives the
same solution as the Parks & McClellan algorithm.

92 6 FIR Filter Design and Implementation

Implementation Issues:

1. Since gk[n] may be an infinite extent signal in general, FFT size N should be
large. The higher N, the better it is. e.g., N > 10L.

2. Make sure that ωp and ωs are on the FFT grid.
(
ωk =

2πk
N , k = 0,1, . . . ,N−1

)
.

3. Filter order parameter estimate: (lowpass and highpass) (Kaiser)

L≈
−20log10

√
δpδs−13

14.6(ωs−ωp)/2π

δp,δs ↘ filter order L ↗
(ωs−ωp) ↘ filter order L ↗
Start the iterations with Kaiser’s estimate.

4. Here is how this iterative algorithm works: We assume that we have a space of
impulse response sequences. we define two sets in this space:
C0 : set of frequency domain constraints. Any member of this set satisfies the
frequency domain specs.
C1 : set of time domain constraints. Any member of this set is an FIR filter of
order 2L+1
In Figure 4 , the intersection set C0∩C1 = {h? : equiripple solution}
limk→∞ hk = h?

0C

1C*h

Fig. 6.3 Optimal solution case: The intersection set contains only the optimal solution.

5. Too loose constraints (δp,δs may be too large or L may be too large or ωs−ωp too
large). We have many solutions satisfying the constraints. C0∩C1 contains many
solutions. Result of the iterative algorithm will not be equiripple! =⇒ either δp
or δs ↘ or L ↘ or |ωs−ωp| ↘. Start the iterations once again.

6. Too tight constraints: Too small L or too small δp,δs. No solution! In this case, the
iterates still converge to a solution limk→∞ hk = h f but H f (e jω) does not satisfy
the frequency domain specs. In this case, either L ↗ or δp,δs ↗ or |ωs−ωp| ↗
to enlarge the sets such that they have non-empty intersection.

7. a. We should compute the DFT of a two-sided sequence because the zero-phase
FIR filters have symmetric coefficients with respect to n = 0:

6.3 Equiripple FIR Filter Design 93

0C

1C

Fig. 6.4 Too loose constraints: intersection set contains many solutions to the filter design problem
but the final filter obtained by iterative process may not be optimal.

0C

1C

Fig. 6.5 No solution case: Constraint sets are too tight.

h[n] =

1
3
,

1
8
,

1
2︸︷︷︸

n=0

,
1
8
,

1
3

 DFT−→ H[k] =?

Everything is periodic in DFT implementation. Take the DFT of h̃[n] =
1
2︸︷︷︸

n=0

, 1
8 ,

1
3 ,0, . . . ,0,

1
3 ,

1
8︸︷︷︸

n=N−1

The DFT’s are equal to each other:

H̃[k] = H[k]

.
b. There is a second way: Shift the anticausal h[n] so that it is causal, then com-

pute the DFT. Because h̃[n] = 1
N ∑

N−1
k=0 H̃[k]e j 2πk

N n is periodic with period N.
=⇒ h̃[n] = h[n] for n =−N/2, . . . ,0, . . . ,N/2−1

Ex: Time domain projection of gk = [a,b,c,0,0, . . . ,0,c,b] for L = 1 (meaning a
third order FIR filter) is hk+1[n] = [a,b,0,0, . . . ,0,b].

8. Translate the frequency domain specs from [−π,π] to ω ∈ [0,2π] or k∈ [0,1, . . . ,N−
1] in the DFT domain because DFT samples ω ∈ [0,2π] range!

94 6 FIR Filter Design and Implementation

6.4 Design of Differentiators and Hilbert Transformers

6.4.1 Differentiator

Let yc =
δxc(t)

δ t . This is a continuous-time system but xc(t) may be band-limited sig-
nal with the cut-off frequency Ω0. In such a case, we can implement a differentiator
in discrete-time domain.

The transfer function of a differentiator is Hc(s) = s. The corresponding fre-
quency response is, therefore,

Hc(jΩ) = jΩ .

Let us assume that the sampling frequency be Ωs > 2Ω0. The corresponding
discrete-time system has the frequency response:

H(e jω) = j
w
Ts

for −π < ω ≤ π.

The normalized angular frequency π is equivalent to Ωs
2 . Differentiators can amplify

high-frequency noise because

∣∣H(e jω)
∣∣= |w|

Ts
for −π ≤ w < π.

It may be a good idea to select Ωs as high as possible.
To design a differentiator filter we select

E(w) = jδ (6.2)

in the ”passband” of the filter. Our frequency domain requirement for

Hdi f f (e jω) = jH(e jω)

such that
ω

Ts
−δ ≤ H(e jω)≤ ω

Ts
+δ (6.3)

for −ω1 < ω < ω1 where ω1 < π , and H(e jω) is real as illustrated in Fig. 6.6.
Since H(e jω) jumps form ω

Ts
to−ω

Ts
at π , we have to have a transition region at ω = π

and ω =−π .
Time domain requirements are

h[n] = 0 f or |n|> L

for a 2L+1 order FIR filter, and

h[n] =−h[−n],

6.5 Exercises 95

Fig. 6.6 Frequency domain specifications for a differentiator.

which is necessary for a purely imaginary frequency response.
An iterative FFT based equiripple FIR filter design algorithm can be imple-

mented using the above time and frequency domain requirements.

6.4.2 Hilbert Transformer

Same as differentiators but

HH(jΩ) =

{
− j for Ω < 0
j for Ω ≥ 0 (6.4)

Thus, the equivalent discrete-time system

HH(e jω) =

{
− j

Ts
for ω < 0 and ω ≥−π

j
Ts

for ω > 0 and ω ≤ π
(6.5)

for bandlimited signals. Whenever there is a jump in the desired frequency response,
you have to allow a transition band around the discontinuity in equiripple filter de-
sign.

6.5 Exercises

1. Consider the analog system characterized by the differential equation:

dya

dt
=−0.5ya(t)+ xa(t) (6.6)

where ya(t) is the output and xa(t) is the input with BW = 2 kHz.
(a) Use bilinear transform to approximate this system with discrete-time system.

96 6 FIR Filter Design and Implementation

Obtain the I/O relation for the discrete-time system.
(b) Is the discrete-time system stable? Explain.
(c) Define h[n] = Tsha(nTs), n = 0,1,2, . . . where Ts is the sampling period and ha(t)
is the impulse response of the system given in (6.6). Determine H(e jω).
(d) Can you obtain a recursive system implementing the impulse response h[n] that
you obtained in part (c)? Obtain the I/O relation for this discrete-time system.
2. Consider the analog Butterworth filter

|Ha(jΩ)|2 = 1
1+(jΩ/ jΩc)2

(a) Design a low-pass filter with cut-off normalized angular frequency ωc = π/4.
(b) Design a high-pass filter with cut-off normalized angular frequency ωc = 3π/4.
(c) Are the filters that you realized in part (a) and (b) stable filters? Prove your
answer.
3. Consider the following window:

w[n] =

1
6
,

1
6
,

2
6︸︷︷︸

n=0

,
1
6
,

1
6

Design a 5-th order FIR filter with passband PB : [3π/4,π]∪ [−π,−3π/4] using
w[n]. This filter is a high-pass filter.
4. Consider the analog Butterworth filter

|Ha(jΩ)|2 = 1
1+(jΩ/ jΩc)2

(a) Design a discrete-time IIR low-pass filter with 3dB cut-off at ωc = π/2.
(b) Design a discrete-time IIR high-pass filter with 3dB cut-off at ωc = π/2 using
the above analog prototype filter.
5. Consider the input signal

x[n] =

{
. . . ,1, 1︸︷︷︸

n=0

,1,1,2,2,2,2, . . .

}

(a) Filter this signal using the low-pass filter you designed in Question 4.
(b) Filter this signal using the high-pass filter you designed in Question 4.
(c) Comment on filter outputs.
6. (a) Design a 3rd order FIR low-pass filter with cut-off frequency of ωc = π/2 by
using any method you like.
(b) Obtain a 3rd order FIR high-pass filter from your design in part (a). Cut-off
frequency of the high-pass filter is also ωc = π/2.

(c) Let x[n] =

{
. . . ,1, 1︸︷︷︸

n=0

,1,1,2,2,2,2, . . .

}
. Filter x[n] using your low-pass filter.

6.5 Exercises 97

(d) Filter x[n] using your high-pass filter.
(e) Comment on filter outputs in parts (c) and (d).
7. Let Design a third order FIR high-pass filter whose frequency response is shown

above . Use the triangular window method.
8. Consider the analog Butterworth filter

|Ha(jΩ)|2 = 1
1+(jΩ/ jΩc)2

(a) Design a discrete-time IIR low-pass filter with cut-off ωc = π/4.
(b) Design a discrete-time IIR high-pass filter with cut-off ωc = π/4.
9. Given a low-pass filter Hid(e jω) with cut-off frequency ωc.
(a) Plot Hid(e jω) in the range [−4π,4π].
(b) Compute the corresponding impulse response hid [n].
(c) Determine an FIR filter ha[n] of order 2L+1, L = 3 as an approximation of hid [n]
(rectangular windowing method). Specify the rectangular windowing function w[n].
(d) Plot roughly the frequency response Ha(e jω) of ha[n]. Explain the differences
between Hid(e jω) and Ha(e jω) and the cause of these differences as detailed as
possible. Hint: use time-domain and frequency-domain plots or equations of the
windowing function w[n].
10. Design a low-pass Butterworth filter with ωc = π/2 and filter order N = 1.
(a) Determine the analog prototype filter Ha(s).
(b) Determine all poles of Ha(s).
(c) Apply bilinear transform to determine a stable digital filter H(z).
(d) Determine the Region Of Convergence (ROC) of the digital filter.

Chapter 7
Recursive IIR Filter Design

In this section, we describe the design of recursive Infinite-extent Impulse Response
(IIR) filters. To determine the current output sample the filter uses not only current
and past input samples but also past output samples. That is why it is a recursive
structure.

This chapter consists of two parts. We first describe approximate implementation
of continuous-time systems using discrete-time processing. In the second part of
the chapter we use the bilinear transform to design recursive IIR filters from analog
(continuous-time) filters.

7.1 Implementation of Analog Systems using Discrete-Time
Processing

Consider the analog system described by a first order constant coefficient linear
differential equation:

dyc(t)
dt

+ayc(t) = xc(t) (7.1)

where yc and xc are continuous-time output and the input signals, respectively. To
simulate this system using a digital computer we have to approximate the derivative
dyc(t)

dt :
dyc

dt

∣∣∣∣
t=nT
' yc(nT)− yc(nT −T)

T
(7.2)

where T is the sampling period.
As T goes to zero the above equation converges to the derivative. If xc is a band-

limited signal a good value for the sampling period is the Nyquist rate. We replace
the derivative with the differencing operation given by (7.2) to obtain the difference
equation approximating (7.1) as follows:

99

100 7 Recursive IIR Filter Design

y[n]− y[n−1]
T

+ay[n] = x[n] (2) (7.3)

where the discrete-time signal y[n] = yc(nT),n= 0,±1,±2, ... and x[n] = xc(nT),n=
0,±1,±2, ... As a result we obtain the following discrete-time system

y[n]
(

1
T
+a
)
=

y[n−1]
T

+ x[n] (7.4)

which has an infinite-extent impulse response. The above difference equation can be
implemented using a computer or a digital signal processor in causal and recursive
manner.

The above procedure can be used to simulate any differential equation in a com-
puter. We, now, describe a transform domain method to establish the relation be-
tween the continuous-time system and the corresponding discrete-time system. The
Laplace Transform of Eq.(7.1) is given by

sYc(s)+aYc(s) = Xc(s) (7.5)

where Xc and Yc are the Laplace transforms of xc and yc, respectively. The Z-
Transform of (7.2) is given by

1− z−1

T
Y (z)+aY (z) = X(z) (7.6)

where X(z) and Y (z) are the Z-transforms of the discrete-time signals x and y, re-
spectively. By comparing Eq. 7.5 and 7.6 we observe that we can simply replace s by
1
T (1− z−1) to obtain the z-transform relation (7.6) of the difference equation (7.3)
from the Laplace transform relation given in Eq. 7.5. This defines a transformation

s =
1
T
(1− z−1) (7.7)

or z = 1
1−sT between the complex s-plane and the complex z-plane.

It is possible to generalize this transform domain approach. Given an analog
tranfer function Hc =

Yc(s)
Xc(s)

it is possible to use Eq. 7.7 to obtain the transfer function
H(z) of the approximating difference equation as follows:

7.1 Implementation of Analog Systems using Discrete-Time Processing 101

Hc(s) =
∑

M
k=0 βksk

∑
N
k=0 αksk

s= 1
T (1−z−1)

−−−−−−−→ H(z) =
∑

M
k=0 βk

(
1−z−1

T

)k

∑
N
k=0 αk

(
1−z−1

T

)k

The discrete-time transfer function H(z) approximates the continuous time transfer
function Hc(s) which is the transfer function of linear constant coefficient differen-
tial equation.

It is possible to analyze the transform using complex analysis. The transform
s = 1

T (1− z−1) maps the left half plane (LHP) inside the unit circle. This is a good
property because it means that a causal stable analog system is mapped to a causal
stable discrete-time system. When the poles of Hc(s) are in the LHP, the poles of
H(z) are inside the unit circle. Some examples are given in the following table:

Cont-time Discrete-time

Pole

s =−a z = 1
1+aT < 1

s = 0 1
s = ∞+ j0 0

s =−∞+ j0 0
Stable prototype L.H.P. circle centered at (1/2,0) with radius 1/2

All poles must All poles must be inside
be in L.H.P. for the unit circle for a
a stable system stable system

Unfortunately, this transformation is not effective because L.H.P. does not cover
the inside of the unit circle! So it does not fully utilize the unit-circle in the z-domain.
For example, s = ±∞+ j0 is mapped to z=0 as shown in the above Table. It is not
a bad transformation, either. Because a stable analog prototype system produces a
stable difference equation. In the next section, we study the bilinear transform which
is more efficient than s = 1

T (1− z−1).

102 7 Recursive IIR Filter Design

7.2 The Bilinear Transform

Bilinear transform uses the trapezoidal rule for integration to establish a relation
between the s-plane and the z-plane. We consider the same analog system described
by a first order constant coefficient linear differential equation once again:

dyc(t)
dt

+ayc(t) = xc(t) (7.1)

together with the integral relation

yc(t)|t=nT =
∫ nT

nT−T
y′c(τ)dτ + yc(nT −T) (7.8)

where y′c(t) is the derivative of yc(t) and T is the sampling period. Equation 7.8

follows from

yc(t) =
∫ t

−∞

y′c(τ)dτ

yc(t) =
∫ t

t0
y′c(τ)dτ +

∫ t0

−∞

y′(τ)dτ

y(t) =
∫ t

t0
y′(τ)dτ + y(t0)

When we set t0 = nT −T we obtain Equation (7.8). To approximate the area under
the integral in Eq. 7.8 , we use the trapezoidal approximation:∫ nT

nT−T
y′c(τ)dτ ≈ T

2
(
y′(nT)− y′(nT −T)

)
(7.9)

Using Equation (7.9) Equation (7.8) can be approximated as follows

7.2 The Bilinear Transform 103

yc(nT) = y[n]≈ T
2
(
y′[n]− y′[n−1]

)
+ y[n−1]

y′c(nT) = y′[n] =−ay(nT)+ x(nT)

y′c(nT −T) = y′[n−1] =−ay(nT −T)+ x(nT −T)

We next use the right hand side of the differential equation 7.1 to replace the deriva-
tive terms and obtain a difference equation

y[n]≈ T
2
(−ay[n]+ x[n]−ay[n−1]+ x[n−1])+ y[n−1]

In z-domain (
1+

aT
2

)
Y (z)−

(
1− aT

2

)
Y (z)z−1 =

T
2
(1+ z−1)X(z)

or

H(z) =
Y (z)
X(z)

=
1

2
T

(
1−z−1

1+z−1

)
+a

The transfer function of the analog system given in Eq. 7.1 is

Hc(s) =
1

s+a

To obtain the transfer function of the corresponding discrete-time system we replace
s by the so-called bilinear transformation:

s =
2
T

(
1− z−1

1+ z−1

)
and obtain H(z) from Hc(s).

This can be generalized to any linear constant coefficient differential equation
with a transfer function Ha(s). It is possible to obtain a discrete-time system ap-
proximating the analog system as follows

H(z) = Ha(s)|s= 2
T

(
1−z−1
1+z−1

)
where T is the sampling period.

The bilinear transformation
z =

2+ sT
2− sT

(7.10)

maps the left half plane (LHP) in s-domain to unit circle centered at the origin in
z-domain. The LHP covers the entire unit disc therefore poles of the analog system
can go to anywhere in the unit circle. Therefore, an analog stable system or a filter is
mapped to a stable discrete-time system. As a result this is a more efficient transfor-

104 7 Recursive IIR Filter Design

mation than the transformation that we studied in Section 7.1. Furthermore, it maps
the jΩ axis onto unit circle. This follows from the previous Equation 7.x. When we
set s = jΩ in Eq. (7.10) we get

|z|= |(2+ jΩT)/(2− jΩT)|= 1

for all Ω . The origin s=0 goes to z=1 and s =± j∞ go to z =−1. We can obtain an
analytic relation between Ω and ω by using the relation

e jω = (2+ jΩT)/(2− jΩT) (7.11)

which we will use in the next section in recursive IIR filter design.

7.3 IIR Filter Design using the Bilinear Transform

The bilinear transform can not only be used for simulating discrete-time systems
but also to design recursive IIR filters.

As pointed out in the previous section the transform

s =
2
T

(
1− z−1

1+ z−1

)
maps the imaginary axis s = jΩ onto the unit circle z = e jω in discrete time domain.

Using Eq. (7.11), we obtain a relation between the normalized angular frequency
and the actual angular frequency as follows

ω = 2tan−1 ΩT
2

(7.12)

or
Ω =

2
T

tan
ω

2

7.3 IIR Filter Design using the Bilinear Transform 105

.

In the following example we use the above equations to design a recursive IIR
filter using an analog prototype Ha(s).

Example: Given the transfer function

Ha(s) =
Ωc

s+Ωc

of a low-pass filter with 3dB BW at Ωc. Design a discrete-time low-pass filter with
3dB cut-off at the normalized angular frequency ωc = 0.2π .

We use Equation (7.12) to obtain the corresponding 3dB cut-off frequency Ωc as
follows.

Ωc =
2
T

tan
ωc

2
=

2
T

tan(0.1π)≈ 0.65
T

(7.13)

which determines the analog prototype system

106 7 Recursive IIR Filter Design

Ha(s) =
0.65/T

s+0.65/T

This filter is stable because its pole s = −0.65/T is in the LHP for all T values. In
filter design we can set T = 1 without loss of generality because we do not try to
simulate an actual continuous-time system in discrete-time domain.

Once we have the analog prototype system we can determine the corresponding
discrete-time system using the bilinear transform as follows

H(z) = Ha(s)|s= 2
T

(
1−z−1
1+z−1

)
The transfer function of the IIR discrete-time filter is given by

H(z) =
0.65/T

2
T

(
1−z−1

1+z−1

)
+0.65/T

=
0.245(1+ z−1)

1−0.509z−1

and the corresponding frequency response is given by

H(e jω) =
0.245(1+ e− jω)

1−0.509e− jω

We obtain the time-domain recursive filter from the transfer function by setting

Y (z)
X(z)

= H(z)

and
Y (z)(1−0.509z−1) = 0.245X(z)(1+ z−1)

which produces the time-domain relation

y[n]−0.509y[n−1] = 0.245(x[n]+ x[n−1])

This recursive filter turns out to be stable because its pole z = 0.509 is inside the
unit circle and it is straightforward to implement it in a computer or a digital signal
processor using the relation

y[n] = 0.509y[n−1]+0.245(x[n]+ x[n−1]) (7.14)

in a causal manner.
The impulse response of this filter is of infinite-extent:

y[0] = h[0] = 0.509×0+0.245(δ [n]+δ [n−1])= 0.245,h[1] = 0.509×0.245+0.245,

h[2] = 0.509h[1],h[3] = 0.509h[2], ..

Do not try to use the convolution sum to implement this filter, because it is compu-
tationally inefficient compared to the recursive I/O relation given in Eq. 7.14.

7.4 Butterworth Filters 107

7.4 Butterworth Filters

The magnitude response of analog Butterworth filters are given by the following
relation

|Ha(jΩ)|2 = 1

1+(jΩ/ jΩc)
2N = Ha(jΩ)H∗a (jΩ)

where Ωc is the 3dB cut-off frequency and N is the order of the filter.

We have to determine Ha(s) from the above expression or from the following
equation

Ha(s)Ha(−s) =
1

1+(s/ jΩc)
2N

Ha(s)Ha(−s)|s= jΩ = Ha(jΩ)H∗a (jΩ)

for each specific case. The poles of Ha(s)Ha(−s) are sk = Ωce j π
2N (2k+N−1) =

(−1)1/2N jΩc, k = 0,1,2, . . . ,2N−1. They are located on the circle |s|= Ωc and
N of them are on the LHP and the remaining ones are on the right half plane (RHP).
Among these poles we pick the ones in the left half plane to construct Ha(s) because
we want to have a stable analog system to start with. For example for N=3 we pick
the poles sa, sb and sc to form

Ha(s) =
K

(s− sa)(s− sb)(s− sc)

Once we have the above analog system we can design H(z) from Ha(s) using the
bilinear transformation:

H(z) = Ha(s)|s= 2
T

(
1−z−1
1+z−1

)
We can determine the gain K when s = 0 or Ω = 0,

108 7 Recursive IIR Filter Design

Ha(j0) = 1

Ha(j0) =
K

(−sa)(−sb)(−sc)
= 1

⇒ K = [(−sa)(−sb)(−sc)]

so that Ha(j0) = 1. This is because the filter is a low-pass filter. Therefore, the filter
design can be summarized as follows. Given the Butterworth low-pass filter with
3dB cut-off Ω0, obtain a stable Ha(s) using spectral factorization:

|Ha(jΩ)|2 = 1

1+(jΩ/ jΩc)
2N , Ha(s)Ha(−s) =

1

1+(s/ jΩc)
2N

Then, transform the prototype Ha(s) to H(z) using the Bilinear transform:

Ha(s)
Select the poles in the L.H.P.

Bilinear Transform−−−−−−−−−−→
s= 2

T

(
1−z−1
1+z−1

) H(z)
Poles in the unit circle

Example: Given the specs in DTFT domain

Pass−band : 1≥
∣∣H(e jω)

∣∣≥ 0.89125(−1dB) 0≤ ω ≤ 0.2π

Stop−band :
∣∣H(e jω)

∣∣≤ 0.17783(−15dB) 0.3π ≤ ω ≤ π

Use bilinear transformation and a Butterworth filter to design the above discrete-
time domain filter. Actual frequency Ω = 2

T tan ω

2 where ω is the normalized fre-
quency used in D.T. domain.

1≥ |Ha(jΩ)| ≥ 0.89125 0≤Ω ≤ 2
T

tan
0.2π

2

|Ha(jΩ)| ≤ 0.17783
2
T

tan
0.3π

2
≤Ω ≤ ∞

Let T = 1, |H(jΩ)|=
√

1
1+(Ω/Ωc)

2N . Using the band edge frequency values of the

above inequalities, we obtain the following two equations:

7.4 Butterworth Filters 109

1+
(

2tan0.1π

Ωc

)2N

=

(
1

0.89

)2

1+
(

2tan0.15π

Ωc

)2N

=

(
1

0.178

)2

(7.15)

It is possible to eliminate Ωc and obtain N as follows:

=⇒ N = 5.3046,N must be an integer N = 6

N =
log
(
((1/0.17)2−1)/((1/0.89)2−1)

)
2log(tan(0.15π)/tan(0.1π))

= 5.3046 . . .

N must be an integer. Thus, select N = 6. Substitute N = 6 to (7.15) to find Ωc =
0.7662. The analog prototype is given by

Ha(s)Ha(−s) =
1

1+(s/ j0.7662)12 ,

which has 12 poles.

sk = Ωce j π
12 (2k+N−1) k = 0,1,2, . . . ,11

110 7 Recursive IIR Filter Design

H(s) =
C

(s− s3)(s− s4) · · ·(s− s8)

H(j0) = 1

gives you C. Discrete-time IIR filter:

H(z) = H(s)|
s=2

(
1−z−1
1+z−1

)
Once you find H(z), obtain the I/O relation and plot the magnitude and phases

responses to check the frequency response of the final design H(z).

7.5 Chebyshev Filters

7.6 Elliptic Filters 111

Analog low-pass Chebyshev filters have

• equiripple response in the passband,
• monotonically decreasing response in the stopband, and
• they usually lead to lower order filter than Butterworth.

We have a compact formula for the magnitude response

|Ha(jΩ)|2 = 1
1+ ε2V 2

N (jΩ/ jΩc)

where VN(θ) = cos(N cos−1 θ), which is the N-th order Chebyshev polynomial.
Chebyshev polynomials have a recursive formula. The first three Chebyshev

polynomials are given by

N = 0, V0(θ) = 1

N = 1, V1(θ) = cos(cos−1
θ) = θ

N = 2, V2(θ) = cos(2cos−1
θ) = 2θ

2−1

Higher order Cheybyshev polynominals can be obtained from lower order ones us-
ing the recursive relation:

VN+1(θ) = 2θVN(θ)−VN−1(θ)

Example: Previous example frequency domain requirements, use analog Cheby-
shev prototype:

20log |Ha(j0.2π)| ≥ −1 at the p.b.
20 log |Ha(j0.3π)| ≤ −15 at the s.b.

=⇒ N = 4

Analog prototype filter turns out to have 4 poles. This leads to a lower order discrete-
time filter. However, phase response of this filter is not as linear as the Butterworth
filter.

7.6 Elliptic Filters

Analog elliptic filters are usually the

• lowest order filters satisfying the frequency domain requirements,
• they have sharp transition bands,
• they are equiripple both in the passband and stopband, but
• they have nonlinear phase response.

Magnitude response of an analog elliptic filter has the following compact formula:

112 7 Recursive IIR Filter Design

|Ha(jΩ)|2 = 1
1+ ε2V 2

N(Ω)

where VN is a Jacobian Elliptic function.
Example: Frequency domain specs are the same as the previous example. In this

case the analog prototype filter has only 3 poles. Therefore, the discrete-time elliptic
filter turn out to be the lowest order filter achieving the specs with the least amount of
multiplications per output sample. However, this filter has the worst phase response
compared to Butterworth and the Chebyshev filters that we designed in this chapter.

In early days of DSP computers and digital signal processors were not as pow-
erful as todays computers. Therefore saving a couple of multiplications per output
sample was important. However, the computational gain that we achieve by using a
lower order IIR recursive filter is not that important today in many applications.

7.7 Phase Response of Recursive IIR Filters

Recursive IIR filters cannot have zero-phase or linear phase as FIR filters. This is
an important disadvatage compared to FIR filters because human eye is very sensi-
tive to phase distortions in images and video. Human ear is less sensitive to phase
distortions in audio and speech. In both image processing and speech and audio pro-
cessing we should try not to distort the phase of the input signal while performing
filtering.

Let us prove the following statement. Statement 1: Why do we have nonlinear
phase response in IIR filters (recursive filters)?

In ideal low-pass, high-pass, band-pass and band-stop filters the ideal impulse
response is symmetric with respect to n=0 and it extends from infinity to +infinity.
It is very easy to have FIR filters satisfying this condition which is called the zero-
phase condition:

7.8 Implementation of Recursive IIR Filters 113

h[n] = h[−n], n = 0,1, . . . ,L.

The DTFT of h[n] is real that is why the condition is called the zero-phase condition.
If a filter obeys this rule it does not distort the phase of the input signal.

Consider the following FIR low-pass filter h[n] =

−1/32,0,9/32, 1/2︸︷︷︸
n=0

,9/32,0,−1/32

←−
anti-causal.
Its DFT is real: H(e jω) = 1/2+9/32

(
e− jω + e jω

)
−1/32

(
e−3 jω + e j3ω

)
We can construct a causal filter from this zero-phase filter which turns out to have

linear-phase: (FIR - Causal) hl p[n] = h[n−L] =

−1/32︸ ︷︷ ︸
n=0

,0, . . . ,−1/32

 , L = 3.

Hl p(e jω) = H(e jω)e− jω3 ←− linear phase.

• Causal & Stable

IIR filters have infinite-extent impulse response. h[n] =

h[0]︸︷︷︸
n=0

,h[1],h[2], . . .

Symmetry is impossible to achieve =⇒ No linear phase.

• In Butterworth and Chebyshev filters, we have almost linear phase response in
the passband.

• Elliptic filters have bad phase response. Don’t use it in image processing.

Proof of Statement 1: Z-domain analysis:
Zero-phase condition: h[n] =±h[−n]. In FIR filters,

H(z) = h[−L]zL + · · ·+h[0]+ · · ·+h[L]z−L

H(z−1) = h[−L]z−L + · · ·+h[0]+ · · ·+h[L]zL

H(z) =±H(z−1)

If you have z1 as the root (pole) of H(z), then 1
z1

must be also a root (pole) of H(z).
Consider an IIR filter:
If the filter is causal and stable, this is not possible because you violate the sta-

bility condition.

7.8 Implementation of Recursive IIR Filters

114 7 Recursive IIR Filter Design

H(z) =
Y (z)
X(z)

=
∑

M
k=0 bkz−k

1+∑
N
k=1 akz−k

= H1(z)︸ ︷︷ ︸
all zero part

H2(z)︸ ︷︷ ︸
all pole part

Y (z)+
N

∑
k=1

akY (z)z−k =
M

∑
k=0

bkz−kX(z)

Recursive I/O:

y[n]︸︷︷︸
current output sample

=−
N

∑
k=1

ak y[n− k]︸ ︷︷ ︸
past output samples

+
M

∑
k=0

bk x[n− k]︸ ︷︷ ︸
current and past input samples

Memory requirement: N +M registers
Computational requirement: N+M+1 multiplications per output; N+M additions
per output

7.8.1 Direct Form I Realization (Signal Flow Diagram):

W (z) =
1

1+∑
N
k=1 akz−k

X(z) Y (z) =
M

∑
k=0

bkz−kW (z)

w[n] =−
N

∑
k=1

akw[n− k]+ x[n] y[n] =
M

∑
k=0

bkw[n− k]

We need to store only past w[n− k] samples!

7.8 Implementation of Recursive IIR Filters 115

7.8.2 Direct Form II Realization (Signal Flow Diagram):

Total cost: N +M+1 multiplications; N +M additions; max(N,M)< N +M mem-
ory locations. Ex:

H(z) =
1

1−az−1 ⇔ y[n] = ay[n−1]+ x[n]

Flow-Graph Reversal Theorem: Change the direction of arrows and inter-
change the input and the output in a graph⇒ Transfer function remains the same!
Ex (continued):

Y (z) = X(z)+az−1Y (z) =⇒ Y (z)
X(z)

=
1

1−az−1

Ex: FIR Filter: y[n] = ∑
M
k=0 bkx[n− k] =⇒ Y (z) = ∑

M
k=0 bkz−kX(z)

116 7 Recursive IIR Filter Design

H(z) =
M

∑
k=0

bkz−k or h[n] =

{
bn n = 0,1, . . . ,M
0 ow.

7.8 Implementation of Recursive IIR Filters 117

Transposed system:

U1(z) = z−1U2(z)+b1X(z), U2(z) = z−1U3(z)+b2X(z)

Y (z) = z−1U1(z)+b0X(z), U3(z) = z−1U4(z)+b3X(z)

U4(z) = b4X(z)

7.8.3 Lattice Filter:

Y (z) = ∑
M
k=0 bkz−kX(z)

It is more robust to quantization effects compared to direct realization.
Given an IIR filter, it is better to realize it using 2nd order systems:

118 7 Recursive IIR Filter Design

H(z) =
∑

M
k=0 bkz−k

1+∑
N
k=1 akz−k

= H1(z) ·H2(z) · · ·HK(z)

where

Hi(z) =
b0i +b1iz−1 +b2iz−2

1+a1iz−1 +a2iz−2 , i = 1,2, . . . ,K

Realize H1,H2, . . . ,HK and cascade them to get a computationally more efficient
structure.

7.9 IIR All-Pass Filters

Recursive all-pass filters have the interesting property that their magnitude response
is flat for all frequencies. An all-pass filter has the following transfer function:

Hap(z) =
z−1−a∗

1−az−1 (7.16)

where a∗ denotes the complex conjugate of a.

Hap(e jω) =
e− jω −a∗

1−ae− jω = e− jω 1−a∗e jω

1−ae− jω

Since 1−a∗e jω is the complex conjugate of 1−ae− jω

∣∣Hap(e jω)
∣∣= |e− jω |︸ ︷︷ ︸

=1

|1−a∗e jω |
|1−ae− jω |

= 1 , for all ω.

Therefore the magnitude response of the all-pass filter is equal to 1 for all frequency
values. However, the phase response turns out to be non-linear. All-pass filters can
be used for altering the phase response of their inputs. They are also used in bilinear
transforms to design bandpass, bandstop and high-pass filters as discussed in Section
7.10.

7.9.1 Input/Output relation

Time domain I/O relation of the all-pass filter can be obtained from the transfer
function as follows

Y (z)
X(z)

=
z−1−a∗

1−az−1 =⇒ y[n]−ay[n−1] =−a∗x[n]− x[n−1]

If a is real, we have a real filter.

7.10 Frequency Transformation of Low-Pass IIR Filters to Other Filters 119

By concatening first order all-pass sections we can build higher order all-pass
filters.

7.9.2 Stability condition

Since all-pass filters are recursive filters we have to satisfy the stability requirements.
The pole of the tranfer function given in Eq. ??)is a. Therefore |a|< 1 for stability.

N-th order All-pass filter:

G(z) =
N

∏
i=1

(
z−1−a∗i
1−aiz−1

)
, |G(e jω)|=

N

∏
i=1

=1︷ ︸︸ ︷∣∣∣∣ z−1−a∗i
1−aiz−1

∣∣∣∣= 1

7.10 Frequency Transformation of Low-Pass IIR Filters to Other
Filters

Let HLP(z) be given. It is possible to obtain another low-pass, band-pass, band-
stop or a high-pass filter Hd(z) from HLP(z) . We can use a transformation z−1 =

120 7 Recursive IIR Filter Design

G(z−1) or z−1 = G−1(z−1) to design new recursive filters from HLP(z):

Hd(z) = HLP(z)|z−1=G(z−1) or z−1=G−1(z−1)

We wish to have:

1. G(z−1) to be a rational function of z−1 (So that Hd(z) is also a recursive IIR
filter.)

2. To preserve stability

3. Unit circle must be mapped onto unit circle.

(3) =⇒ e− jθ = G(e− jω) = |G(e− jω)|e j∠G(ω). Compute the magnitude of both
sides:
(3) =⇒ |G(e− jω)|= 1, θ =−∠G(ω) for all ω .
(1)&(3) =⇒ G is an all-pass filter.
In general,

z−1 = G(z−1) =±
N

∏
k=1

(
z−1−α∗k
1−αkz−1

)
(2) =⇒ |αk|< 1

7.10.1 Low-pass filter to low-pass filter

We can use the following transformation to obtain a new low-pass filter from the
prototype lowpass filter :

z−1 =
z−1−

real︷︸︸︷
α

1−αz−1 or e− jθ =
e− jω −α

1−αe− jω

where −1 < α < 1. The cut-off frequency of the new filter will be different from
the prototype filter. The relation between the new angular frequency ω and the old
angular frequency θ are given according to the following relation:

7.10 Frequency Transformation of Low-Pass IIR Filters to Other Filters 121

ω = arctan
(

(1−α2)sinθ

2α +(1+α2)cosθ

)
(7.17)

Fig. 7.1 The relation between ω and θ .

The bilinear transformation warps the frequency scale. To transfer the cut-off
frequency from θp to ωp, use the following α value

α0 =
sin((θp−ωp)/2)
sin((θp +ωp)/2)

which follows from Eq. (7.17). The transfer function of the new filter is obtained
using the bilinear transform:

Hd(z) = HLP(z)|z−1=(z−1−α0)/(1−al pha0z−1)

7.10.2 Low-pass to high-pass transformation

Similar to the previous case, it is possible to obtain a high-pass filter from a low-pass
filter using the bilinear transformation:

z−1 =− z−1 +α

1+αz−1 ,

122 7 Recursive IIR Filter Design

where −1 < α < 1 and given by

α =−
cos((θp +ωp)/2)
cos((θp−ωp)/2)

where ωp is the cut-off frequency of the high-pass filter and θp is the cut-off fre-
quency of the low-pass filter.

7.10.3 Low-pass to band-pass filter

To obtain a band-pass filter from a prototype low-pass filter with cut-off frequency
θp we use a second-order all-pass section to transform the low-pass filter:

z−1 =−

(
z−2− 2αk

k+1 z−1 + k−1
k+1

k−1
k+1 z−2− 2αk

k+1 z−1 +1

)
= G(z−1)

where

α =
cos((ωp2 +ωp1)/2)
cos((ωp2−ωp1)/2)

, k = cot((ωp2−ωp1)/2) tan(θ/2)

where ωp1 is the lower cut-off frequency and ωp2 is upper cut-off frequency of the
band-pass filter, respectively.

7.10.4 Low-pass to band-stop filter

To obtain a band-stop filter from a prototype low-pass filter with cut-off frequency
θp we also use a second-order all-pass section to transform the low-pass filter:

z−1 =−G(z−1) =

(
z−2− 2αk

k+1 z−1 + k−1
k+1

k−1
k+1 z−2− 2αk

k+1 z−1 +1

)

where alpha and k are the same as the band-pass filter case described in Sec. 7.10.3.

7.11 Exercises

1. Show that the following is an all pass filter for real bi:

H(z) =
z−L +b1z−L+1 + · · ·+bL

1+b1z−1 +b2z−2 + · · ·+bLz−L

7.11 Exercises 123

2. Transformation Z =−z maps a low-pass filter to a high-pass filter. Let

hl p[n] = Z −1{Hl p(z)
}

(7.18)

hd [n] = Z −1 {Hd(z)} (7.19)

Show that hd [n] = hl p[n](−1)n.
Transformation:

Hd(z) = Hl p(z)
∣∣
Z=−z

3. Given the transfer function of a system

H(z) =
−0.8+ z−1

1−0.8z−1

(a) Plot |H(e jω)|. What type of a filter is this?
(b) Find the I/O relation corresponding to this filter.
(c) Is this filter stable when the recursion you obtained in part (b) is implemented in
a (i) causal manner (ii) anticausal manner?

(d) Let the input x[n] =

{
. . . ,1, 1︸︷︷︸

n=0

,1,1,2,2,2,2, . . .

}
. Find y[n] using causal re-

cursion (assume y[−1] = 0).
(e) Comment on the shape of output y[n].

Chapter 8
Goertzel’s Algorithm

Goertzel’s algorithm computes the following DTFT sum in a computationally effi-
cient manner:

X(e jωc) =
L

∑
n=0

x[n]e− jωcn.

Notice that this is an L+1 DTFT, X(e jω), evaluated at ω = ωc.
It uses an IIR (recursive) filter. Let us define an intermediate recursion:

s[n] = x[n]+2cos(ωc)s[n−1]− s[n−2], (8.1)

where x[n] is the input and s[n] is the intermediate output. The z-transform of Eq.
(8.1) is given by:

S(z) = X(z)+2cos(ωc)z−1S(z)− z−2S(z). (8.2)

The transfer function corresponding to Eq. (8.1) is given by:

S(z)
X(z)

=
1

1−2cos((ωc)z−1 + z−2 =
1

(1− e j(ωcz−1)(1− e−(ωc z−1)
.

Notice that we have two poles at e jωc and e− jωc . The casual recursive system (8.1)
is actually unstable but we compute s[n] only for n = 0,1, ...,L.

The actual output of the Goertzel’s algorithm is y[n] which is the output of the
following recursive relation:

Y (z)
S(z)

= (1− e− jωcz−1)→ y[n] = s[n]− e− jωcs[n−1],

where the effect of one of the poles, e− jωc , is removed from the input x[n]. As a
result, the transfer function of Goertzel’s algorithm is given by:

Y (z)
X(z)

=
1

(1− e jωcz−1)
,

125

126 8 Goertzel’s Algorithm

which is equivalent to the following recursion

y[n] = y[n−1]e jωc + x[n].

Let us assume that
y[−1] = 0

As a result:
y[0] = x[0]

y[1] = e jωcy[0]+ x[1] = eωc(x[0]+ x[1]e− jωc).

Similarly:

y[2] = e jωcy[1]+ x[2] = e jωc(x[0]+ x[1]e− jωc + x[2]e− j2ωc),

In general:

y[n] = e jωc
n

∑
l=0

x[l]e− jωcl .

At n = L:

y[L] = e jωc
L

∑
l=0

x[l]e− jωcl ,

which is the L+1 point DTFT of x[l], X(e jωc), multiplied by e jωc . Therefore:

|y[n]|= |X(e jωc)|,

and,
X(e jωc) = y[L]e− jωc .

8.1 Implementation of Goertzel’s Algorithm

1. Compute s[n] for, n = 0,1,2, ...,L:

s[n] = x[n]+2cos(ωc)s[n−1]− s[n−2],

with s[−1] = 0 and s[−2] = 0.
2. After this recursive operation, compute y[L]:

y[L] = s[L]− e− jωcs[L−1].

Note that:

y[L] = X(e jωc)e jωc = (
L

∑
n=0

x[n]e− jωc)e jωc ,

|y[L]|= |X(e jωc)|,

8.1 Implementation of Goertzel’s Algorithm 127

X(e jωc) = y[L]e− jωc .

Thus, the computational cost of Goertzel’s Algorithm is L real multiplications and
one complex multiplication.

Goertzel’s Algorithm is computationally faster than direct computation of X(e jωc)
which requires L+ 1 complex multiplications. It is also faster than FFT since FFT
compute all the DFT coefficients in one shot. Goertzel’s Algorithm is particularly
used in DTMF tone detection.

Chapter 9
Random Signals, Wiener Filtering and Speech
Coding

9.1 Introduction

Up to now, we studied deterministic signals. In this chapter we introduce random
signals. In many practical applications including speech, audio and image signals it
is possible to model signals as random signals.

Let us assume that we have a sensor, e.g., a microphone, an ordinary camera or an
infrared imaging system. We can model the observed sensor signal as a realization
of a random process (r.p.).

A discrete-time random process is a sequence of random variables (r.v.). Let x[n]
be a sequence of random variables. I will use bold face letters for r.v.’s to distinguish
it from deterministic real signals. Each x[n] has a probability density function (pdf)
fxn(x). Furthermore, we have the joint pdfs:

[fx0x1(x1,x2), ..., fxn1 xn2
(x1,x2), . . .]

[fxn1 xn2 xn3
. . .]

[fxn1 xn2 xn3 ...xnL
(x1,x2, . . . ,xL), . . .]

In practical applications, it is not possible to know all the above joint pdf’s. It may
not even be possible to know fxn(x). However, it may be possible to know some
other statistical measures and parameters about the discrete-time random signal.
For example, we can define a deterministic sequence based on the mean of x[n] as
follows

E[xn] =
∫

∞

−∞

x fXn(x)dx = mn, n = 0,±1, . . .

If fXi(x) = fX j(x) for all x[i] and x[j], then E[xn] = mx is constant.
We can observe deterministic signals x[n] which are called realizations of the

random process x[n]. Infinitely many different realizations of a typical random pro-
cess is possible but we may only observe a single relaziation of a random process in
many practical applications.

129

130 9 Random Signals, Wiener Filtering and Speech Coding

It is possible to estimate the mean from a set of observations x[n], n= 0,1, . . . ,N−
1 as follows:

m̂X =
1
N

N−1

∑
n=0

x[n], fXi(x) = fX j(x) for all xi, x j.

As N tends to infinity the estimate m̂x = mx, if the r.p. is ergodic. In this course
(book), we assume ergodicity.

For ergodic r.p.’s, it is possible to estimate the marginal pdf from the observations
with the assumption that fXi = fX j for all i, j. We first construct the histogram of the
data:

Fig. 9.1 Example data histogram plot

Let us assume that x can take discrete values 0,1, . . . ,x0. The O-th value of the
histogram hx(0) represents the number of observations taking zero. Similarly, hx(1)
represents the number of observations taking one, etc. We can estimate the pdf from
the histogram of the data as follows:

f̂x(x) =
h(x)

of observations

The variance of x[n] is defined as follows:

σ
2
xn =

∫
∞

−∞

(xn−mn)
2 fxn(xn)dxn , n = 0,±1,±2, . . .

If fxi(x) = fx j(x) for all x[i] and x[j], then

σ
2
x =

∫
∞

−∞

(x−mx)
2 fx(x)dx

9.2 Stationary Random Processes 131

Estimate of the variance from the observed data x[n], n = 0,1, . . . ,N−1, is given
by

σ̂
2
xn =

1
N

N−1

∑
n=0

(x[n]− m̂x)
2

with the assumption that the underlying pdf of x[n]’s are the same for all n.
The auto-correlation sequence of the random process x[n] is defined as follows

rX (n1,n2) = E [X [n1]X [n2]] , n1 = 0,±1,±2, . . . and n2 = 0,±1,±2, . . .

Similarly, the auto-covariance sequence is defined as follows:

cX (n1,n2) = E [(X [n1]−mn1)(X [n2]−mn2)]

= E [X [n1]X [n2]−X [n1]mn2 −mn1X [n2]+mn1mn2]

= E [X [n1]X [n2]]−mn2 E [X [n1]]︸ ︷︷ ︸
mn1

−mn1 E [X [n2]]︸ ︷︷ ︸
mn2

+mn1mn2

Therefore,
cX (n1,n2) = rX (n1,n2)−mn1mn2

If mn1 = mn2 = mX or fX1 = fX2 , then cX (n1,n2) = rX (n1,n2)−m2
X

Example: cx(0,0) = σ2
X

It is very difficult to deal with an arbitrary discrete-time random signal (= a
random process) x[n] because we have to know all the marginal and joint pdf’s.
In practice, we have only a single realization x[n] or only a part of the realization.
Therefore, we have to have some other tools to deal with them. Luckily, some prac-
tical random processes have some structure that we can take advantage of. In this
book, we assume that we only have wide-sense stationary ergodic random signals.

9.2 Stationary Random Processes

A random signal is called Strict-Sense Stationary (SSS) if all the underlying statis-
tical properties are time-independent. This means that x[n] and x[n+ n0] have the
same statistics for any integer n0. Therefore, the L−th order density for any n0 is as
follows:

fXn1 ,Xn2 ,...,XnL
(x1,x2, . . . ,xL) = fXn1+n0 ,Xn2+n0 ,...,XnL+n0

(x1,x2, . . . ,xL)

As a result, the first order pdf is independent of time:

132 9 Random Signals, Wiener Filtering and Speech Coding

(i) fXi(x) = fX j(x) = fX (x) for all i, j. Similarly,

(ii) fX1,X2(x1,x2) = fX2,X3(x1,x2) = · · ·= fXn,Xn+1(x1,x2) for all x[n], x[n+1]
fX1,X1+k(x1,x2) = fX2,X2+k(x1,x2) = · · ·= fXn,Xn+k(x1,x2) for all x[n] and k.

(iii) fX1,X2,X3(x1,x2,x3) = fX2,X3,X4(x1,x2,x3) = · · ·= fXn,Xn+1,Xn+2(x1,x2,x3)

for all x[n], x[n+1] x[n+2]
(iv) fX1,X1+k,X1+l = fXm,Xm+k,Xm+l (x1,x2,x3) for all x[m], l, k

...

The strict-sense stationarity is still too strict. We have to know the pdfs to char-
acterize a SSS r.p. A random signal is called Wide-Sense Stationary (WSS) if

1. its mean is constant: E [x[n]] = mX for all n, and
2. its auto-correlation depends only on k = n1−n2:

E [x[n1]x[n2]] = E [x[n]x[n+ k]] = rX [k] for all n, n1, n2 and k where k = |n2−n1|

(2) =⇒ E [x[n]x[n+ k]] = rX [n,n+ k] = rX [1,1+ k] = rX [0,k] = · · ·= rX [−k,0].

Therefore, the auto-correlation function is symmetric wrt k = 0:

(2) =⇒ E [x[n]x[n+ k]] = rX [k] = rX [−k]

Similarly, the auto-covariance function is also symmetric wrt k = 0:

cX [k] = cX [−k]

where a new notation is adopted for the auto-correlation function as the difference
between the indices matters.

Strict-Sense Stationarity implies WSS but a WSS r.p. need not be SSS.
SSS⇒WSS but WSS ; SSS.

What is nice about WSS is that it is defined based on second order statistics (mean
and autocorrelation) of a random process. It is possible to estimate the mean and
autocorrelation from realizations of a random process and guess if a random process
is WSS or not. Let us assume that we have the observations x[n],n = 0,1, . . . ,N−1.
The auto-correlation and auto-covariance sequences are estimated as follows:

r̂X [k] =
1
N

N−1−k

∑
n=0

xnxn+k and ĉX [k] =
1
N

N−1−k

∑
n=0

(xn− m̂X)(xn+k− m̂X),

respectively.

ĉX [k] = r̂X [k]− m̂2
X , and

ĉX [0] = σ
2
X

9.2 Stationary Random Processes 133

If x[n] is a zero-mean (m̂X = 0) WSS random process, then ĉX [k] = r̂X [k].
In signal processing, we only have a single realization of a random process in

most problems. So, we assume ergodicity to replace ensemble averages with time
averages.
Example: In this example we observe a realization of a random process. In fact we
assume that we have finitely many observations. We will estimate various statistical
parameters from the observations.

Given the observations x[n] = {1,0,2,1,0,2,2,0,1,1,1,0,0,2,2}, estimate the
average value (or mean).

m̂X =
∑

N−1
n=0 x[n]

N
=

1+0+2+1+ · · ·+2+2
15

= 1

Fig. 9.2 Histogram of the observations and the estimated pdf.

Since x is a discrete r.v., its probability mass function (p.m.f.) can be estimated
as follows:

px(x) =
h(x)
N

where N = # of observations

E[X] =
∫

∞

−∞

x fx(x)dx =
∫

∞

−∞

x
(

1
3

δ (x)+
1
3

δ (x−1)+
1
3

δ (x−2)
)

dx

=
∫

∞

−∞

0
3

δ (x)dx+
∫

∞

−∞

1
3

δ (x−1)dx+
∫

∞

−∞

2
3

δ (x−2)dx =
1
3
+

2
3
= 1

or

E[X] =
2

∑
x=0

xpx(x) = 0 · 1
3
+1 · 1

3
+2 · 1

3
= 1

Either use the p.m.f. or p.d.f. containing impulse functions. Results will be the same
in both cases.

Variance:

134 9 Random Signals, Wiener Filtering and Speech Coding

E[(X−
=1︷︸︸︷
m̂X)2] =

∫
∞

−∞

(x− m̂X)
2 fX (x)dx

where the p.d.f. is

fX (x) =
1
3

δ (x)+
1
3

δ (x−1)+
1
3

δ (x−2)

and the equivalent p.m.f. is

pX (x) =

1
3︸︷︷︸

x=0

,
1
3
,

1
3

Let us calculate the variance of the r.v. X using the p.d.f. and p.m.f., respectively:

σ
2
X = E[(X−1)2] =

∫
∞

−∞

(x−1)2 δ (x)
3

dx+
∫

∞

−∞

(x−1)2 δ (x−1)
3

dx+
∫

∞

−∞

(x−1)2 δ (x−2)
3

dx

E[(X−1)2] =
1
3
+0+

∫
∞

−∞

12 δ (x−2)
3

dx =
2
3
= σ

2
X

We get the same result using the p.m.f.:

σ
2
X =

2

∑
x=0

(x−1)2 pX (x) = (−1)2 pX (0)+02 pX (1)+12 pX (2) =
1
3
+0+

1
3

we can estimate the variance from the observations

σ̂
2
X =

∑
N−1
n=0 (x[n]− m̂X)

N
=

02 +(−1)2 +12 + · · ·+12 +12)

15
=

10
15

=
2
3

For a given r.v., the estimate σ̂2
X may not be equal to the true variance σ2

X , in general.
They will be close to each other but may not be equal.
Standard deviation σX is simply the square root of variance σ2

X .
Example 2: Observations: x[n] = {0,1,1,1.5,2,2,1.5,0,1} , N = 9

To estimate the p.d.f. from the above data we need to normalize the histogram by
∑i xi = 9.

Estimate of the mean is :

m̂X =
1
N ∑

i
xi =

0+1+1+1.5+2+2+1.5+0+1
9

=
10
9

(9.1)

We can also use the estimated p.d.f. to calculate the mean.

m̂X =
∫

x fX (x)dx =
∫

x
(

2
9

δ (x)+
3
9

δ (x−1)+
2
9

δ (x−1.5)+
2
9

δ (x−2)
)

dx

9.2 Stationary Random Processes 135

Fig. 9.3 Histogram of the data in Example 2.

m̂X = 0
2
9
+1

3
9
+1.5

2
9
+2

2
9
=

10
9

(9.2)

In this case, the mean estimate turns out to be the same as the one calculated from
the estimated p.d.f. This is because the p.d.f. is directly formed from the observed
data. In general, this may not be true for an arbitrary p.d.f.. They can be close to
each other but may not be equal. As the number of observations increase, we expect
the estimated mean to converge to the true mean.

We can also use the p.m.f to compute the mean.

136 9 Random Signals, Wiener Filtering and Speech Coding

Fig. 9.4 Estimated p.d.f. in Example 2.

m̂X = ∑
i

xi p(X = xi) = 0
2
9
+1

3
9
+1.5

2
9
+2

2
9
=

10
9

Variance Estimation:

σ̂
2
X =

1
N ∑

i
(xi− m̂X)

2 =
1
9

((
0− 10

9

)2

+

(
1− 10

9

)2

+ · · ·

)
σ̂

2
X = ∑

i
(xi− m̂X)

2 p(X = xi)

Example 3: (Given the Gaussian p.d.f.,)

f x(x) =
1

σ
√

2π
e−

1
2

(
x−µ0

σ

)2

Let σ2 = 1,µ0 = 0.
The following data is observed according to this p.d.f.:

x[n] = {−0.4,−0.73,−0.87,−0.42,−0.94,1.34,−0.99,1.82,−0.37,−1.45,−0.62,0.93,1.06,0.16,0.29}

9.2 Stationary Random Processes 137

Fig. 9.5 Gaussian p.d.f.

The estimated mean is -0.0793 and the estimated variance is 0.9447. As you can
see, the estimated mean and variance are not perfect.

9.2.1 Estimation of Autocorrelation from Data

Similar to mean and variance estimation, we can estimate autocorrelation values
from the observed data [6]. The estimates can be obtained as follows based on the
data given in Example 2:

r̂X [0] =
1
N

N−1

∑
i

x2
i =

1
9
(
02 +12 +12 +1.52 + · · ·

)
r̂X [1] =

1
N

N−1−1

∑
i

xixi+1 =
1
9
(0×1+1×1+1×1.5+ · · ·)

r̂X [2] =
1
N

N−1−2

∑
i

xixi+2

There are two methods to estimate the auto-correlation sequence:

r̂x[k] =
1
N

N−|k|−1

∑
n=0

x[n]x[n+ k], (9.3)

or

r̂′x[k] =
1

N−|k|

N−|k|−1

∑
n=0

x[n]x[n+ k] (9.4)

138 9 Random Signals, Wiener Filtering and Speech Coding

In both Eq. (9.3) and (9.4), there are N−|k|−1 terms inside the summation. In
(9.3) the summation is normalized by N because, r̂x(0) is more reliable than r̂x(1)
which is in turn more reliable than r̂x(2) etc. By dividing the sum by N we emphasize
the fact that we use more samples to estimate r̂x(0) compared to r̂x(1) etc.

The estimate r̂x[k] is biased but it is preferred when N is much larger than k. This
estimate corresponds to the triangular windowed version of r̂′x[k].

Estimate ĉx[k] of the auto-covariance cx[k] = E [(x[n]− m̂X)(x[n+ k]− m̂X)] for a
WSS random process is given by

ĉx[k] =
1
N

N−|k|−1

∑
n=0

(x[n]− m̂X)(x[n+ k]− m̂X),

or

ĉ′x[k] =
1

N−|k|

N−|k|−1

∑
n=0

(x[n]− m̂X)(x[n+ k]− m̂X)

and cx[0] = σ2
x is the variance (or the power) of the WSS random process.

Auto-covariance: cx[m] = rx[m]−m2
x with the assumption that we have a WSS

r.p.

9.3 Linear Minimum Mean-Squared-Error (LMMSE) Predictor

In this section we introduce a new filter design method. We do not have any fre-
quency domain specifications as in Chapter 6. We want to predict x[n] using L past
observations,x[n− i], i = 1,2, ...,L :

x̂[n] = a1x[n−1]+a2x[n−2]+ · · ·+aLx[n−L] (9.5)

where x̂[n] is the estimate of x[n] and ai’s are the weights that we should deter-
mine to obtain a reasonable estimate.

The filter design problem is to determine a1,a2, . . . ,aL similar to the FIR filter de-
sign problem that we studied in Chapter 6, however there are no frequency domain
specifications. The goal is to estimate the next x[n] value given in the past observa-
tions. We define the error e(n) = x[n]− x̂[n] and design the filter by minimizing the
mean-squared-error (MSE)

E
[
e2[n]

]
= E

[
(x[n]− x̂[n])2

]
(9.6)

Although e(n) is available when x[n] is available and to determine the MSE we need
to know the joint pdf of x[n− i], i = 0,1,2, ...,L it is possible to find a practical
solution to the problem, if we assume that the r.p. x[n] is wide-sense stationary.

To solve the filter design problem, we take the partial derivative of the MSE de-
fined in Eq. (8.1) with respect to the unknowns a1,a2, . . . ,aL and set the derivatives

9.3 Linear Minimum Mean-Squared-Error (LMMSE) Predictor 139

to zero:

∂

∂ai
E
[
(x[n]− x̂[n])2

]
= 0 , i = 1,2, . . . ,L

E
[

∂

∂ai
(x[n]− x̂[n])2

]
= 0

E

2(x[n]− x̂[n])
∂

∂ai

x[n]−a1x[n−1]−a2x[n−2]−·· ·−aLx[n−L]︸ ︷︷ ︸
−x̂[n]

= 0

E [2(x[n]− x̂[n]) (−1)x[n− i]] = 0 , i = 1,2, . . . ,L

Therefore we obtain the so-called “orthogonality condition“ for the optimal filter
design:

E [(x[n]− x̂[n])x[n− i]] = 0 , i = 1,2, . . . ,L

E [x[n]x[n− i]] = E

(a1x[n−1]+a2x[n−2]+ · · ·+aLx[n−L])︸ ︷︷ ︸
=x̂[n]

x[n− i]

In other words, the error must be orthogonal to the past observations. This leads to
the following equations

rx[i] = a1E [x[n−1]x[n− i]]+a2E [x[n−2]x[n− i]]+ · · ·+aLE [x[n−L]x[n− i]]

rx[i] = a1rx[i−1]+a2rx[i−2]+ · · ·+aLrx[i−L] , i = 1,2, . . . ,L

where rx is the autocorrelation sequence of the WSS random process x[n]. The opti-
mal predictor coefficients satisfy the following set of equations

rx[1] = a1rx[0]+a2rx[1]+ · · ·+aLrx[L−1]
rx[2] = a1rx[1]+a2rx[2]+ · · ·+aLrx[L−2]

...
rx[L] = a1rx[L−1]+a2rx[L−2]+ · · ·+aLrx[0]

This set of linear equations are called the Auto-correlation Normal Equations
(ACNE).

rX [1]
rX [2]

...
rX [L]

︸ ︷︷ ︸

rX

=

rX [0] rX [1] · · · rX [L−1]
rX [1] rX [0]

...
. . .

...
rX [L−1] · · · rX [0]

︸ ︷︷ ︸

RX

a1
a2
...

aL

︸ ︷︷ ︸

a

140 9 Random Signals, Wiener Filtering and Speech Coding

where a represent a vector containing the filter coefficients. Solution of the linear
predictor design problem:

a = R−1
X rX

It is always possible to find the inverse of the autocorrelation matrix for WSS ran-
dom processes, e.g., see the textbook by Papoulis [9].

In practice, we may not know the p.d.f.s of the random process. As a result we
cannot compute the autocorrelation values for a given random process X . In such
cases we have to estimate the autocorrelation sequence rx[k] from past observations
(past data) using the formula:

r̂x[k] =
1
N

N−1−k

∑
i=0

x[i]x[i+ k]

for k=0,1,2,...,L. After we estimate the autocorrelation sequence from past observa-
tions we plug them into the ACNE to estimate the filter coefficients.

9.4 White Noise and MA and AR Random Processes

White noise is a wide-sense stationary random process. It is widely used in elec-
tronics systems to model noise.

Zero-mean white noise has the following autocorrelation sequence:

ru[0] = σ
2
u 6= 0

ru[k] = 0 for k =±1,±2, . . .

In other words,
ru[k] = σ

2
u [k]δ [k]

It means that there is no correlation between the samples of u[n].
When each sample of a random process has the same p.d.f. but they are all inde-

pendent of each other we use the term the independent identically distributed (i.i.d.).
For i.i.d. random process,

fu j ,uk(t1, t2) = fu j(t1) fuk(t2), j 6= k

Then,
E [U [j]U [k]] = E [U [j]]E [U [k]]

Independence implies uncorrelatedness but the converse is not true in general.
Theorem: Stable LTI systems preserve wide-sense stationarity.

For any WSS input u[n], the output y[n] is also WSS in stable LTI systems. When
a realization of the random process u[n] is the input to an LTI system, the output
becomes a realization of the random process y[n].

9.4 White Noise and MA and AR Random Processes 141

Fig. 9.6 An LTI system driven by white noise.

Definition: Given a zero-mean WSS random process x[n] with auto-correlation rx[k].
The spectrum of x[n] is defined as the DTFT of rx[k]:

Sx(e jω),
∞

∑
n=−∞

rx[k]e− jωk

Since Since the autocorrelation sequence is symmetric w.r.t. k = 0: rx[k] = rxX [−k],
the spectrum SX (e jω) is real for the real w.s.s. random process, i.e., it does not have
any phase! When the random process is not zero mean the spectrum is defined as
the DTFT of the autocovariance sequence.
Example: Spectrum of white noise:

Given the autocorrelation sequence

rU [k] =

{
σ2

U if k = 0
0 if k 6= 0

SU (e jω) = rU [0]e jω0 +0e− jω +0e jω + . . .

= σ
2
U for all ω

The spectrum of white noise is flat. That is why we call it white noise because it
contains all the spectral components as “white light“.

Fig. 9.7 Spectrum of white noise.

142 9 Random Signals, Wiener Filtering and Speech Coding

Theorem: Let Y represent the output of the stable LTI system h[n]. The spectrum
SY (e jw) is given by:,

SY (e jω) =
∣∣H(e jω)

∣∣2 SX (e jω)

where X is WSS input to the stable LTI system whose frequency response is H(e jω).

When the input is white noise, the spectrum of the output is given by

SY (e jω) =
∣∣H(e jω)

∣∣2 σ
2
U

Example: (FIR or Moving Average (MA) system)
Let y[n] = 1

2 x[n]+ 1
2 x[n−1]. This is a simple FIR filter. It is also called a moving

average system of order 2 because the filter has only two nonzero coefficients. Cal-
culate ry[k] and Sy(e jω) given that the input x is white, zero-mean random process
with variance σ2.

The autocorrelation sequence X has to be calculated one by one. We first start
with rx[0]:

rY [0] = E
[(

1
2

x[n]+
1
2

x[n−1]
)(

1
2

x[n]+
1
2

x[n−1]
)]

= E
[

1
4

x2[n]+2
1
4

x[n]x[n−1]+
1
4

x2[n−1]
]

=
1
4

E
[
x2[n]

]
+

1
2

E [x[n]x[n−1]]︸ ︷︷ ︸
=0

+
1
4

E
[
x2[n−1]

]
rY [0] =

1
4

σ
2 +

1
4

σ
2 =

1
2

σ
2

Next let us determine rY [1]:

9.4 White Noise and MA and AR Random Processes 143

rY [1] = E [y[n]y[n−1]]

= E
[(

1
2

x[n]+
1
2

x[n−1]
)(

1
2

x[n−1]+
1
2

x[n−2]
)]

= E
[

1
4

x[n]x[n−1]+
1
4

x[n]x[n−2]+
1
4

x2[n−1]+
1
4

x[n−1]x[n−2]
]

=
1
4

E [x[n]x[n−1]]︸ ︷︷ ︸
=0

+
1
4

E [x[n]x[n−2]]︸ ︷︷ ︸
=0

+
1
4

E
[
x2[n−1]

]
+

1
4

E [x[n−1]x[n−2]]︸ ︷︷ ︸
=0

We do not need to compute rY [1] because rY [1] = 1
4 σ2 = rY [−1] from the symmetry

property of the auto-correlation sequence. Next we compute rY [2]:

rY [2] = E [y[n]y[n−2]]

= E
[(

1
2

x[n]+
1
2

x[n−1]
)(

1
2

x[n−2]+
1
2

x[n−3]
)]

rY [2] = 0 = rY [−2]
rY [3] = rY [−3] = 0

· · ·

In a MA(p) system rY [p] = rY [p+1] = 0 = rY [p+2] = · · ·
Example: (IIR, recursive, all-pole or Auto-Regressive (AR) random process)

Let y[n] = αy[n− 1] + u[n] where u[n] is a zero-mean, white and WSS random
process with variance σ2

u . This filter is an all-pole recursive system. It is also called
an AR(1) random process because it has a single pole. In this case the pole is α

because the transfer function of the system is:

H(z) =
1

1−αz−1

Determine the first order predictor ŷ[n] = a1y[n−1].
First calculate the autocorrelation sequence of y[n]

144 9 Random Signals, Wiener Filtering and Speech Coding

rY [0] = E [y[n]y[n]]

= E [(αy[n−1]+u[n]) (αy[n−1]+u[n])]

= α
2E [y[n−1]y[n−1]]+2α E [y[n−1]u[n]]︸ ︷︷ ︸

=0

+E
[
u2[n]

]
= α

2rY [0]+0+σ
2
U

rY [0] =
σ2

U
1−α2 where σ

2
U is the variance of u[n].

rY [1] = E [y[n]y[n−1]]
= E [(αy[n−1]+u[n])y[n−1]]

= αE
[
y2[n−1]

]
+E [u[n]y[n−1]]︸ ︷︷ ︸

=0

rY [1] = αrY [0] = α
σ2

U
1−α2

rY [2] = E [y[n]y[n−2]]
= E [(αy[n−1]+u[n])y[n−2]]
= αE [y[n−1]y[n−2]]+E [u[n]y[n−2]]︸ ︷︷ ︸

=0

rY [2] = αrY [1] = α
2 σ2

U
1−α2

where E[y[n− 1]u[n]] = 0 because y[n− 1] does not contain u[n]. It is formed as a
linear combination of u[n− 1], u[n− 2], ... which are all uncorrelated with u[n]. In
general, ry[k] = αry[k−1] for this WSS random process.

A.C.N.E. becomes (the autocorrelation matrix turns out to be a 1×1 matrix):

ry[1] = ry[0]a1

a1 =
rY [1]
rY [0]

= α

Hence, the first-order predictor is ŷ[n] = αy[n− 1]. This predictor makes sense. If
we do not know the value of u[n] we can put the mean value of the process, that is
zero into the predictor.

9.5 Quantization and A to D Conversion

Sampling an analog signal is not enough to process the signal using a computer
because samples of an analog signal may take real values. We have to quantize them

9.5 Quantization and A to D Conversion 145

to process the data using digital signal processors and computers. The quantization
process introduces noise.

Practical A to D converters provide 8 bit per sample, 16 bit per sample or 32 bit
sample data.

Fig. 9.8 Quantization is part of the standard A to D converter systems.

Example: 8-level quantizer:

Fig. 9.9 A uniform 8-level quantizer.

b+1: output word length including the sign bit (b+1 = 3 in this example).
Error: e[n] = Q(x[n])− x[n] = x̂[n]− x[n] and −δ/2 ≤ e[n] < δ/2 if the input is

bounded by Amin and Amax.
Let x[n] be a random process with x[n]∼U [−Amin,Amax] (uniform pdf).

146 9 Random Signals, Wiener Filtering and Speech Coding

Fig. 9.10 PDF of the input x.

RFS = Amin +Amax
Signal power: Amin ∼= Amax = A (number of quantization levels are high).
Power of the input x[n]:

σ
2
X =

∫
∞

−∞

x2 fX (x)dx =
∫ A

−A
x2 1

RFS
dx =

x3

3RFS

∣∣∣∣A
−A

=
A3

3RFS
− −A3

3RFS

σ
2
X =

2A3

6A
=

A2

3
=

R2
FS

12
=

(
2b+1δ

)2

12

Noise power: e[n] = Q(x[n])− x[n] = x̂[n]− x[n]

Fig. 9.11 PDF of the quantizer error.

σ
2
e =

∫
δ/2

−δ/2
e2 1

δ
de =

δ 2

12

Statistical model of the quantizer:

9.6 LPC-10 Algorithm (Earliest Voice Coder / Vocoder) 147

Signal to Noise Ratio (SNR):

SNR = 10log10

(
σ2

X
σ2

e

)
dB = 20log10

(
2b+1δ

δ

)
= 20log10 (# of levels)

If the number of levels is increased, SNR increases and δ decreases resulting in
smaller error.

In speech processing:

PCM (Pulse Code Modulation) quantizer: 8000 samples/sec × 8 bits/sample =
64 kbits/sec (Transmission rate).

9.6 LPC-10 Algorithm (Earliest Voice Coder / Vocoder)

Linear Predictive Coding (LPC) is the earliest speech vocoder algorithm and LPC-
10 is a NATO speech coding standard for military applications. It is the mother (or
father) of the GSM speech coding algorithm.

Input comes from lungs and vocal cords.
System consists of nasal cavity and vocal tract.

148 9 Random Signals, Wiener Filtering and Speech Coding

In voiced segments we assume that the input is periodic and the speech is also
almost periodic.

Fig. 9.12 A typical voiced speech segment.

N0 : pitch period, pitch = 1
N0

is the frequency of oscillation of vocal cords.
In unvoiced segments we assume that the input is white noise.

E [w(i)w(i+m)] = σ
2
wδ (m) and rw[m] =

{
σ2

w if m = 0
0 if m 6= 0

Fig. 9.13 Unvoiced speech segment

Speech is not a WSS r.p. but each phoneme can be assumed to be a WSS rp.
We assume that the all-pole system is excided by white noise in unvoiced phoneme
segments and it is excited by a periodic pulse-train in voiced segments as shown in
Figure 9.6.

In LPC-10 standard speech is divided into segments (frames) containing 180
samples in 8kHz sampled speech. In each segment, the speech is assumed to be
WSS and we can design LMMSE predictors.

In each frame, we have to estimate the auto-correlation values r̂ f rame 1[m] 6=
r̂ f rame 2[m] m= 0,1,2, . . . ,10, because each frame can have different statistical prop-
erties.

Solve ACNE in each frame a = R−1
X rX to get the predictor coefficients of each

frame.
Determine if a frame is voiced or unvoiced. If voiced, send the pitch period N. If

unvoiced, do nothing.

9.6 LPC-10 Algorithm (Earliest Voice Coder / Vocoder) 149

Fig. 9.14 Simplified speech model used in the LPC-10 algorithm

Estimate e2[n] as:

E
[
e2[n]

]
= E

[
(x[n]− x̂[n])2

]
= σ

2
e

=
M

∑
i=1

airX [i]

Model parameters are transmitted. Transmit
[
{ai}M=10

i=1 , σ2
e ,V/UV , N0

]
to the

receiver for each frame.
At the receiver

x̂[n] = a1x[n−1]+a2x[n−2]+ . . .+aMx[n−M]

x[n]− x̂[n] = e[n] =−(a1x[n−1]+a2x[n−2]+ . . .+aMx[n−M])+ x[n]

IIR recursive system

150 9 Random Signals, Wiener Filtering and Speech Coding

x[n] = a1x[n−1]+a2x[n−2]+ . . .+aMx[n−M]+ e[n]

X(z) =
1

1−∑
10
l=1 z−lal

E(z)

For a frame of 250 samples, we transmit 13 parameters. Data transmission rate:
2.4 kbit/sec. PCM rate is 64 kbit/sec.

8 kHz × 8 bit/sample = 64 kbit/sec in ordinary telephone system.

9.7 Exercises

1. Find a formula for E
[
e2[n]

]
in LMMSE analysis.

9.7 Exercises 151

2. Develop a fourth order predictor for the value of the U.S. dollar against TL. Use
at least 30 data samples to estimate the autocorrelation and predict the value of U.S.
dollar on 29th of December.

3. Let y[n] = 0.9y[n−1]+u[n] where u[n] =

{
1︸︷︷︸

n=0

,−1,1,1,−1,−1

}
and y[−1] =

0.
(a) Calculate y[0], y[1], y[2], y[3], y[4] and y[5].
(b) Calculate the mean, variance and the first two autocorrelation values for the data
that you obtained in part (a).
(c) Estimate y[6] using the A.C.N.E.
(d) Determine the spectrum of y[n] if u[n] is white, zero-mean with variance σ2

u = 1.
4. (a) How do we model the speech signal in LPC-10 vocoder?
(b) What does the ‘pitch’ period refer to in speech processing?
(c) Let y[n] = 0.9y[n−1]+u[n] where u[n] is white, zero-mean with variance σ2

u =
0.1. Can y[n] be a voiced speech signal? Explain your answer.
(d) In vocoders (including the GSM vocoder) do we transmit actual speech samples?
(e) Do we use uniform or non-uniform quantizers in PCM speech coding standard?
Explain your answer.
5. Consider the I/O relation:

y[n] = 0.8y[n−1]+ x[n−1]−0.8x[n]

where x[n] is the input and y[n] is the output. Recursion is implemented in a causal
manner.
(a) Find the frequency response and plot |H(e jω)|.
(b) Is this system stable? Prove your answer.
(c) Will this system be stable if the recursion is implemented in an anti-causal man-
ner?
(d) Let the input x[n] be a white, zero-mean random process with variance 1. Will
y[n] be a wide sense stationary random process? Determine the spectrum of y[n],
i.e., SY (e jω).
6. Given the following data:{

1︸︷︷︸
n=0

,0.5,1.25,0.8,0.4,−0.3,−0.9,−1,−1.5,−0.9,0.65

}

(a) Estimate the mean, variance and the first two autocorrelation values for this data.
(b) Determine the first and second order LMMSE predictors for this data. (First
order: x̂[n] = a1x[n−1] and second order predictor: x̂[n] = b1x[n−1]+b2x[n−2])
(c) Determine the minimum mean square error for these predictors.
7. Consider an AR(1) random process, x[n] generated using a recursive manner as
follows:

x[n] = αx[n−1]+u[n]

152 9 Random Signals, Wiener Filtering and Speech Coding

where u[n] is a white random process with zero-mean with variance σ2
u = 1.

(a) What is rU [n]? What is rX [0],rX [1] and rX [2].
(b) LMMSE optimal predictor for this random process is obtained using the ‘or-
thogonality principle’. What is the orthogonality principle?
(c) The LMMSE predictor is x̂[n] = 0.8x[n− 1]. What should be the value of the
parameter α? Use the orthogonality principle to determine α?
(d) Let x̃[n] = a1x[n−1]+a2x[n−2]. Determine a1 and a2 using the orthogonality
principle.
(e) What are the impulse responses of the predictors in parts (c) and (d)?
8. Let x[n] = 0.9x[n−1]+u[n], where u[n] is white, zero-mean r.p. with variance 1.
(a) Is x[n] a wide-sense stationary r.p.? Explain.
(b) Determine the auto-correlation function of x[n].
(c) Determine the first order LMMSE predictor for x[n] (x̂[n] = ax[n−1]).

(d) Given a realization of u[n] =

{
1︸︷︷︸

n=0

,0,−1,2,0

}
. Obtain the corresponding re-

alization of x[n]. Assume x[−1] = 0.
(e) Estimate x[5] using the predictor obtained in part (c) and from the predictor ob-
tained from the data in (d). Compare the results of the two predictors.
9. Let x[n] = {−1,2,4,0,2,−1,4,4}.
(a) Plot the histogram of x[n].
(b) Determine the PDF and PMF of x[n].
(c) Estimate the mean mX and variance of σ2

X of x[n].
(d) Calculate rX [k] for k = 0,1,2.
(e) Repeat parts (a)-(d) for x[n] = {1,0,−1,2,2,0,2,1}.
10. Given x[n] = {1,4,1,4,1,1} starting at index zero.
(a) Calculate the estimated mean m̂x and estimated variance σ̂2

x of x[n].
(b) Propose a third order anticausal FIR filter h[n] with h[0] = 1 so that the output
signal y[n], n = 1,2,3,4 has smaller variance than the input signal x[n]. Calculate
(approximately) the variance σ̂2

y of y[n], n = 1,2,3,4. Specify the type of your pro-
posal filter h[n].
(c) Propose a third order anticausal FIR filter g[n] with g[0] = 1 so that the output
signal z[n] = g[n]∗x[n], n = 1,2,3,4 is zero-mean. Specify the type of your proposal
filter g[n].
11. Given x1[n] = {−1,−2,0,1,−1,3} and x2[n] = {1,1,−3,2,1,−3,1}, both W.S.S.
and starting at index zero.
(a) Which signal is more likely white noise? Explain your answer by computing a
suitable statistical measure for both signals and comparing it.
(b) Consider y1[n] = h[n]∗x1[n], where h[n] is an FIR filter. Is y1[n] W.S.S.? Explain
your answer.
(c) Let w[n] be a W.S.S. zero mean white noise signal with variance 1. Compute its
spectrum Sw(e jω). Comment on your result.
12. Given the sequence of W.S.S. random numbers x[n] = {1,1,2,3,5} starting at
index zero.
(a) A second order LMMSE predictor x̂[n] = a1x[n− 1] + a2x[n− 2] shall be de-

9.7 Exercises 153

termined by following method: Find a1,a2 such that g(a1,a2) = ∑
4
n=2 (x[n]− x̂[n])2

is minimized. Do NOT use the ACNE (no autocorrelations!). Hint: Use derivatives
dg(a1,a2)

da1
and dg(a1,a2)

da2
.

(b) Compute the predictions x̂[2], x̂[3], x̂[4] and x̂[5] using the predictor from part (a).
(c) Consider y[n] = sinn

n , n≥ 0. Is y[n] W.S.S.? Explain your answer.

Projects

9.8 DTMF Tone Detection by Low-pass and High-pass Filters

Using firpm function of MATLAB, design a lowpass and a highpass filter to filter
out highpass and lowpass components of DTMF tones, respectively. Do not use very
high-order FIR filters.

9.8.1 FIR Filter Design

1. Design of lowpass filter:

a. Plot the frequency response of the lowpass filter, which you want to ideally
design

b. Design a corresponding FIR filter by firpm function of MATLAB
c. On the same figure, plot the frequency response of the low-pass filter, which

is designed by firpm
d. Comment on the difference between frequency response of ideal filter and

firpm’s design
e. On a new figure, plot the impulse response of the low-pass filter

2. Design of high-pass filter: Repeat (a,b,c,d,e) for the highpass filter

9.8.2 Generation of DTMF Tone

1. Generate the signal for DTMF tone ’2’
2. Plot a couple of periods of the signal you generated
3. Plot the spectrum of the signal you generated, comment on the spectrum

155

156 9 Random Signals, Wiener Filtering and Speech Coding

9.8.3 Lowpass and Highpass Filters

1. Lowpass filter:

a. Filter out the highpass component of the signal you generated through the
lowpass filter designed by firpm. Note: You should use convolution not FFT

b. Plot a couple of periods of the output signal
c. Plot the spectrum of the output signal, comment on the spectrum

2. Highpass filter: Repeat (a,b,c) for the highpass filter

9.9 DTMF Tone Detection using Goertzel Algorithm

Goertzel algorithm is implemented in two statges:

s[n] = x[n]+2cos(ω0)s[n−1]− s[n−2], (9.7)

yω0 [n] = s[n]− e− jω0s[n−1]. (9.8)

• In the first stage, equation (1) is implemented for n = 0,1, ...,N.
• In the second stage, you only implement yω0 [N] = s[N]− e− jω0s[N−1].

• Notice that |yω0 [N]|= |
N
∑

l=0
x[l]e− jω0l |= |x(e jω0)|.

• Therefore, DTMF tones can be determined using Goertzel’s algorithm, which is
implemented through equation (1) and (2).

• Note that to detect DTMF tones 0,1,...,9, you need to implement equation (1) and
(2) with 7 distinct frequencies, e.g., ω0, ω1, ... ω6.

1. Write down ω0, ..., ω6.
2. Write S(z)

X(z) , i.e., input-output relation of equation (9.7) in z domain.

3. Write Y (z)
S(z) .

4. Write Y (z)
X(z) .

5. Show that:
y[n] = x[n]+ e jω0y[n−1]. (9.9)

6. Plot magnitude and phase response of Y (z)
X(z) .

9.9.1 DTMF Tone Detection using Goertzel Algorithm in MATLAB

1. Read DTMF.wav file given in the course website.
2. Using Goertzel algorithm, identify dtmf tones.

9.10 Classification of Coins using Cepstrum 157

3. Plot |yω0 [N]|, |yω1 [N]|, .., |yω6 [N]| for 7 dialled DTMF tone in the given file, as
we discussed in the lab. Note that you have 7 distinct filters with ω0 to ω6 and
you have also 7 dialled DTMF tones, which corresponds to a telephone number.

9.10 Classification of Coins using Cepstrum

9.10.1 Generation of Sound Vectors

1. Suppose x1 represents the sound signal, when a 1TL coin falls on table. Record
the sound of 1TL coin 10 times. Let us demote these signals by {xi}10

i=1.
2. Suppose y1 represents the sound signal, when a 0.25TL coin falls on table.

Record the sound of 0.25TL coin 10 time. Let us demote these signals by {yi}10
i=1.

• Note that you should repeat experiment with the same setup as much as possi-
ble,e.g., make sure that initial velocities,angles, etc.. are approximately the same.
You should also drop coins on the same surface.

• You may share your recordings with your friends. However, your clasification
performance may be deteriorated, if your setups are different.

• You may sample the signals with fs = 4kHz. Record about 1024 samples.

9.10.2 Training Phase: Generation of Feature Vectors in MATLAB

1. Using DFT

• Compute and plot magnitude of DTF coefficients of {xi}10
i=1 and {yi}10

i=1.
These coefficients are denoted by {X i}10

i=1 and {Y i}10
i=1, respectively.

2. Using Mel-cepstrum

a. Study on computation of mel-cepstrum in [10]. Briefly explain your under-
standing.

b. Compute and plot mel-cepstrum of {xi}10
i=1 and {yi}10

i=1, which are referred to
as {cxi}10

i=1 and {cyi}10
i=1, respectively.

3. Using Subband Fourier energy values

a. Study on computation of Subband Fourier energy values in [1]. Briefly explain
your understanding.

b. Compute and plot Subband Fourier energy v of {xi}10
i=1 and {yi}10

i=1, which are
referred to as {exi}10

i=1 and {eyi}10
i=1, respectively.

• You should properly choose number of subbands, denoted by M. Since you will
implement this assignment on Arduino in the next Homework, you should choose

158 9 Random Signals, Wiener Filtering and Speech Coding

a small M, such as 10. However, make sure that your classification performance
is acceptable.

9.10.3 Testing Phase: 1-Nearest Neighbour Classifier in MATLAB

1. Record sound of a new coin, which is either 1TL or 0.25TL, denoted by signal z.
2. Compute mel-cepstrum of z, denoted as cz
3. Use a nearest classifier to identify whether 1TL or 0.25TL is dropped.

You may use a simple 1-nearest neighbour classifier, as follows:

result =

{
1T L , if min

i
(||cz− cxi ||)< min

i
(||cz− cyi ||)

0.25T L , otherwise
,

where ||.|| denotes `1 norm.
4. Repeat 2 and 3 with DFT coefficients.
5. Repeat 2 and 3 with Subband Fourier energy values.

References

References

1. W. K. Chen, Fundamentals of Circuits and Filters, Series: The Circuits and Filters Handbook,
Third Edition, CRC Press, 2009.

2. A. V. Oppenheim, R. W. Schafer, J.R. Buck, Discrete-Time Signal Processing, Prentice Hall,
1989.

3. James H. McClellan, Ronald W. Schafer, Mark A. Yoder, Signal Processing First, Prentice-
Hall, Inc., 22003.

4. S. Mitra, Digital Signal Processing, McGraw Hill, 2001.
5. J. G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Appli-

cations, Prentice Hall, 1996.
6. R. J. Larsen, M. L. Marx, An Introduction to Mathematical Statistics and Its Applications,

Prentice-Hall, Inc., 1981.
7. Gilbert Strang and T. Nguyen, Wavelets and Filter Banks, Welleslay-Cambridge Press, 2000.
8. A. E. Cetin, Omer N. Gerek, Y. Yardimci, ”Equiripple FIR Filter Design by the FFT Algo-

rithm,” IEEE Signal Processing Magazine, Vol. 14, No. 2, pp.60-64, March 1997.
9. Athanasios Papoulis, S. Unnikrishna Pillai, Probability, Random Variables and Stochastic Pro-

cesses, Foruth Edition, 2002.
10. Cetin, A. E., T. C. Pearson, and A. H. Tewfik. ”Classification of closed-and open-shell pista-

chio nuts using voice-recognition technology.” Transactions-American Society of Agricultural
Engineers, 47.2 (2004): 659-664.

159

	Introduction, Sampling Theorem and Notation
	Shannon's Sampling Theorem
	Aliasing
	Relation between the DTFT and CTFT
	Continuous-Time Fourier Transform of xp(t)
	Inverse DTFT
	Inverse CTFT
	Filtering Analog Signals in Discrete-time Domain
	Exercises

	Multirate Signal Processing
	Interpolation
	Interpolation by an integer M
	Decimation by a factor of 2
	Decimation by M
	Sampling Rate Change by a factor of L/M
	Interpolation Formula
	Downsampler and Upsampler are Linear Operators
	Computer Project
	Exercises

	Discrete Fourier Transform (DFT)
	DFT Definition
	Approximate Computation of CTFT using DFT
	Computer Project: DTMF (Dual/Dial-Tone-Multi-Frequency)

	Convolution using DFT
	Circular Convolution
	Computation of DFT of Anticausal Sequences

	Inverse DFT of an Infinite Extent Signal
	 DFT and Inverse DFT using Matrix Notation
	Parseval's Relation
	Mini Projects
	Exercises

	Fast Fourier Transform (FFT) Algorithms
	Introduction
	DFT Computation by Matrix Multiplication
	Decimation-in-Frequency FFT Computation Algorithm
	Decimation-in-Time FFT Computation Algorithm
	FFT for an arbitrary N
	Convolution using DFT (FFT)
	Exercises
	Computer Projects
	Exercises

	Applications of DFT (FFT)
	Introduction
	Convolution using DFT (FFT)
	Overlap and Add Method
	Discrete Cosine Transform (DCT)
	Relationship between DFT and DCT
	Relation between DFT and DCT-1
	Relation between DFT and DCT-2

	FIR Filter Design and Implementation
	Linear-Time Invariant Systems
	Design of FIR Filters Using a Rectangular Window
	Window-Based FIR Filter Design
	High-pass, Band-pass, Notch and Band-stop Filter Design

	Causal Filter Design
	Equiripple FIR Filter Design
	Equiripple FIR Filter Design by using the FFT based method

	Design of Differentiators and Hilbert Transformers
	Differentiator
	Hilbert Transformer

	Exercises

	Recursive IIR Filter Design
	Implementation of Analog Systems using Discrete-Time Processing
	The Bilinear Transform
	IIR Filter Design using the Bilinear Transform
	Butterworth Filters
	Chebyshev Filters
	Elliptic Filters
	Phase Response of Recursive IIR Filters
	Implementation of Recursive IIR Filters
	Direct Form I Realization (Signal Flow Diagram):
	Direct Form II Realization (Signal Flow Diagram):
	Lattice Filter:

	IIR All-Pass Filters
	Input/Output relation
	Stability condition

	Frequency Transformation of Low-Pass IIR Filters to Other Filters
	Low-pass filter to low-pass filter
	Low-pass to high-pass transformation
	Low-pass to band-pass filter
	Low-pass to band-stop filter

	Exercises

	Goertzel's Algorithm
	Implementation of Goertzel's Algorithm

	Random Signals, Wiener Filtering and Speech Coding
	Introduction
	Stationary Random Processes
	Estimation of Autocorrelation from Data

	Linear Minimum Mean-Squared-Error (LMMSE) Predictor
	White Noise and MA and AR Random Processes
	Quantization and A to D Conversion
	LPC-10 Algorithm (Earliest Voice Coder / Vocoder)
	Exercises
	DTMF Tone Detection by Low-pass and High-pass Filters
	FIR Filter Design
	Generation of DTMF Tone
	Lowpass and Highpass Filters

	DTMF Tone Detection using Goertzel Algorithm
	DTMF Tone Detection using Goertzel Algorithm in MATLAB

	Classification of Coins using Cepstrum
	Generation of Sound Vectors
	Training Phase: Generation of Feature Vectors in MATLAB
	Testing Phase: 1-Nearest Neighbour Classifier in MATLAB

	References
	References

