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1 Literature

Radner’s paper on team decision theory is a direct response to a 1955 paper by Marschak [14].
Marschak’s paper introduces the theory of teams by providing motivation for the development of
such a field. He calls for the introduction of scientific language and concepts to study ideas of
human organization. He claims that technical development is driven only by precise language and
well-defined concepts, and issues the challenge to apply such techniques to organizational behaviour.
The paper includes a couple of solved examples for two team members with artificial cost functions
and an implicit prior on the various events. The technique for solving these examples is analogous
to game theory, which was more highly developed at that time.

In response to Marschak’s call but before Radner published his paper on Team Decision Prob-
lems, there were discussions and some preliminary results regarding simplified team problems.
Radner’s first attempt at the problem [15] in 1959 considers convex polyhedral cost functions, and
proves that optimal decisions are linear. It does not contain the mathematical formalism of his
next paper, and was not nearly as widely received. Interestingly, in this paper he claims that “the
‘character’ of the decision problem is determined by the form of the function to be maximized”[15],
rather than the modern belief that the information structure is the key ingredient to the difficulty
and character of a decision problem.

Team Decision Problems [16] was Radner’s second response Marschak’s challenge. This paper
uses considerably more highly developed mathematical formalism to approach more general results
regarding the existence and uniqueness of optimal decisions. To do this, Radner uses ideas from
measure theory, statistics, and decision theory.

Decision theory is the primary framework that Radner extended to formalize the theory of teams.
Decision theory refers to making choices under uncertainty. The core of the problem proposed by
Marschak is for many players with a common payoff to make a choice under uncertainty with only
partial knowledge, so the extension seems natural. While the origins of decision theory are old, it
was reinvigorated by a 1939 paper by Wald [19]. Radner directly compares his problem formulation
with the idea of a risk function, as used slightly differently by Wald [20], Hodges & Lehmann [11],
Blackwell and Girshick [3], and Chernoff [4].

In 1956, Radner got his PhD in Mathematical Statistics, so he was well prepared to frame this
question in statistical language. The idea of minimax estimators in decision problems, as used in
the last third of the paper, are due to his PhD supervisor Savage [18] and Radner’s use of the
Bayesian approach in the first part of the paper is credited to this text as well, although Savage is
not a founder of the field.

One of the major contributions Radner’s paper made to the emerging field of team decisions is
its mathematical formalism and use of σ-fields to represent information. This approach seems to
have been inspired by Bahadur’s [2] work with the fields, subfields, and how they relate to the idea
of a statistic. Halmos’ recent texts on finite dimensional vector spaces [8] and Hilbert spaces [7]
paved the way to the existence and uniqueness result of Theorem 2.3.

2 Results

2.1 Framework

A major contribution of this paper was simply to frame the question formally.
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The state of the world is denoted x ∈ X, and X is a σ-field of measurable subsets of X.
The decisions are either concerned with predicting a future state of the world or estimating the
distribution of a random quantity, or both. Therefore, the state is modelled as x = (z, p) ∈ Z × P ,
where Z is a class of random events and P is a set of probability measures on Z. The prediction
question refers to predicting the random event z, and estimation refers to finding p ∈ P to most
accurately describe the distribution of the events in Z. Let Z and P be σ-fields of measurable
subsets of Z and P respectively.

For N decision makers {DM1, . . . , DMN}, let a decision a = (a1, . . . , aN ) ∈ D = D1× . . .×DN

, where D is the set of all possible decisions, and each decision maker DM i chooses a component
decision ai from possible decisions Di. Let Di be a σ-field of measurable subsets of Di for each
i = 1, . . . , N .

It will be necessary to specify the information available to each decision maker. The paper
employs two ways of doing this. The first is to specify information subfields, Yi ⊂ X . Then a team
decision function α = (α1, . . . , αN ) is any function such that αi : X → Di is measurable with respect
to Yi. The second and equivalent way of specifying available information is by a transformation.
For some measurable space Y and measurable function T : X → Y , component decision functions
αi : Yi → Di must be measurable. The transformation T specifies the information available to each
decision maker.

The payoff function u specifies the reward u(a, x) for any decision a at any state of the world
x. For a given p ∈ P , the expected payoff is U(α, p) =

∫
Z u[α(z, p), (z, p)] dp(z). By specify-

ing a prior distribution G on P , the Bayes expected payoff is V (α,G) =
∫
P U(α, p) dG(p) =∫

X u(α[x], x) dp(z) dG(p). Let A be the set of all allowable team decision functions, a subset of the
measurable team decision functions. As an example, the team could be limited to linear policies.
A Bayes team decision function minimizes the Bayes expected payoff among all decision functions
in A.

The other quantity to be optimized is risk, ρ(α, p) = supα′∈A U(α′, p) − U(α, p). Let A be
a σ-field of subsets of A, and A∗ a set of probability measures on A. An element δ ∈ A∗ is
called a randomized decision policy. The randomized decision policy δ̂ is called minimax in A∗ if
supp∈P ρ(δ̂, p) ≤ supp∈P ρ(δ, p) ∀d ∈ A∗. A minimax policy optimizes for the worst case scenario.

2.2 Person-by-person maximization and stationarity in the Bayes problem

The paper discusses conditions under which a person-by-person optimal policy is Bayes. The
situation is more general than discussed in course lectures because the payoff function is permitted
to vary according to the state of the world.

Definition For a differentiable cost function u, α is called a stationary decision function if V (α) >
−∞ and ∂

∂ai
E[u(α1(x), . . . , ai, . . . , αN (x), x))|Yi]|ai=αi(x) is zero for a.e. x and each i.

Definition A function V (α) is called locally finite at α if |V (α)| <∞; and for any decision function
δ such that |V (α+ δ)| <∞, ∃ {ki}Ni=1 such that |V (α1 +h1δ1, . . . , αN +hNδN )| <∞ for all {hi}Ni=1

such that |hi| ≤ ki for i = 1, . . . , N .

Theorem 2.1 If

1. u(a, x) is concave and differentiable in a for a.e. x,

2. supβ V (β) <∞,
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3. V is locally finite at α,

4. α is stationary,

then α is Bayes.

This theorem is important because it significantly reduces the problem to finding person-by-person
optimal solutions, which is much simpler than finding Bayes decision functions.

2.3 Quadratic Payoff

The remainder of the paper assumes that the payoff is quadratic for any state of the world x.
This dictates that u(a, x) = λ(x) + 2a′δ(x) − a′Q(x)a, for some λ : X → R, δ : X → RN , and
Q : X → RN×N each measurable (with respect to X ), and Q(x) positive definite for a.e. x.

This dictates that the optimal team decision function is γ(x) = Q−1(x)δ(x) for any given x.
The loss associated with using any other decision a is

[a− γ(x)]′Q(x)[a− γ(x)] = a′Q(x)a− δ(x)′a− a′δ(x) + δ′(x)Q(x)δ(x)
= u(γ(x), x)− u(a, x)

Since γ may not be in A (may not even be measurable with respect to each Yi), the problem becomes
finding the decision policy α to minimize the expected loss, σ(α, p) = E[(α(x)− γ(x))′Q(x)(α(x)−
γ(x))|p]. The Bayes expected loss σ̄ is accordingly defined by σ̄(α,G) =

∫
P σ(α, p) dG(p).

2.4 Projections

With the quadratic payoff function, an optimal team decision function can be found with use of
Hilbert Spaces and projections. All expectations in this section are with respect to the prior G.
Let H be the space of all measurable functions α : X → RN s.t. E[α(x)′Q(x)α(x)] < ∞. Under
the inner product (α, β) = E[α(x)′Q(x)β(x)], H is a nontrivial Hilbert Space. Let A be the set
of all measurable team decision functions. This framework is sufficient to prove the following two
theorems, which together give conditions under which a unique optimal team decision function will
exist.

Theorem 2.2 For any measurable γ : X → RN , the set F of α ∈ A for which

E[α(x)− γ(x)]′Q(x)[α(x)− γ(x)] <∞

is either empty or it is the closed linear subvariety A∩(γ+H) of the complete linear variety (γ+H)
under the distance function

d(α, β) = ‖(α− γ)− (β − γ)‖H

Theorem 2.3 If F is not empty, then there is a unique team decision function α that minimizes
the Bayes expected loss σ̄(α) = ‖α− γ‖2 on F , and α is the orthogonal projection of γ into F .

The proofs of these theorems were discussed in my presentation and rely almost exclusively on
results from Hilbert Space theory.

The results regarding stationarity are extended in the quadratic case.
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Theorem 2.4 Let r(x) = mina[a′Q(x)a]/[
∑

i qii(x)a2
i ], and let r be the essential infimum of r(x).

If r > 0 and if α is stationary, the α is Bayes.

The proof follows from the previous theorems and some norm inequalities. Note that r(x) > 0 ∀x,
so r ≥ 0. In particular, if Q(x) = Q is independent of x, then r > 0.

2.5 Q is a constant matrix

As noted by the author, the assumption that Q is a constant matrix is a significant reduction in
generality. If Q(x) is permitted to change based on the state of the world x, then for each x, Q
can be chosen to be an approximation of the payoff function in the neighbourhood of γ(x), the
optimal decision for that state. This allows the quadratic form to be a reasonable approximation
of a much larger class of payoff functions. However, if Q is constant, it has to be a global estimate
of the payoff function, which is much less general.

The main result in this section is concerned with the case when the prior distribution induces
Gaussian distributions for all the information variables and γ, the optimal decision function if all
team members knew all the information. Since the system considered in the paper is static, this
is essentially an LQG system with many team members – linear system with quadratic payoff,
Gaussian state variables, and Gaussian uncertainty on the random quantity. As with the standard
LQG setup, the result is that the optimal decision functions are linear.

Here, the information transformation T : X → Y is done by the functions ηi : X → Yi, which
represent the information available to DM i under various states of the world.

Theorem 2.5 If, under a given a priori distribution G, γ and the information functions η1, . . . , ηN
have a joint normal distribution, with parameters

• Cov(ηi, ηj) = Cij , Cii = IKi , E[ηi] = 0

• E[δi|ηi(x) = yi] = E[δi] + d′iyi, for δ(x) = Qγ(x)

then the components of the unique Bayes team decision function are linear, αi[ηi(x)] = b′iηi(x) + ci,
where the vectors bi and the numbers ci are determined by the systems of linear equations,∑

j

qijCijbj = di, ∀i = 1, . . . , N ;

∑
j

qijcj = Eδi, ∀i = 1, . . . , N ;

2.6 Markoff decision functions and risk

This section focuses on problems where each team member is trying to estimate the value of a linear
functional of the mean of a random variable z ∈ Z. The loss for the team continues to be quadratic
in form and is specified by a constant matrix Q. The analysis is done by considering only linear
estimators with bounded expected loss. A Markoff estimator is defined to be an estimator that
minimizes the expected loss for all values of the mean, among all linear estimators with bounded
expected loss. Due to its similarity in form to the problem of minimum-mean-square-error linear
unbiased estimation, which is exactly this problem with only one decision maker, it is known that
the Markoff problem of finding such an estimator usually has a solution.
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The first main result from this chapter gives a closed form for a Markoff estimator in the
following situation. Assume each individual observes a different random vector, and the covariance
between these vectors is known to everybody. The means of the vectors are not known, but are
known to lie in a linear subspace of the direct sum of the N vector spaces. Then, a homogeneous
linear form of the optimal estimator is given in terms of a projection.

In the case where there is only one decision maker, it is always true that the Markoff estimator
of a linear functional of the mean of the observed vector is simply the same functional applied to the
projection of the observed mean onto the subspace where the mean is known to lie. If this situation
holds for multiple decision makers, the problem is called decomposable, and is not generally the
case. The paper outlines two cases where the problem is decomposable. The first is when the
covariance Cij = 0 ∀i 6= j. The second occurs when each observed vector is of the same dimension
k, is known to live in the same subspace Mi = M0, and the covariance is Cij = σijIk.

Finally, under several circumstances, a Markoff estimator is minimax in the set of all permissible
team decision functions. In order for this result to hold, the set of all permissible covariances must
be bounded in some way and the set P of probability distributions has to contain a sufficient density
of normal distributions. The three cases that are proved deal with various ways of bounding this
set and all require that for a given mean and covariance combination, there is a normal distribution
in P with the corresponding mean and covariance. All three cases deal with the same quadratic
cost function.

3 Critique

It would is easy to look at this paper and find its limitations. Can all payoffs be modelled as locally
quadratic around the optimal decision? Is it possible for such an optimal decision not to exist so as
not to be localizable around it? How is time incorporated into the model if decision makers affect
the state of the world? Why was communication not incorporated?

However, such criticisms fail to view the paper in the academic setting of its time. In reality, this
was the preliminary defining work of team problems in a decision theoretic environment. Decision
theory until this point considered only one decision maker with full information. Using decision
theory for multiple players with a common payoff but different information was introduced in
this work, which has made a particularly useful framework for studying problems of decentralized
decision making.

Radner started by stating a general model for static team decisions before making further
assumptions regarding stationarity or quadratic payoff functions. The potential criticisms attack
the assumptions that Radner made in order to gain tractability. As was soon realized, tractability
would continue to be a central issue in team decision problems, as they can very easily become
unwieldy. As such, many future directions were not to extend the generality of the work, but to
explore various special cases. As an example, Groves [6] and Arrow & Radner [1] studied team
problems with the structure that there is a central controller who allocates resources to various
managers, who in turn produce goods at a rate dependent on their allocated resource and some
random process. The interesting result in this case is that as the number of managers increases
without bound, the expected goods production converges to the case where the centralized controller
and each manager knows everything, which is essentially a one-person problem whose optimal
solution is an upper bound for the team solution.

A theme in team decision problems is that the information structure determines the difficulty
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of the question. Radner made no assumptions about the information structure in this work. This
generality allows the results to be widely applicable, but is extremely difficult to extend. In order
to simplify problems and obtain results, other researchers have assumed information structures,
once again extending these results by considering special cases. This work began with researchers
including Witsenhausen [21] and Ho [9],[10]. The most important classification system of the
information structures describes the structure as being either centralized, which is a significant
reduction of team decision problems to problems with a central controller; partially nested, which
is also a simplification of the original problem but with more generality than the centralized problem
while maintaining some tractability; and non-classical, which is in general extremely difficult, as
evidenced by Witsenhausen’s counterexample [21].

Most of the work that has built on this paper uses one of three main results. The first is the
general formulation of team decision problems, which extends even to games where individuals have
different information, which is a non-classical view of game theory since the traditional assumption
is that all knowledge is common knowledge. The difference with the game theoretic questions is
that although the payoff functions depend on all decision makers, each individual tries to optimize
his/her own payoff function rather than working together to optimize a global function. Another
direction in which the framework has been extended is to incorporate time-dependence into the
model, where previous decisions affect future decisions [12]. This extension is natural since most
teams operate for extended periods. Especially in business and economics, which is the perspective
of Radner and Marschak, the teams continually make decisions based on changing information that
depends on past decisions, so having an optimal policy in that setting is worth considerably more
than a policy in a static setting.

The second and very widely used result of this paper is Theorem 2.1. Finding person-by-person
optimal strategies is considerably easier than finding globally optimal strategies, so knowing when
the simplification can be made is a very important contribution. This result has been relaxed
slightly by Krainak, Speyer, and Marcus [13]. DeWaal and VanSchuppen [5] give an analogous
result in the case of a discrete action space with applications in distributed computing. However,
these three results remain the only known conditions whereby person-by-person optimality implies
globally optimal team decision functions [5]. Because of its great simplification, the fact that these
are the only existing results limits the possible directions of some modern research to cases where
these theorems apply. One future direction of research could be to find alternative formulations
that have the same result, or to find weaker sufficient conditions with a quest toward necessity.

A third result that is used considerably is Theorem 2.5, which makes the simplifications of a
constant payoff (independent of state x) and a prior distribution that induces normal distributions
in all information variables and optimal decision functions. These assumptions reduce the problem
considerably, since the ideal policy is shown to be a linear function of the observation.

Interestingly, the first portion of the paper, where Bayesian decision functions are sought, seems
to have garnered a lot more attention than the last third of the paper, which considers Markoff
estimators. There seems to be considerable future work in this area. For example, Radner presented
only three cases in which the Markoff estimator is minimax, and made no claims of this list being
exhaustive.

The assumptions that Radner made were reasonable to gain some headway into a difficult field:
locally quadratic cost functions, the existence of optimal decisions around which to localize, and
normal distributions on the information and optimal decisions. As a first paper, these are all very
reasonable, and since future work has primarily been concerned with special cases, it seems as
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though the introductory paper was at a satisfactory level of generality. However, there are many
situations that are not of this form, and those have not been nearly as extensively studied. Fruitful
future directions may involve a similar framework with a completely different set of assumptions.
For example, Rusmevichientong and Van Roy [17] note that the Gaussian assumption is unrealistic
in complex organizational structures, but locality of interaction is an unexploited realistic symmetry
that helps to reduce the problem.

Finally, as noted in Marschak [14], cost functions can often be difficult to specify. What is the
cost of a life versus saving a sum of money in a military setting? For economic applications, the
costs and benefits are usually in terms of economic gain and market position, so are relatively easily
measured. In order to better understand other organizations and biological systems though, it is
necessary to have a realistic cost function. It seems as though this caveat will always be a liability
with the team decision theory approach.
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