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DISCRETE-TIME CONTROLLED MARKOV PROCESSES
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Abstract. This work is a survey of the average cost control problem for discrete-time Markov
processes. The authors have attempted to put together a comprehensive account of the considerable
research on this problem over the past three decades. The exposition ranges from finite to Borel
state and action spaces and includes a variety of methodologies to find and characterize optimal
policies. The authors have included a brief historical perspective of the research efforts in this area
and have compiled a substantial yet not exhaustive bibliography. The authors have also identified
several important questions that are still open to investigation.
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1. Introduction. The average cost criterion (equivalently, the long-run average
or ergodic cost) is a popular criterion for optimization of stochastic dynamical systems
over an infinite time horizon. It is a reasonable criterion to use when the anticipated
time interval for optimization (which in practice is finite) is long compared to other
timescales involved, and there are no compelling reasons to prefer short-term opti-
mization over long-term. Naturally, it is not favored in financial applications where
money spent now is worth more than money spent later, but there are situations
(communication networks being a prime example) where a “steady state” operation
is expected over intervals that are long compared to the time constants of the system.
Then it makes sense to minimize the limiting time-averaged cost, i.e., the “average
cost.”

Mathematically, the criterion stands out as being much more difficult to analyze
than the others; while other classical criteria lead to reasonably complete solutions,
the average cost does not. The finite state and action problem is well understood,
but there are numerous counterexamples in which infinite state or action problems do
not have a nice solution. In fact, it appears not as a single problem but a collection
of problems, some of which do not have a nice solution (cf. [150]). Thus, a variety
of approaches have been developed to handle different situations. Not surprisingly,
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this is one chapter of Markov decision theory that is anything but closed. At the
same time, it has come of age, having been studied for over 30 years, with promises of
significant advances on the horizon. This, in short, is the raison d’etre for this survey;
we have attempted to put together a coherent account of what has been done, with
an indication of what future advances may be.

Any such project has obvious limitations. Space constraints dictate a certain
amount of selection, and not every relevant work can be covered in significant detail.
We have included proofs where we felt they were essential to understanding the results
or contained potentially useful novel ideas. In all cases, a serious attempt at objectivity
has been made. For complementary reading on the general subject of Markov decision
theory, see [137], [181], [196], [207].

The paper is organized as follows: §2 describes the problem formulation in full de-
tail. Section 3 gives a brief history. Sections 4–6 extensively treat the finite state, the
countable state, and the Borel state space cases, respectively, under complete obser-
vations. Section 7 treats the problem under partial observations. Section 8 describes
some recent results on multiobjective average cost control. Finally, we conclude with
some relevant remarks.

2. Preliminaries and formulation of the problem. In this section, the model
and basic results concerning controlled Markov processes are given in the most general
form needed for our presentation. In some subsequent sections, we specialize our pre-
sentation to situations in which measure-theoretic aspects are of no essential concern,
as in the case for models with countable state space, allowing for a more transparent
exposition. Before presenting the model, we summarize our key notation as follows:

• R: set of real numbers;
• N: set of positive integers;
• N0: set of nonnegative integers;
• B(W ): Borel σ-algebra of a given topological space W ;
• P(W ); for a Borel space W (see [15], [82]), the set of all probability

measures on B(W ) endowed with the topology of weak convergence (see
[134]).

The following are function spaces on a topological space W :
• Cb(W ) :=

{
v : W → R

∣∣ v is continuous and bounded
}
;

• M(W ) :=
{
v : W → R

∣∣ v is Borel measurable
}
;

• Mb(W ) :=
{
v : W → R

∣∣ v is Borel measurable and bounded
}
;

• L(W ) :=
{
v : W → R

∣∣ v is lower semicontinuous and bounded below
}
;

• Lb(W ) := L(W )
⋂Mb(W ).

For v ∈Mb(W ), we let
• ‖v‖ := supw∈W

{
|v(w)|

}
;

• span(v) := supw,w′∈W

{
v(w)− v(w′)

}
;

• v+ := v − infw∈W

{
v(w)

}
, v− := v − supw∈W

{
v(w)

}
.

We refer to span(v) as the span seminorm of v.
The following is a list of the abbreviations used in this paper (the section where

each abbreviation is first introduced is indicated in parenthesis):
• AC average cost (§2.4);
• ACOE average cost optimality equation (§3);
• ACOI average cost optimality inequality (§5.2);
• CMP controlled Markov process (§2.1);
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• CO completely observable (§3);
• DC discounted cost (§2.4);
• DCOE discounted cost optimality equation (§2.6);
• PO partially observable (§7.2);
• POCMP partially observable controlled Markov process (§3);
• TC total cost (§2.4).

2.1. The model. A discrete-time, stationary controlled Markov process (CMP),
or Markov decision process, is a stochastic dynamical system specified by the five-tuple(
S,A, U, P, c

)
, where

(a) S is a Borel space, called the state space, the elements of which are called
states;

(b) A is a Borel space, called the action or control space;
(c) U : S → B(A) is a strict, measurable, compact-valued multifunction (see

the Appendix). U(x) represents the set of admissible actions (or control inputs) when
the system is in state x ∈ S. Accordingly, the set of admissible state/action pairs is
K :=

{
(x, a) : x ∈ S, a ∈ U(x)

}
= Graph(U), and we have that K ∈ B(S × A).

This set is endowed with the subspace topology corresponding to B(S ×A);
(d) P is a stochastic kernel on S given K, called the transition kernel. It is

assumed to be Borel measurable, i.e., P (D | ·) : K → [0, 1] is Borel measurable, for
each D ∈ B(S);

(e) c : K → R is the (measurable) one-stage cost function.
The evolution of the system is as follows. Let Xt denote the state at time t ∈ N0,

and At the action chosen at that time. If Xt = x ∈ S and At = a ∈ U(x), then (i) a
cost c(x, a) is incurred, and (ii) the system moves to the next state Xt+1, according
to a probability distribution P (· | x, a). Once the transition into the next state has
occurred, a new action is chosen, and the process is repeated.

The total period of time over which the system is to be observed is called the
planning (or decision-making or control) horizon and is denoted by T . It can be a
finite interval {0, . . . , N − 1}, with N ∈ N, or an infinite horizon, e.g., T = N0.

The (admissible) history spaces are defined as

H0 := S , Ht := Ht−1 ×K , t ∈ N0 ,

and the canonical sample space is defined as Ω := (S × A)∞ . These spaces are
endowed with their respective product topologies and are therefore Borel spaces. A
generic element ω ∈ Ω is of the form ω = (x0, a0, x1, a1, . . . ), xi ∈ S, ai ∈ A; all
random variables will be defined on the measurable space

(
Ω,B(Ω)

)
.

The state, action (or control), and information processes, denoted by {Xt}t∈T ,
{At}t∈T and {Ht}t∈T , respectively, are defined by the projections

Xt(ω) := xt , At(ω) := at , Ht(ω) := (x0, . . . , at−1, xt) , t ∈ T

for each realization ω = (x0, . . . , at−1, xt, at, . . . ) ∈ Ω. Since B(Ω) =
(
B(S) ×

B(A)
)∞, the above are well-defined random processes on

(
Ω,B(Ω)

)
. Note that

B(Ω) =
∨∞

t=0 Ft, where Ft = σ(Ht), the σ-algebra generated by Ht.
Example 2.1. Let S, A, W be Borel spaces and F : S × A × W → S a Borel

function. Consider a nonlinear stochastic system described by the system equation

Xt+1 = F (Xt, At, Wt) , t ∈ T ,
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where the process {Wt} is a sequence of independent and identically distributed (i.i.d.)
W -valued random variables, with common probability distribution PW , often referred
to as a stochastic state disturbance, or noise; {Wt} is assumed to be independent of
X0. Suppose that a strict, measurable, compact-valued multifunction U : S → B(A)
has been specified, giving the necessary constraints on the control actions, or that
U(x) = A, for all x ∈ S, if there are no constraints. Then the evolution of the system
is equivalently described in terms of the stochastic kernel P on S given K defined as

P (D | x, a) :=
∫

W

I
{
F (x, a, w) ∈ D

}
PW (dw) , (x, a) ∈ K , D ∈ B(S) ,

where I
{
A

}
denotes the indicator function of the event A. The additional specifi-

cation of a measurable cost function c : K → R would completely define a CMP(
S,A, U, P, c

)
.

Example 2.2. Consider a countable set S endowed with the discrete topology.
With no loss in generality we can take S = N0. Let A be a Borel space and U(x) = A,
for all x ∈ S. In this case, every stochastic kernel on N0 given K := N0×A reduces to
a collection of discrete probability distributions parameterized by (i, a) ∈ K. These
can also be represented by a collection of stochastic matrices

{
P (a) = [pij(a)]

}
a∈A

;
i.e., P (a) is a state transition matrix, and pij(a) is the probability that the state of
the system makes a transition from i to j, under action a. Therefore, additionally
specifying a cost function c : N0 ×A → R completely defines a CMP.

2.2. Policies and performance criteria. An admissible control strategy, or
policy, is a sequence π = {πt}t∈T of Borel measurable stochastic kernels on A given
Ht, satisfying the constraint

πt

(
U(xt)

∣∣ ht

)
= 1 , xt ∈ S , ht ∈ Ht .

The set of all admissible policies will be denoted by Π.
If µ ∈ P(S) and π ∈ Π are given, there exists a unique probability measure Pπ

µ

on
(
Ω,B(Ω)

)
satisfying the following [15, Prop. 7.28, pp. 140–144], [130, Prop. V.1.1,

pp. 162–164], with D ∈ B(S) and C ∈ B(A):

Pπ
µ (X0 ∈ D) = µ(D) ,(2.1)

Pπ
µ (At ∈ C | Ht) = πt(C | Ht) , Pπ

µ–a.s.,(2.2)

Pπ
µ (Xt+1 ∈ D | Ht, At) = P (D | Xt, At) , Pπ

µ–a.s.(2.3)

Therefore, if µ is the distribution of the initial state X0, and policy π ∈ Π is used,
the underlying probability space of all random variables of interest is

(
Ω,B(Ω),Pπ

µ

)
.

The expectation operator with respect to Pπ
µ will be denoted by Eπ

µ . Furthermore, if
µ is a Dirac measure at x ∈ S, we will simply write Pπ

x and Eπ
x .

Certain classes of admissible policies are of special interest. A policy π is called
a Markov randomized policy if there exists a sequence of measurable maps {ft}t∈T ,
called randomized decision rules, where ft : S → P(A), for each t ∈ T , such that

πt(· | Ht) = ft(Xt)(·) , Pπ
µ–a.s.

Conversely, every sequence of measurable maps ft : S → P(A), t ∈ T , satisfying
ft(x)

(
U(x)

)
= 1, defines a Markov randomized policy in an obvious way; with some



286 arapostathis, et al.

abuse in notation, the sequence itself will be referred to as the policy. The set of all
Markov randomized policies will be denoted by ΠM . A policy {ft}t∈T ∈ ΠM is called a
stationary randomized policy if there is a randomized decision rule f such that, for all
t ∈ T , ft = f . The set of all stationary randomized policies will be denoted by ΠSR. A
nonrandomized, deterministic, or pure decision rule is a measurable map f : S → A.
A policy {ft}t∈T ∈ ΠM is called a nonrandomized, deterministic, or pure Markov
policy if each ft is deterministic. Hence, in this case, At = ft(Xt) almost surely. The
set of deterministic Markov policies will be denoted by ΠMD. Stationary deterministic
policies are defined in the obvious way. The set of all stationary deterministic policies
is denoted by ΠSD, and, for π ∈ ΠSD, π(x) will denote the action chosen at x ∈ S.
Clearly ΠSD ⊆ ΠMD ⊆ ΠM ⊆ Π, and ΠSD ⊆ ΠSR ⊆ ΠM .

It is easily seen that, under a policy π = {ft}t∈T ∈ ΠM , the state process {Xt}t∈T

is a Markov process. That is, for D ∈ B(S),

Pπ
µ

(
Xt+1 ∈ D

∣∣ Xt, . . . , X0

)
= Pπ

µ

(
Xt+1 ∈ D

∣∣ Xt

)
=

∫
A

P
(
D

∣∣ Xt, a
)
ft(Xt)(da) , Pπ

µ–a.s.,

and, under a policy π′ ∈ ΠSR, {Xt}t∈T is a Markov process with stationary transition
probabilities.

Each policy π ∈ Π incurs a stream of random costs, e.g.,
{
c
(
Xt, ft(Xt)

)}
t∈T

, for
{ft}t∈T ∈ ΠMD. Depending upon the problem requirements, several cost evaluation
criteria are studied. The following criteria are frequently used.

Total cost (TC). The total cost incurred by the policy π ∈ Π over the entire
planning horizon is given by

JT (µ, π) := Eπ
µ

[∑
t∈T

c(Xt, At)

]
.

When the horizon is finite, i.e., T = {0, . . . , N − 1}, N ∈ N0, we denote the above
more explicitly as JN (µ, π). Furthermore, given a terminal cost function h ∈Mb(S),
we define

JN (µ, π, h) := Eπ
µ

[
N−1∑
t=0

c(Xt, At) + h(XN )

]
.

Discounted cost (DC). Let 0 < β < 1, the discount factor, and π ∈ Π be given.
The total discounted cost incurred by π over the infinite planning horizon is given by

Jβ(µ, π) := Eπ
µ

[ ∞∑
t=0

βtc(Xt, At)

]
.

Average cost (AC). The expected long-run average cost incurred by π ∈ Π is
given by

J(µ, π) := lim sup
N→∞

Eπ
µ

[
1
N

N−1∑
t=0

c(Xt, At)

]
= lim sup

N→∞

1
N

JN (µ, π) .

Sample path average cost. This is a pathwise version of the AC, and, for X0 = x,
it is given by

JS(x, π) := lim sup
N→∞

1
N

N−1∑
t=0

c(Xt, At) ,
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where {Xt} and {At} are the state and control process induced by π ∈ Π. Here,
JS(x, π) is to be regarded as an extended real-valued random variable on the canonical
sample space.

For the AC criterion, the limit of the expected average cost may not exist for some
or all policies π ∈ Π, and thus the limit superior is used. This is always well defined and
captures the worst possible asymptotic expected average performance under policy
π ∈ Π; i.e., it gives a “pessimistic” measure of performance. On the other hand,
the limit inferior could also be used, which would yield an “optimistic” measure of
performance by capturing the best possible asymptotic expected average performance.
The planning horizon for the TC criterion can be finite or infinite, whereas, for the
other criteria above, it is always infinite. Under certain conditions, it can be shown
that a problem with the DC criterion is equivalent to one with a TC criterion, with
a random (finite) horizon; see [40, pp. 31–32]. Also, it can be shown that, for each
π ∈ Π, a policy π′ ∈ ΠM can be found such that Eπ

µ

[
c(Xt, At)

]
= Eπ′

µ

[
c(Xt, At)

]
, for

each t ∈ N0 and any initial distribution µ ∈ P(S) [42], [51, §3.8]. Thus, for criteria
that are determined by these expected costs, such as the AC, DC, and TC criteria, it
suffices to consider policies in ΠM .

For an infinite planning horizon, JT (µ, π) need not be well defined or may be
infinite for all π ∈ Π, rendering this criterion useless for comparing the performance
under different policies. Therefore, the DC or AC criteria are usually selected when the
planning horizon is infinite. When the DC criterion is used, a rather complete theory
is available for the corresponding dynamic programming formulation of the problem
[14], [15], [51], [82], [103], [150], [200]. In this situation, future costs are discounted at
a fixed rate 0 < β < 1, and therefore, if β is not sufficiently close to 1, the asymptotic
behavior of the state/cost process may not be important at all. Quite the opposite is
the case with the AC criterion, under which all decision times are given equal weight,
and we take the limit of time-averaged expected costs. The finite time evolution of the
state/cost process is, in some sense, completely irrelevant in this case, and some sort
of asymptotic stable behavior is desired, making this case mathematically much more
involved than the previous one. Hence, the DC and AC can be seen as two opposite
extremes in the spectrum of possible criteria that can be considered, in the sense that
the first one captures primarily the performance of the process at the present and near
future, and the second captures the performance at the distant future.

2.3. The optimal control problem. The optimal control (or decision) problem
is that of selecting an admissible policy such that a given performance criterion is
minimized over all admissible policies. For example, for the DC criterion, a policy
π∗ ∈ Π is said to be (β)-discount ε-optimal for the initial distribution µ if

Jβ(µ, π∗) ≤ Jβ(µ, π) + ε ∀π ∈ Π ,

where ε > 0. If a policy is discount ε-optimal for all distributions µ ∈ P(S), then it is
simply called discount ε-optimal. If a policy is discount ε-optimal for all ε > 0, then
it is called discount optimal. The (optimal) value function is given by

(2.4) J∗
β(µ) := inf

π∈Π
Jβ(µ, π) .

Also, if µ is concentrated at x ∈ S, we denote the value function by J∗
β(x). Similar

definitions apply to other criteria; J∗
T (µ) and J∗(µ) will denote the optimal value

functions for the TC and AC criteria, respectively. For sample path AC, we define an



288 arapostathis, et al.

optimal policy as follows: We say that a policy π∗ ∈ Π is sample path AC optimal (or
almost surely AC optimal) if there exists a constant ρ∗ such that, for any initial law
µ,

J∗
S(µ, π∗) = ρ∗, Pπ∗

µ –a.s. ,

while, for any other policy π ∈ Π and any initial law µ′,

J∗
S(µ′, π) ≥ ρ∗, Pπ

µ′–a.s.

The constant ρ∗ is the sample path optimal average cost.
Having defined various optimality criteria and the set of admissible policies Π, the

obvious question now is: Do there exist optimal policies? Without imposing further
assumptions on our general model, the answer is no. One of the reasons behind this
is that the Borel measurability assumption in the definition of admissible policies is
too restrictive, in general, to be able to attain the infimum in (2.4). To circumvent
this problem, either a broader sense of measurability is allowed, i.e., a larger set of
admissible policies is used, or further assumptions are imposed. The first approach was
taken by Shreve and Bertsekas [15], [164], [165], who considered universally measurable
policies, a class properly containing the (Borel measurable) admissible policies defined
previously; see also [51]. We will instead follow the second approach mentioned above
and concentrate on the semicontinuous model, as studied in [15], [47], [51], [71], [88],
[123], [152]–[154].

2.4. The semicontinuous model. In general, we consider the case when the
one-stage cost function c(· , ·) is unbounded. Since, for the most part, the criteria
considered in this paper are given by a sum of expected costs over the infinite horizon,
then, to avoid indeterminate situations, the following conditions will be assumed to
hold throughout the paper, unless otherwise indicated.

Assumption 2.1. c(x, a) ≥ 0 for all (x, a) ∈ K.
Assumption 2.2. The transition kernel P (· | x, a) is weakly continuous in (x, a);

that is, v(·) ∈ Cb(S) implies that
∫

S
v(y)P (dy | · , ·) ∈ Cb(K).

Assumption 2.3. (i) The multifunction U(x) is upper semicontinuous; (ii) c(· , ·) ∈
L(K).

Remark 2.1. Concerning Assumption 2.1, note that (for the AC and DC criteria)
we must only assume that the cost is bounded below. The assumption that the
cost is nonnegative is only made for convenience. Assumption 2.2 is equivalent to∫

v(y)P (dy | · , ·) ∈ L(K), for each v(·) ∈ L(S) [51, p. 52]. This property is crucial in
our development.

Example 2.3. For the nonlinear stochastic system in Example 2.1, assume further
that

(i) A is compact,
(ii) For each x ∈ S, U(x) is closed (and therefore compact), and
(iii) The system function F : K ×W → S is continuous.
If c(· , ·) ∈ L(K), then, by Remark 2.1, Assumption 2.2 will hold. Furthermore,

the assumption on the compactness of A can be dispensed with if there are compact
subsets K1 ⊆ K2 ⊆ · · · in S ×A, such that K =

⋃
n∈N

Kn and

lim inf
n→∞

{
c(x, a) : (x, a) ∈ Kn \Kn−1

}
= +∞ ,

since, in this case, A can be conveniently compactified; cf. [15, Cor. 8.6.1, p. 210].
Also, the case in which S = Rn, A = Rm, and c(x, a) = x′Qx + a′Ra, where Q and
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R are positive semidefinite and positive definite matrices, respectively, of appropriate
dimensions can also be considered by a (one-point) compactification of A [164, pp. 965–
966].

Under Assumptions 2.1–2.3, the undiscounted dynamic programming map T given
by

(2.5) T (v)(x) := inf
a∈U(x)

{
c(x, a) +

∫
S

v(y)P (dy | x, a)
}

∀x ∈ S

maps L(S) into itself. Also, for 0 < β < 1, the discounted dynamic programming map
Tβ : L(S) → L(S) is given by

(2.6) Tβ(v) := T (βv) .

The following properties are easily verified.
Lemma 2.1. Let v, v′ ∈ L(S). Then (i) for all k ∈ R, T (v + k) = T (v) + k; (ii)

if v ≤ v′, then T (v) ≤ T (v′).
Some key results for the stochastic control problem under a DC criterion are

summarized in the following theorem.
Theorem 2.1. Under Assumptions 2.1–2.3
(i) The following equation, which is called the discounted cost optimality equa-

tion (DCOE), holds:

(2.7) J∗
β(x) = Tβ(J∗

β)(x) = inf
a∈U(x)

{
c(x, a) + β

∫
S

J∗
β(y)P (dy | x, a)

}
, x ∈ S ;

(ii) A policy π∗ ∈ ΠSD is discount optimal if and only if π∗(x) attains the
infimum in (2.7), for all x ∈ S;

(iii) A discount optimal policy π∗ ∈ ΠSD exists;
(iv) Define T 0

β : L(S) → L(S) as the identity operator and T k
β : L(S) → L(S),

k ∈ N, by T k
β (f) := Tβ

(
T k−1

β (f)
)
. Then, for any f ∈ Lb(S),

T k
β (f)(x) −−−→

k→∞
J∗

β(x) for all x ∈ S ;

(v) J∗
β(·) is nonnegative and lower semicontinuous.

Remark 2.2. The above results are essentially contained in [15], [51]. The exis-
tence of a measurable selector that attains the infimum in (2.7), e.g., the result in
(iii) of Theorem 2.1, follows from [15, Prop. 7.33, p. 153], [29], [47, pp. 35–38], [51,
§2.6], [88], [139, Thm. 4.1, p. 9], [184, Thm. 9.1, p. 880]. The scheme used in (iv) of
Theorem 2.1 to compute J∗

β(·) is called the value iteration (or successive approxima-
tions) algorithm. When the one-stage cost function is bounded, the usual approach is
to prove the existence of a unique solution to the DCOE via a contraction mapping
theorem [14], [82]. Otherwise, J∗

β(·) is not necessarily the only fixed point of Tβ ; how-
ever, J∗

β(·) is the minimal fixed point of Tβ among the class of nonnegative functions
in L(S) [15, Chap. 5], [173].

3. A sketch of historical development. We now present a brief historical
sketch of the development of CMP, with an emphasis on the average cost criterion.
The roots of CMP can be traced back to the pioneering work of Wald [186], [187]
on sequential analysis and statistical decision functions. In the late 1940s and early
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1950s, several investigators formulated the essential concepts of CMP, which are found
in their work in sequential game models. A CMP can be viewed as a one-player
game. Of particular interest is the work of Bellman and Blackwell [12], Bellman and
LaSalle [13], and also Shapley, who formulated the essential mechanism of stochastic
dynamic programming and used the theory of contraction mappings [160]. Using his
famous heuristic “minimum cost to go,” Bellman showed how powerful the dynamic
programming technique was by using it to solve problems in a myriad of settings [9]–
[11]. Bellman studied mostly problems with a finite horizon, for which the backward
induction approach of dynamic programming suffices to give a complete treatment.
The situation is quite different in problems over an infinite horizon. Early work on
CMP is also reported in econometrics [4], [49].

Howard [95] was apparently the first to study CMP with an average cost crite-
rion. His policy iteration algorithm was the first major computational breakthrough,
and his book helped establish CMP as an independent subject of investigation. For
CMP with finite state and action spaces, Howard’s policy iteration scheme estab-
lished the existence of a stationary deterministic policy, optimal in this class only.
Derman [38] and Viskov and Shiryaev [183] independently showed that this policy
was optimal among all admissible policies. Other computational methods were later
proposed. Manne [125] gave a linear programming formulation for the AC criterion,
and Wagner [185] later characterized extreme-point optima of the linear program as
stationary deterministic policies. White [197] introduced the value iteration (or succes-
sive approximations) technique. Excellent accounts of these and other computational
methods are given in [14, §5.2] and [137].

On the theoretical side, Blackwell’s seminal paper [18] gave considerable impetus
to research in this area, motivating numerous other papers. In [18] Blackwell studied
CMP with finite state and action spaces. He considered the DC criterion in great
detail and established many important results. In the same paper, he initiated an
approach for the AC case, which we will refer to as the vanishing discount approach:
he treated the AC case as a limit of the DC case, when the discount factor goes to
1, i.e., the discounting effect vanishes. Blackwell established in [18] the existence of a
stationary deterministic policy that is discount optimal, for all β sufficiently close to
1. This type of optimality is now called Blackwell optimality [14, pp. 336–341]. The
relation between the discounted and average case also becomes apparent via Tauberian
theorems [87, §4.6]. This fact seems to have been observed first by Gillette [79], who
used Tauberian theorems to establish the existence of optimal stationary policies in
a stochastic game problem with an AC criterion. Also, using Tauberian theorems,
Derman [38] showed that the Blackwell optimal policy found in [18] was also optimal
for the AC criterion. Average cost CMP with finite state and arbitrary action spaces
were studied under various conditions in the works of [35], [57]–[59], [100].

Blackwell optimal policies do not necessarily exist when the state space is count-
ably infinite [122]. In fact, average optimal policies need not exist in this situation
[121], [150]. Similar nonexistence result holds when the state space is finite, but the
action space is an arbitrary compact metric space [8]. For such models, the existence
of an optimal policy has been proved by Bather [8], Martin-Löf [126], and Feinberg
[58], under certain conditions. Derman [39] studied the problem with countable state
space, finite action space, and bounded cost. He studied the following equation, which
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became known as the average cost optimality equation (ACOE):

ρ + h(i) = min
a∈U(i)

{
c(i, a) +

∑
j∈S

P (j | i, a)h(j)
}

,

where ρ is a scalar, h : S → R, S = N0, and we write P (j | · , ·) for P ({j} | · , ·). He
showed that, if the ACOE has a bounded solution, i.e., a solution (ρ, h) with h(·) a
bounded function, then the stationary deterministic policy realizing the pointwise min-
imum on the right-hand side of the ACOE is average optimal, and ρ is the minimum
average cost. Derman’s paper, in conjunction with Derman and Veinott [43], showed
that a sufficient condition for the existence of such a solution was that the expected
hitting time of a fixed state under any stationary deterministic policy is bounded
uniformly with respect to the choice of the policy and the initial state. Motivated
by Blackwell’s work, Taylor [177] extended the vanishing discount approach to obtain
a bounded solution for a Markovian sequential replacement problem by studying the
asymptotics of the differential discounted value function hβ(·) := Jβ(·)− Jβ(0). Ross
[147], [148] refined Taylor’s procedure and showed that, under the Derman–Veinott
[43] condition, {hβ(·)}β∈(0,1) was uniformly bounded in β. By letting β ↑ 1, Ross
established that the ACOE had a bounded solution. This made the vanishing dis-
count approach very popular. In subsequent works, many variants of Derman–Veinott
recurrence conditions appeared. See [52], [178] for a great variety of such conditions.
These conditions are difficult to remove, and counterexamples abound [150]. Actually,
it has been shown in [64], in a very general setting, that the uniform boundedness of
{hβ(·)}β∈(0,1) in β is also a necessary condition for a bounded solution to the ACOE
to exist. Cavazos-Cadena [30], [31], under some additional conditions, showed that the
existence of bounded solutions to the ACOE necessarily impose a very strong recur-
rence structure on the model. Lippman [115] studied controlled semi-Markov processes
with unbounded cost with both discounted and average cost criteria. Following the
vanishing discount approach, he derived results for the average cost case under several
restrictive assumptions. Federgruen, Hordjik, and Tijms [53] have explored the same
approach.

Hordijk [91] extended many earlier results to countable state space and compact
action spaces. He introduced the Lyapunov function method for CMP. He used this
method to obtain a (possibly unbounded) solution to the ACOE, yielding an optimal
policy. However, the Lyapunov function method necessarily imposes a blanket stability
of the processes (in the sense of positive recurrence). Such stability is not always met
in, e.g., many queueing model applications. In addition, he introduced some new
concepts, particularly based on the relation of stochastic dynamic programming with
Markov potential theory. There is a vast amount of literature devoted to CMP in
several volumes of the Mathematisch Centrum tracts; see [181] and the references
therein.

With Hordijk’s work, it appeared that a shift away from the vanishing discount
approach was necessary. Rosberg, Varaiya, and Walrand [144] treated the average
cost criterion as the limiting case of the finite horizon problem, but details of their
arguments depend heavily on the specifics of the problem they consider, viz., the
control of two queues in tandem with a linear cost structure. Federgruen and Tijms
[56] initiated a direct study of the ACOE by a span seminorm method, for bounded
costs. This method allows us to obtain useful value iteration algorithms. Later,
Federgruen, Schweitzer, and Tijms [55] treated the problem with countable state space
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and unbounded costs. Assuming a recurrence condition on the model, they established
the existence of a (possibly unbounded) solution to the ACOE, thereby establishing
the existence of an optimal stationary deterministic policy.

In a series of papers [20]–[25], Borkar presented a convex analytic approach to
treat the problem with countable state space, compact action space, and unbounded
cost. This approach can be seen as an extension of the ideas in Manne [125] and
Wagner [185]. Borkar stressed the existence of an optimal stable stationary deter-
ministic policy, i.e., one that induces a positive recurrent process. While a blanket
stability assumption (e.g., of Lyapunov type) may be too restrictive to cover many
queueing applications, it nevertheless is desirable that the optimal policy be stable.
Borkar showed that, to obtain an optimal stable stationary deterministic policy, ei-
ther a blanket stability hypothesis or a condition on the cost that penalizes unstable
behavior is necessary. He also emphasized the concept of almost sure optimality by a
“pathwise” treatment of the problem. A comprehensive account of the convex analytic
approach to CMP is given in [26].

After the extensive works of Hordijk, Federgruen et al., and Borkar, it seemed
that the vanishing discount approach was not appropriate for many classes of problems
with unbounded costs. However, this approach has been revived and generalized to a
great extent in [17], [61], [63], [74], [76], [77], [83], [85], [155], [156], [167], [172], [190].
In some of these references, an inequality version of the ACOE is studied. In view of
the results of [30], [31], and [64], it is clear that a bounded solution to the ACOE is
too restrictive, in general. A natural candidate solution is one that is bounded below
[28], [76], [85], [155], [156], [172], [190], or one having suitable growth properties [28] or
satisfying other conditions [167]. Weber and Stidham [172], [190] studied the problem
for queueing systems. Under a penalizing condition on the cost and some structural
assumptions, they established the existence of a (possibly unbounded) solution to the
ACOE and showed the existence of an optimal stationary deterministic policy. Sennott
proceeded along similar lines. She identified very general conditions on the discounted
value function so that the vanishing discount approach could successfully be pursued.
We refer to [155]–[157], [172], [190] for many interesting examples of queueing systems
and to [34] for a comparison of different sets of assumptions. Extensions of these
techniques to semi-Markov decisions processes with applications to queueing systems
have been reported in [157].

The first attempt to give a description of CMP with more general state and ac-
tions spaces was carried out by Karlin [98]. Blackwell [19], Maitra [123], and Strauch
[173] studied CMP with a general state space and the discounted cost criterion. Their
work was significantly extended by Shreve and Bertsekas in [15], [164], [165]. Fein-
berg [60] studied CMP with Borel state space and with arbitrary numerical criteria,
which include TC, AC, and DC as particular cases. By establishing the convexity of
the set of strategic measures (measures of the type Pπ

µ on the canonical space), he
established the existence of an ε-optimal f ∈ ΠSD for these criteria. De Leve [112]–
[114] considered general state and action space CMP in continuous time with an AC
criterion, with an emphasis on the ergodic behavior of the processes. Ross [148] used
the vanishing discount approach to study CMP with an AC criterion, general state
space, finite action space, and bounded cost function. He showed that, if the family of
differential discounted value functions {hβ(·)}β∈(0,1) is equicontinuous and uniformly
bounded, then the ACOE admits a bounded solution, yielding an optimal stationary
deterministic policy. Ross also introduced the concept of minorant. He showed that,
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if there exists a state x0 ∈ S and α > 0 such that

P (x0 | x, a) > α for all a ∈ U(x) , x ∈ S,

then the average cost case could be reduced to a discounted one. This was greatly
extended in the work of Gubenko and Statland [80] (see also [43]). They showed
that, under similar minorant (or majorant) conditions, a contraction map, with re-
spect to the sup norm, could be defined on Mb(S), which would yield a bounded
solution to the ACOE. They also obtained bounded solutions to the ACOE under
continuity and boundedness conditions, which guarantee that {hβn(·)}, with βn ↑ 1,
is uniformly bounded and equicontinuous; thus a similar approach as in [148] can be
followed. Georgin [72], [73] also explored this approach, under some ergodicity condi-
tions. Tijms [179] and Hübner [96] directly studied the ACOE, under some ergodicity
assumptions, by showing that the undiscounted dynamic programming map is a con-
traction on Mb(S), with respect to the span seminorm. For an excellent presentation
of these methods and the type of ergodicity conditions used, see [82, §3.3]. Wijngaard
[201], [202] and Kumar [101] studied the problem under Doeblin’s condition using an
operator theoretic method. Under several conditions, Kurano [104] obtained solutions
to the ACOE and also showed the existence of an average optimal stationary deter-
ministic policy. Also, in [105]–[107], he obtained the existence of an optimal stationary
deterministic policy under Doeblin’s condition. For a comprehensive presentation of
the different recurrence conditions used for the above purposes, see [86].

The study of partially observable controlled Markov processes (POCMP) was ini-
tiated independently by various authors [5], [46], [50], [161], [162]. The reduction
to models with complete information (see §7) was exhibited for various cases in [5],
[138], [151], [205]. The study of finite state space POCMP with an AC criterion was
initiated by Sondik [170]. Transforming the problem into an equivalent completely
observable (CO) problem with Borel state space, Sondik tried to cast the problem in
the framework of Ross [148] but did not show equicontinuity of {hβ(·)}β∈(0,1). Ross
[150], Wang [189], and White [191] showed this equicontinuity condition for specific
scalar replacement problems. Ohnishi, Mine, and Kawai [132] studied a multistate
replacement problem by using concavity properties of hβ(·). Platzman studied the
general problem of finite state and action space POCMP, also by using concavity
properties of the functions hβ(·). Under certain reachability conditions, he proved
that the family {hβ(·)}β∈(0,1) is uniformly bounded. However, even though this fam-
ily may not be equicontinuous with respect to the Euclidean metric, he showed that
it is equi-Lipschitzian with respect to some other appropriate metric, thus putting the
problem within the framework of Ross [148]. Fernández-Gaucherand, Arapostathis,
and Marcus [62], [63] followed a different approach to the problem, using the concepts
of invariant sets of a CMP and controlled sub-Markov processes. This approach allows
us to consider POCMP with countable state and observation spaces. Borkar [26] also
studied the problem via his convex analytic approach.

4. Finite state space. In this section, we will consider models with a finite state
space. Initially, we restrict our attention to the case when A is a finite set; models
with compact action space will be discussed at the end of the section.

4.1. Finite action spaces. Let S = {1, . . . , k}. In this case, ΠSD is finite. This
fact plays a crucial role in the analysis for the average cost problem. For a policy π ∈ Π,
let Jβ(π) denote the vector

(
Jβ(1, π), . . . , Jβ(k, π)

)T ; similarly, we define JN (π), J(π),
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J∗
β , J∗, and J∗

N . For a stationary deterministic policy f ∈ ΠSD, let P (f) denote the
transition matrix of the corresponding process and

c(f) :=
(
c(1, f(1)), . . . , c(k, f(k))

)T
.

Also, the (i, j)th entry in the nth power of the transition matrix P (f) will be denoted
by Pn

ij(f) or Pn(f)(i, j). It is well known that

lim
N→∞

1
N

N−1∑
n=0

Pn(f) := P ∗(f)

exists [18], [87, Chap. 4], [137], where P 0(f) = I (the k × k identity matrix). Using
the theory of stochastic matrices, the following results can be proved. For details, see
[8], [18], [87], [137].

Theorem 4.1. For each f ∈ ΠSD,
(i) J(f) = P ∗(f)c(f);
(ii) The number of linearly independent equations in

(
I−P (f)

)
w = c(f)−J(f)

is k minus the number of communicating classes in P (f);
(iii) The equations (

I − P (f)
)
w = c(f)− v,(4.1)

P ∗(f)w = 0(4.2)

have solutions v = J(f) and w = w(f), where

w(f) :=
(
I − P (f) + P ∗(f)

)−1(
I − P ∗(f)

)
c(f);

(iv) v = J(f) and w = w(f) are the unique solutions to (4.1) and (4.2) for
which v(s) = v(s′) if s and s′ are in the same communicating class of P (f), and
v(s) = J(s, f) if state s is transient in P (f).

Remark 4.1. (a) It is easily seen from the above theorem that if, under an f ∈
ΠSD, the process is irreducible or unichain (see [87]), then J(· , f) is constant.

(b) The matrix

H(f) :=
(
I − P (f) + P ∗(f)

)−1(
I − P ∗(f)

)
is called the deviation matrix. It plays a fundamental role in the analysis. For the
discounted case, Jβ(f) =

(
I − βP (f)

)−1
c(f) . Analogous results can be developed for

the average cost case using H(f). The following result, due to Miller and Veinott
[127] and Lamond and Puterman [110], can be proved using the spectral theory of
stochastic matrices.

Theorem 4.2. Let β ∈ [0, 1) and λ = (1 − β)β−1. Let f ∈ ΠSD and ν be the
eigenvalue of P (f) less than one with largest modulus. If 0 ≤ λ ≤ 1− |ν|, then

(4.3) (λI + I − P )−1 = λ−1P ∗(f) +
∞∑

n=0

(−λ)nHn+1(f)

and

(4.4) Jβ(f) = (1 + λ)
[
λ−1P ∗(f)c(f) +

∞∑
n=0

(−λn)Hn+1(f)c(f)
]
.
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Remark 4.2. (a) The quantity h(f) := H(f)c(f) plays a crucial role in the analysis
of the problem. It is called the bias or transient cost. It can be easily seen from the
Neumann series expansion of

(
I − P (f) + P ∗(f)

)−1 [137] that, for s ∈ S,

h(f)(s) = Ef
s

[ ∞∑
t=0

(
c
(
Xt, f(Xt)

)
− J(Xt, f)

)]
.

¿From the above representation, h(f) can be interpreted as the expected total cost
for a CMP with cost c − J . If P (f) is aperiodic, the distribution of Xt converges to
a limiting distribution, so eventually c

(
Xt, f(Xt)

)
and J(Xt, f) will differ very little.

Thus, h(f) can be thought of as the expected total cost “until convergence” or the
expected total cost during the “transient” phase of the evolution of the process [137].

(b) Howard [95] has shown that

JN (f) = NJ(f) + h(f) + o(1) .

Therefore, as N becomes large, for each s ∈ S, JN (f) approaches a straight line with
slope J(f) and intercept h(f). When J(f)(s) is constant, JN (s)− JN (s′) approaches
h(f)(s) − h(f)(s′), so that h(f) is the asymptotic relative difference of starting the
process in two states s and s′. That is why h(f) is often referred to as the relative
value. See [14, pp. 304–308], [36] for a good discussion of these matters.

(c) Expansion (4.4) extends Blackwell’s expansion [18].
(d) Using expansion (4.4), the following important result is immediate.
Corollary 4.1. For f ∈ ΠSD, J(f) = limβ↑1 (1− β)Jβ(f).
Following Blackwell [18] and Derman [40], we now prove the following existence

results.
Theorem 4.3. There exists an f ∈ ΠSD that is discount optimal for all β

sufficiently close to 1 and is also optimal for the average cost criterion.
Proof. For each f ∈ ΠSD and s ∈ S, Jβ(s, f) is obviously an analytic function of

β. Let {βn}, 0 < βn < 1 be a sequence such that βn ↑ 1. For a fixed n, let fn ∈ ΠSD

be βn-discount optimal (see Theorem 2.1). Since ΠSD is a finite set, the sequence
{fn} must contain at least one f∗ ∈ ΠSD that occurs infinitely often. Let {βnk} be
a subsequence of {βn} such that βnk ↑ 1 and f∗ = fn1 = fn2 = · · · . Then, for every
g ∈ Π, Jβnk

(f∗) ≤ Jβnk
(g). Since all coordinates of Jβ(f∗) and Jβ(g) are analytic

functions of β, it follows that
Jβ(f∗) ≤ Jβ(g)

for all β near 1. Since this holds for all g ∈ Π, it follows that f∗ is β-discount optimal
for all β near 1. We next show that f∗ is average optimal. Let π ∈ Π. Then

(1− βnk)Jβnk
(f∗) ≤ (1− βnk)Jβnk

(π) , k = 1, 2, . . . .

Therefore, letting k →∞ and using Theorem 4.1 and a standard Tauberian theorem
(Theorem A.2 in the Appendix), it follows that

J(f∗) = lim
β↑1

(1− β)Jβ(f∗)

= lim
k→∞

(1− βnk)Jβnk
(f∗)

≤ lim sup
k→∞

(1− βnk)Jβnk
(π) ≤ J(π),

and the proof is complete. ��
We now briefly mention three numerical approaches. For details, we refer to [14],

[137], [180], among others. Our presentation follows [137].
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Value iteration. We assume that, under any f ∈ ΠSR, the corresponding chain
is unichain and aperiodic. For any positive integer N , the finite horizon value function
J∗

N satisfies the equation

(4.5) J∗
N+1 = min

f∈ΠSD

{
c(f) + P (f)J∗

N

}
.

Equation (4.5) can act as an iteration equation with J∗
0 ≡ 0 as the initial condition.

Let f∗
N+1 ∈ ΠSD realize the minimum in (4.5). We can treat (1/N)J∗

N and f∗
N as our

guesses for J∗ and an average optimal policy. Then J∗
N −NJ∗ converges as N →∞.

Also, there exists an integer N0 such that, for any N ≥ N0, any f ∈ ΠSD that attains
the minimum in (4.5) is average optimal. However, this property does not yield an
error estimate and hence fails to provide a stopping rule for the iteration scheme. To
this end, with h =

(
h(1), . . . , h(k)

)
, we let

L(h) := min
x∈S

{
Th(x)− h(x)

}
, U(h) := max

x∈S

{
Th(x)− h(x)

}
.

It can be shown that [137]

min
x∈S

{
J∗

N (x)− J∗
N−1(x)

}
≤ J∗ ≤ max

x∈S

{
J∗

N (x)− J∗
N−1(x)

}
and

L(J∗
N−1) ≤ L(J∗

N ) ≤ J∗ ≤ U(J∗
N ) ≤ U(J∗

N−1).

Furthermore, limN→∞
{
U(J∗

N )− L(J∗
N )

}
= 0 . Thus, an average ε-optimal policy can

be found by stopping the value iteration when

U(J∗
N )− L(J∗

N ) < ε .

There are other variants of this approach; see [54], [56], and [96].

Linear programming. To simplify our presentation, we will assume that, under
any f ∈ ΠSR, the corresponding process is irreducible. Let P (f) denote the transition
matrix of the process, and η(f) ∈ P(S) its invariant measure. Then, for any s ∈ S,
J(s, f) = J(f), a constant, and

J(f) =
∑
s∈S

∑
a∈U(s)

c(s, a)f(s, a)η(f)(s) .

Therefore, the average cost problem can be reduced to the following linear program-
ming problem:

(4.6a) minimize
∑
s∈S

∑
a∈U(s)

c(s, a)x(s, a)

subject to

(4.6b) x(s, a) ≥ 0 , s ∈ S , a ∈ U(s) ,

(4.6c)
∑
s∈S

∑
a∈U(s)

x(s, a) = 1 ,

(4.6d)
∑

a∈U(s)

x(s, a) =
∑
s′∈S

∑
a∈U(s′)

x(s′, a)P (s′ | s, a) .

Under the irreducibility assumption, the simplex method can be employed to find an
optimal stationary deterministic policy. This formulation is due to Manne [125].



discrete-time controlled markov processes 297

Policy improvement. We work under the irreducibility assumption. The dual
to the linear program (4.6a)–(4.6d) is the problem of finding variables g and h(s),
s ∈ S, to

(4.7a) maximize g

subject to

(4.7b) g +
∑
s′∈S

(
δ(s, s′)− P (s′ | s, a)

)
h(s) ≤ c(s, a),

(s, a) ∈ S × U(s), where δ(s, s′) is the Kronecker delta.
The functional equation

(4.8) g + h(s) = min
a∈U(s)

{
c(s, a) +

∑
s′∈S

P (s′ | s, a)h(s)
}

is equivalent to (4.7a), (4.7b) under the irreducibility assumption and is the average
cost optimality equation [87]. We will discuss this equation in detail in the next
section. It will be shown that an f ∈ ΠSD is optimal if and only if f realizes the
pointwise minimum in (4.8), and then g is the optimal average cost. This suggests the
following iteration algorithm.

(i) Let n = 1. Choose fn ∈ ΠSD. Let hn(s) ≡ 0 for all s ∈ S.
(ii) Find a solution gn and hn(s) of the following equation:

gn + hn(s) = c
(
s, fn(s)

)
+

∑
s′∈S

P
(
s′

∣∣ s, fn(s)
)
hn(s) .

(iii) For each s ∈ S, compute

φn(s) = min
a∈U(s)\{fn(s)}

{
c(s, a) +

∑
s′∈S

P (s′ | s, a)hn(s′)
}
− gn − hn(s) .

If φn(s) ≥ 0 for all s ∈ S, then fn is average optimal and gn is the
optimal average cost. If φn(s) < 0 for some s ∈ S, then pick a ∈ U(s)
such that

c(s, a) +
∑
s′∈S

P (s′ | s, a)hn(s′)− gn − hn(s) < 0 .

Define fn+1 ∈ ΠSD as fn+1(s) = a and fn+1(·) = fn(·), otherwise.
Then fn+1 yields a lower average cost. Since ΠSD is finite, the policy
improvement scheme converges in a finite number of steps.

4.2. Compact action spaces. We now consider the problem where the action
set A is not finite but a compact metric space. In this situation, an optimal policy
may not exist; see [51, p. 178, Ex. 1]. Note that here ΠSD is no longer finite. Under
certain ergodicity assumptions, Martin-Löf [126] and Feinberg [57] have proved the
existence of an optimal f ∈ ΠSD. We will discuss various ergodicity assumptions on
a countable state space in detail in the next section. First, we focus on ε-optimal
policies established by Chitashvili [35] and Feinberg [58]; see [51, Chap. 7].
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Theorem 4.4. Under Assumptions 2.1–2.3, for every ε > 0, there exists an
ε-optimal f ∈ ΠSD.

Proof (Sketch). For f ∈ ΠSD, let J(f) be as in Theorem 4.1. For i ∈ S, let

(4.9) J̃(i) = inf
f∈ΠSD

J(f)(i) .

Clearly, J∗(i) ≤ J̃(i), for each i ∈ S. Corresponding to i ∈ S, select an fi ∈ ΠSD

such that

(4.10) J(fi)(i) ≤ J̃(i) + ε .

The set Ã =
{
fi(j) : i, j ∈ S

}
is obviously finite. Taking the action set to be Ã, the

preceding results can be applied to the finite CMP
(
S, Ã, P, c

)
. For this model, there

exists a stationary deterministic policy, say f∗, which is average optimal. Thus

(4.11) J(f∗)(i) ≤ J(fi)(i) ≤ J̃(i) + ε for each i ∈ S .

Let
ρ∗(i) := lim sup

β↑1
(1− β)J∗

β(i) .

Then, by Theorem A.2, in the Appendix,

(4.12) ρ∗(i) ≤ J∗(i) for each i ∈ S .

By (4.11), it suffices to show that J∗(i) = J̃(i), for each i ∈ S. ¿From (4.12), it then
suffices to show that ρ∗(i) ≥ J̃(i). For each β ∈ (0, 1), let fβ ∈ ΠSD be β-discount
optimal. Let f be a limit point of fβ as β ↑ 1. Then using (4.4) (which is valid in this
case as well) and Assumptions 2.1–2.3, it can be shown that

ρ∗(i) ≥ J(f)(i) ≥ J̃(i). ��

Concerning the existence of an optimal policy, we state the following result.
Theorem 4.5. Let Assumptions 2.1 and 2.2 hold and further assume that c(·) is

continuous on ΠSR and that, under any f ∈ ΠSR, the corresponding chain is unichain.
Then there exists an optimal policy in f ∈ ΠSD.

The result is almost immediate from the fact that, under the unichain assumption,
P ∗(·), and therefore also J(·), is continuous on ΠSR [91, Lemma 10.2]. For further
details, including the convergence of a policy improvement algorithm, see [94].

5. Countable state space. The average cost problem becomes much more com-
plicated when the state space is countable. Maitra [121] has given a counterexample
that shows that there need not exist an optimal policy. In [122] Maitra has studied a
particular problem in which there does not exist any policy that is β-discount optimal
for all β sufficiently close to 1. Flynn [68] has constructed a more dramatic counterex-
ample. In his example, there exists an average optimal policy in ΠSD. Nevertheless
he exhibits an f ∈ ΠSD and a β0 ∈ (0, 1) such that f is β-discount optimal for all
β ∈ (β0, 1), but it is not average optimal. Fisher and Ross [67] have presented a coun-
terexample that shows that the optimal policy need not be stationary or deterministic.
We refer to [150] for several other counterexamples. It is apparent that the average
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cost problem is closely related to the ergodic behavior of the process, and it is well
known that the ergodic theory of Markov processes on a countable state space is much
more involved than on a finite state space; for example, a Markov process on a finite
state space cannot be null recurrent. Another vital difference in this case is that the
number of stationary deterministic policies is no longer finite. To study the ergodic
theory, some recurrence conditions are necessary. There are many such conditions
available in the literature [26], [52], [178]; we will survey a few representative ones.

In what follows, the state space S = {0, 1, 2, . . . }. For each i ∈ S, the action
space U(i) is a prescribed compact metric space. We will always assume that, for
fixed i, j ∈ S, c(i, ·), P (i | j, ·), are continuous. These conditions can be weakened or
dropped in several places, as will be clear from the specific context.

Derman [38] studied the ACOE that, with ρ a scalar and h : S → R, takes the
following form:

(5.1) ρ + h(i) = min
a∈U(i)

{
c(i, a) +

∑
j∈S

P (j | i, a)h(j)
}

.

A solution to (5.1) is a pair (ρ, h) satisfying it.
Suppose that f ∈ ΠSD is a minimizing selector in (5.1). Then (5.1) becomes

(5.1′) ρ + h(i) = c
(
i, f(i)

)
+

∑
j∈S

P
(
j

∣∣ i, f(i)
)
h(j) .

Equation (5.1′) asserts that, apart from ρ, the cost if the process stops now equals
the expected cost if it continues under the policy f for just one more period. We can
give a similar interpretation to (5.1). Hence, we may think that ρ is the average cost
under f and that no other f ∈ ΠSD has a smaller average cost. Thus, the function h
in (5.1) is roughly a measure of how much we are prepared to pay to stop the process,
though continuing to pay an average cost ρ in the future [141] (cf. Remark 4.2(a)).
Therefore, the function h may be viewed as a cost potential. Also, by a stochastic
representation of h, using (5.1) and (5.1′), h is indeed a potential. Hordijk [91] has
pursued this line of thought in great detail, which we will discuss later.

We start with a characterization of optimal policies.
Theorem 5.1. If the ACOE has a solution (ρ, h) satisfying

(5.2) lim
t→∞

1
t
Eπ

i h(Xt) = 0 ∀π ∈ ΠSD , ∀ i ∈ S ,

then there exists an f ∈ ΠSD such that

ρ = J(i, f) = J∗(i) ∀ i ∈ S .

Moreover, an f ∈ ΠSD is average optimal if, for each i ∈ S,

(5.3) c
(
i, f(i)

)
+

∑
j∈S

P
(
j

∣∣ i, f(i)
)
h(j) = min

a∈U(i)

{
c(i, a) +

∑
j∈S

P (j | i, a)h(j)
}

,

and, conversely, if an f ∈ ΠSD is average optimal and the corresponding chain is
irreducible and positive recurrent, then (5.3) holds.

Proof. Let f ∈ ΠSD satisfy (5.3). Then, since

Ef
i

[
h(Xt+1)

∣∣ Ft

]
=

∑
j∈S

P
(
j

∣∣ Xt, f(Xt)
)
h(j) ,
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it follows from (5.1) and (5.3) that

(5.4) ρ + h(Xt) = c
(
Xt, f(Xt)

)
+ Ef

i

[
h(Xt+1)

∣∣ Ft

]
.

Summing (5.4) from t = 0 to N−1, dividing by N , and taking expectations, we obtain

ρ =
1
N

Ef
i

[
N−1∑
t=0

c
(
Xt, f(Xt)

)]
+

Ef
i

[
h(XN )

]
− h(i)

N
.

Next, letting N →∞ and using (5.2) yields

ρ = lim
N→∞

1
N

Ef
i

[
N−1∑
t=0

c
(
Xt, f(Xt)

)]
.

On the other hand, if π is any other policy, we can show using the same arguments
that

ρ ≤ lim sup
N→∞

1
N

Eπ
i

[
N−1∑
t=0

c(Xt, At)

]
.

Hence, f is average optimal. Conversely, let f ∈ ΠSD be average optimal and suppose
that the corresponding chain is irreducible and positive recurrent. If f does not satisfy
(5.3), then there exist i0 ∈ S, a0 ∈ U(i0) and δ > 0 such that

c
(
i0, f(i0)

)
+

∑
j∈S

P
(
j

∣∣ i0, f(i0)
)
h(j)

= c(i0, a0) +
∑
j∈S

P (j | i0, a0)h(j) + δ .

(5.5)

Let f ′ ∈ ΠSD be defined as follows:

f ′(i) =
{

f(i) if i �= i0,
a0 if i = i0.

Then, using (5.5) along with irreducibility and positive recurrence, it is easily seen
that J(i0, f ′) < J(i0, f), which contradicts the average optimality of f . ��

Remark 5.1. (a) We say that (5.1) admits a bounded solution if h(·) is bounded.
If the ACOE has a bounded solution, then (5.2) is clearly satisfied; moreover, using the
martingale stability theorem [117, p. 53], it can be shown that the f ∈ ΠSD selecting
the minimum in (5.3) is sample path average optimal [72].

(b) Various extensions of last assertion of Theorem 5.1 have been obtained by
Sennott [158].

Derman and Veinott [43] have prescribed a certain recurrence condition that en-
sures that (5.1) admits a bounded solution. We will discuss it later in this section.
The ACOE resembles the dynamic programming equation, and Theorem 5.1 is analo-
gous to a dynamic programming characterization of an optimal policy. However, the
dynamic programming heuristic does not lead directly to the ACOE. Taylor [177] de-
veloped a vanishing discount approach for a particular problem, which was extended
for the general case by Ross [147]–[150]. Our presentation here follows Ross [150]. As
noted earlier, the average case can in some sense be treated as the limiting case of
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the discounted problem as the discount factor approaches 1. The discounted value
function J∗

β(·) satisfies the DCOE (cf. Theorem 2.1)

J∗
β(i) = min

a∈U(i)

{
c(i, a) + β

∑
j∈S

P (j | i, a)J∗
β(j)

}
,

and a β-discounted optimal policy selects a minimizing action. One possible way of
finding an average optimal policy might be to choose the actions minimizing

lim
β→1

{
c(i, a) + β

∑
j∈S

P (j | i, a)J∗
β(j)

}
.

However, this limit need not exist and indeed would often be infinite for all actions.
The situation can nevertheless be salvaged by considering a “differential” discounted
value function, i.e., hβ(i) := J∗

β(i) − J∗
β(0), where 0 ∈ S is an arbitrary, fixed state.

The function hβ(·) satisfies

(5.6) (1− β)J∗
β(0) + hβ(i) = min

a∈U(i)

{
c(i, a) + β

∑
j∈S

P (j | i, a)hβ(j)
}

.

¿From (5.6) it is now apparent that (5.1) can be derived under certain conditions by
letting β → 1. We state here a simple result [150], despite the fact that it also holds
under weaker hypotheses (see Theorem 5.9).

Theorem 5.2. Suppose that there exists a constant K > 0 such that
∣∣hβ(i)

∣∣ ≤ K,
for all β ∈ (0, 1) and i ∈ S. Then

(i) The ACOE admits a bounded solution (ρ, h);
(ii) For some sequence βn → 1, h(i) = limn→∞ hβn(i), i ∈ S;
(iii) limβ→1 (1− β)J∗

β(i) = ρ for any i ∈ S.
Proof. Let βn ↑ 1 be given. By the uniform boundedness of hβ(·), using a diago-

nalization procedure, we can find a subsequence, which for simplicity we also denote
by βn, such that hβn(i) → h(i) for each i ∈ S, where h(·) is a bounded function.
Again, since (1 − βn)J∗

βn
(0) is bounded, there is a further subsequence βnk ↑ 1 such

that
lim

k→∞
(1− βnk)J∗

βnk
(0)

exists. Part (i) of the theorem then follows from (5.6) and an application of the
dominated convergence theorem. Furthermore, by Theorem 5.1, ρ is the minimum
average cost. Since the above results are independent of the sequence chosen, (iii)
then follows. ��

Remark 5.2. It has been shown [64] that, if the ACOE has a bounded solution,
then there exists a constant K > 0 such that |hβ(i)| ≤ K for all β ∈ (0, 1), i ∈ S.

5.1. Bounded costs. In this section, we assume that c(· , ·) is bounded. Ross
[150] has proved that under a Derman–Veinott [43] type recurrence condition (see
(5.7), below), the uniform boundedness hypothesis of Theorem 5.2 is satisfied.

Theorem 5.3. Let f ∈ ΠSD and let {Xt} be the corresponding state process. Let

τ = min
{
t ≥ 1 : Xt = 0

}
.
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If there exists a K > 0 such that

(5.7) Ef
i

[
τ
]

< K

for all f ∈ ΠSD and all i ∈ S, then hβ(i) is bounded uniformly in β ∈ (0, 1) and i ∈ S.
Proof. Let β ∈ (0, 1) and fβ ∈ ΠSD be β-discount optimal. We have

(5.8)

J∗
β(i) = E

fβ

i

[ ∞∑
t=0

βtc
(
Xt, fβ(Xt)

)]

= E
fβ

i

[
τ−1∑
t=0

βnc
(
Xt, fβ(Xt)

)]
+ E

fβ

i

[ ∞∑
t=τ

βtc
(
Xt, fβ(Xt)

)]
≤ ME

fβ

i

[
τ
]
+ J∗

β(0)Efβ

i

[
βτ

]
,

where M is a bound on c(· , ·). ¿From (5.7) and (5.8), it follows that

(5.9) J∗
β(i)− βJ∗

β(0) ≤ MK .

Also, from (5.8) and applying Jensen’s inequality, we obtain

J∗
β(i) ≥ J∗

β(0)Efβ

i

[
βτ

]
≥ J∗

β(0)βK .

Therefore,

J∗
β(0)− J∗

β(i) ≤ (1− βK)J∗
β(0)

≤ (1− βK)
M

1− β
≤ MK .

(5.10)

The desired result follows from (5.9) and (5.10). ��
After the work of Derman [38], Derman and Veinott [43], and Ross [147], [148],

several recurrence conditions have appeared [178]. We explore a few representative
ones.

Let f ∈ ΠSD. For a finite set A ⊂ S, let

(5.11) τA = min
{
t ≥ 1 : Xt ∈ A

}
.

Assumption 5.1. There is a finite A ⊂ S and a constant K > 0 such that
Ef

i

[
τA

]
< K for all i ∈ S and f ∈ ΠSD. Furthermore, for any f ∈ ΠSD the

corresponding process does not have two disjoint invariant sets.
Assumption 5.2. There exists a constant K > 0, and, for every f ∈ ΠSD, there is

a state j(f) ∈ S such that

Ef
i

[
τ{j(f)}

]
< K ∀ i ∈ S .

Assumption 5.3 (simultaneous Doeblin). There is a finite set A, an integer n ≥ 1
and a scalar α > 0 such that ∑

j∈A

P
(
j

∣∣ i, f(i)
)
≥ α



discrete-time controlled markov processes 303

for all i ∈ S and all f ∈ ΠSD. Furthermore, for any f ∈ ΠSD, the corresponding
process does not have two disjoint invariant sets.

Assumption 5.4 (scrambling). There is an integer n ≥ 1 and a scalar α > 0 such
that, for any f ∈ ΠSD,∑

j∈S

min
{
Pn

i1,j(f), Pn
i2,j(f)

}
≥ α ∀ i1, i2 ∈ S .

Assumption 5.5 (ergodicity). There is an integer n ≥ 1 and a scalar ρ > 0 such
that, for each f ∈ ΠSD, there exists an η(f) ∈ P(S) for which∑

j

∣∣Pm
ij (f)− η(f)(j)

∣∣ ≤ 2(1− ρ)�m/n�

for all i ∈ S and m ≥ 1, where �x� denotes the largest integer not exceeding x.
Remark 5.3. Clearly Assumptions 5.1 and 5.2 are generalizations of the Derman–

Veinott condition. Hordijk [91] has proved the existence of a bounded solution to the
ACOE using Assumption 5.1. Under Assumption 5.5, for each f ∈ ΠSD, η(f) is the
unique invariant measure of the corresponding process.

Federgruen, Hordijk, Tijms [52] have established the following theorem.
Theorem 5.4. Assumptions 5.1–5.3 are equivalent. Also, if for any f ∈ ΠSD the

corresponding process is aperiodic, then Assumptions 5.1–5.5 are equivalent.
Remark 5.4. Under any one of Assumptions 5.1–5.5, Federgruen, Hordjik, and

Tijms [52] have established the existence of a bounded solution to the ACOE by
extending the vanishing discount approach of Taylor and Ross.

We have thus far seen several recurrence conditions which are sufficient for the
ACOE to admit a bounded solution. Cavazos-Cadena [30], [31] has dealt with the
converse question of what are the necessary recurrence conditions for the ACOE to
have a bounded solution. He has obtained the following result. Consider the following
assumption.

Assumption 5.6. There exists a constant K > 0 such that, for each bounded and
measurable c : S ×A → R and every collection {U(i) : i ∈ S}, U(i) ⊂ A, there exist
ρ ∈ R and h : S → R bounded that solve (5.1) and satisfy ‖h‖ ≤ K‖c‖, where ‖ · ‖ is
the sup norm.

Theorem 5.5. Assumptions 5.2 and 5.6 are equivalent.
The proof follows by an application of the uniform boundedness principle. For

details and other variants, we refer to [30], [31]. Thus, an assumption on the existence
of a bounded solution to the ACOE necessarily imposes a strong recurrence structure
on the system. Also, note that Assumption 5.6 involves not just one CMP but a family
of CMP (one for each c and {U(i)}). Since it is equivalent to Assumptions 5.1–5.3
and under aperiodicity conditions to Assumptions 5.1–5.5, it follows that Assumptions
5.1–5.5 are too strong for many important applications. In fact, there are interesting
situations [20] in which these conditions are not satisfied, but for which we can find
average optimal stationary deterministic policies.

Ross [148] has proved that, under the following recurrence condition, the AC can
be reduced to an appropriate DC. Therefore, in view of Theorem 2.1, the problem can
be resolved in this case.

Theorem 5.6. If there exists a constant α > 0 such that

P (0 | i, a) ≥ α > 0
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for all i ∈ S, a ∈ U(i), then the AC can be reduced to an appropriate DC.
Proof. Let

P̃ (j | i, ·) =
{

(1− α)−1P (j | i, ·) for j �= 0,
(1− α)−1(P (0 | i, ·)− α) for j = 0.

Let J̃∗
β(·) denote the β-discounted value function for the CMP with cost c(· , ·) and

transition law P̃ (· | · , ·). Then it is easily verified that, for each i ∈ S,

αJ̃∗
1−α(0) + J̃∗

1−α(i) = min
a∈U(i)

{
c(i, a) +

∑
j∈S

P (j | i, a)J̃∗
1−α(j)

}
.

Let f ∈ ΠSD be (1 − α)-discount optimal for the modified CMP. It follows from
Theorem 5.1 that f is AC-optimal for the original CMP, and the optimal average cost
is αJ̃∗

1−α(0). ��
Remark 5.5. Note that, if the ACOE has a bounded solution (ρ, h), then ρ is

the optimal average cost for any initial condition. Hence, the existence of a bounded
solution to the ACOE suggests that some kind of “unichainedness” is in effect, since,
for the multichain case, the average cost would, in general, depend on the initial
condition. The multichain version of the ACOE is

(5.12a) min
a∈U(i)

∑
j∈S

P (j | i, a)ρ(j) = ρ(i),

(5.12b) ρ(i) + h(i) = min
a∈U1(i)

{
c(i, a) +

∑
j∈S

P (j | i, a)h(j)
}

,

where

(5.12c) U1(i) =
{

a ∈ U(i) : min
a∈U(i)

∑
j∈S

P (j | i, a)ρ(j) = ρ(i)
}

.

This equation has been studied by Zijm [208] for countable state space. For more
general state spaces, it was extensively studied much earlier by Yushkevich [204] (see
also [51]); this work will be discussed in the next section.

If (5.12) has a bounded solution ρ(i), h(i), where both ρ and h are bounded func-
tions, then we can show, as before, that ρ(i) is the optimal average cost starting from
state i ∈ S and a minimizing selector in (5.12) yields an average optimal stationary
deterministic policy. Under a certain “geometric convergence condition,” Zijm [208]
has established the existence of a bounded solution to (5.12). Under the additional
assumptions that under any stationary deterministic policy the corresponding pro-
cess has at most a finite number of ergodic classes, he has shown that the geometric
convergence condition is equivalent to a number of recurrence conditions of the type
Assumptions 5.1–5.5.

Hordijk [91] establishes the existence of an average optimal f ∈ ΠSD without
utilizing the ACOE. Let ΠSD be endowed with the product topology. Then ΠSD is
compact and metrizable. Let us consider the following assumptions.
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Assumption 5.7. For each f ∈ ΠSD and i ∈ S, there exists a measure ηi(f) ∈
P(S) such that ηi(f)(j) = lim

N→∞
(1/N)

∑N−1
n=0 Pn(f)(i, j).

Assumption 5.8. f �−→ ηi(f) is continuous for any i ∈ S.
Assumption 5.9. For each i ∈ S, {ηi(f) : f ∈ ΠSD} is tight (for a definition of

tightness, see [134, Def. 3.1, p. 28]).
Assumption 5.10. For each f ∈ ΠSD, the corresponding process is recurrent.
Assumption 5.11. For each f ∈ ΠSD, the corresponding process does not have

disjoint-invariant sets.
Assumption 5.12.

{
P (f)(i, ·) : i ∈ S, f ∈ ΠSD

}
is tight.

It is easy to see that Assumptions 5.7 and 5.8 imply that, for each i ∈ S,
{ηi(f) : f ∈ ΠSD} is compact. Hence, in particular, Assumptions 5.7 and 5.8 im-
ply Assumption 5.9. By definition, Assumption 5.9 implies Assumption 5.7. Also, it
can easily be shown that Assumptions 5.9 and 5.11 imply Assumption 5.8, and that
Assumption 5.12 implies 5.9. However, Assumption 5.12 may be easier to verify.

Theorem 5.7. Each of the following five combinations of assumptions is suffi-
cient for the existence of an average optimal f ∈ ΠSD: (Assumption 5.7, Assump-
tion 5.8), (Assumption 5.9, Assumption 5.10), (Assumption 5.9, Assumption 5.11),
(Assumption 5.10, Assumption 5.12), (Assumption 5.11, Assumption 5.12).

Remark 5.6. The main idea behind the proof of this theorem can be traced back to
the proof of Theorem 4.3. We give the main points and skip the details. Let βn ∈ (0, 1)
be a sequence such that βn ↑ 1, let fβn ∈ ΠSD be βn-discount optimal, and f∞ be a
limit point of {fβn} in ΠSD. Suppose that ρ∗(i) is a scalar satisfying (1−βn)J∗

βn
(i) →

ρ∗(i), for each i ∈ S (along a suitable subsequence). Then, by using Tauberian and
ergodic theorems, we deduce that J∗(i) = ρ∗(i) and f∞ is average optimal under
(Assumption 5.7, Assumption 5.8). Under (Assumption 5.9, Assumption 5.10), f∞
is average optimal for initial states i ∈ S̃ :=

⋃
i supp

(
ηi(f∞)

)
, where “supp” denotes

the support. Then by Assumption 5.10 there exists an f̄ such that the corresponding
process starting from any i ∈ S \ S̃ reaches S̃. Set

f̃(i) =

{
f(i) if i �∈ S̃,

f∞(i) if i ∈ S̃.

It follows that f̃ is average optimal. The other cases can be dealt with in a similar
manner.

5.2. Unbounded costs. We have thus far considered bounded costs only. There
are practical situations (e.g., in queueing systems) where the cost is typically un-
bounded. We assume that c ≥ 0 (cf. Assumption 2.1). Let us now consider the
ACOE for unbounded c. Note that the boundedness of c, did not play any role in the
proof of Theorem 5.1. For unbounded c, the ACOE is unlikely to admit a bounded
solution.

Lippman [115], [116] has studied controlled semi-Markov processes with unbound-
ed costs. He has placed polynomial bounds on the movement of the process in one
transition. He has made a further assumption that there exists an f ∈ ΠSD such that
both the mean first passage times and mean first passage costs from any state i to state
zero under the policy are finite. Moreover, if f ∈ ΠSD is close to β-discount optimal
for a sequence of discount factors, then it is AC-optimal. Lippman has employed the
vanishing discount approach of Taylor and Ross to establish the existence of a solution
(ρ, h) to the ACOE with h satisfying (5.2), thereby establishing the existence of an
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average optimal f ∈ ΠSD. He has also given some examples from queueing systems
where his conditions are satisfied. However, his condition on the β-discounted value
function appears to be very difficult to verify.

Hordijk [91] has used a Lyapunov stability condition to establish the existence of
an average optimal f ∈ ΠSD.

Assumption 5.13 (Lyapunov condition). Let

P̃ (f)(i, j) =
{

P (f)(i, j), j �= 0,

0, j = 0.

There exists a function w : S → R+ such that, for all i ∈ S,
(i) c

(
i, f(i)

)
+ 1 +

∑
j P̃ (f)(i, j)w(j) ≤ w(i), for all f ∈ ΠSD;

(ii)
∑

j P (f)(i, j)w(j) is continuous in f ;

(iii) limn→∞
∑

j P̃n(f)(i, j)w(j) = 0.
Theorem 5.8. Under the above Lyapunov condition, there exists an AC-optimal

f ∈ ΠSD.
Proof (Sketch). Let f ∈ ΠSD. For i ∈ S, we define τi = min

{
t ≥ 1 : Xt =

i
}
, where Xt is governed by f . Then, under Assumption 5.13, using the standard

techniques of stochastic Lyapunov function method [91], [108], the following results
can be proved:

(5.13) Ef
i

[
τ0

]
≤ w(i),

(5.14) Ef
i

[
τ0−1∑
t=0

c
(
Xt, f(Xt)

)]
≤ w(i) .

Indeed, with n ∈ N and n > 1,

Ef
i

[
w(Xn∧τ0)

∣∣ Fn∧τ0

]
− w(i) = −Ef

i

[
n∧τ0−1∑

t=0

Ef
i

[
w(Xt+1)

∣∣ Xt

]
− w(Xt)

]
≤ −Ef

i

[
n ∧ τ0

]
,

where the last inequality is due to Assumption 5.13. Hence, Ef
i

[
n ∧ τ0

]
≤ w(i), and,

letting n ↑ ∞, (5.13) follows. Also, (5.14) can be proved along the same lines. By an
ergodic theorem [133],

lim
N→∞

1
N

Ef
0

[
N−1∑
t=0

c
(
Xt, f(Xt)

)]
= (Ef

0 τ0)−1Ef
0

[
τ0−1∑
t=0

c
(
Xt, f(Xt)

)]
=: ρ(f).

Let ρ∗ := inff∈ΠSD ρ(f). Then ρ∗ ≤ w(0). Define

h(i) = inf
f∈ΠSD

Ef
i

[
τ0−1∑
t=0

(
c
(
Xt, f(Xt)

)
− ρ∗

)]
.
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Then h(0) = 0. Using (5.13), (5.14), and Assumption 5.13(iii), it can be shown
that (ρ∗, h) is a solution of the ACOE with h satisfying (5.2), and the desired result
follows. ��

Remark 5.7. (a) Note that by Assumption 5.13(i) the cost function c does not
grow faster than the Lyapunov function w. Thus, there is a restriction on the growth
of c imposed by w. In CMP, w(i) = i, w(i) = i2 are typical examples of Lyapunov
functions [91]. In the latter case, for example, we can treat only those unbounded cost
functions that do not grow faster than quadratic functions.

(b) Assumption 5.13(iii) is crucial in showing that the cost potential h satisfies
limt→∞ (1/t)Ef

i h(Xt) = 0, for all f ∈ ΠSD, and i ∈ S.
Federgruen, Hordijk, and Tijms [53] have extended Hordijk’s results by replacing

the single attracting point {0} by a finite set K ⊂ S. Their main assumption is the
following: There exists a finite set K ⊂ S such that, for each initial state i ∈ S, the
suprema over the mean hitting time of K and mean hitting costs are finite. This, in
turn, is equivalent to the existence of a Lyapunov function w : S → R+ satisfying
Assumption 5.13(i), where now P̃ is defined as

P̃ (f)(i, j) =
{

P (f)(i, j), j �∈ K, f ∈ ΠSD,

0, j ∈ K.

Under the additional assumptions that Assumption 5.13(ii) and (iii) hold, and the
“communication condition” that for any f ∈ ΠSD the corresponding process has no
two disjoint invariant sets, they have established the existence of a solution (ρ, h)
to the ACOE by employing the vanishing discount approach and have shown that h
satisfies (5.2). This work has been further extended by Federgruen, Schweitzer, and
Tijms [55]. They have dropped the unichainedness assumption in [53]. Instead, they
assume that any state can be reached from any other state via some policy. Under this
and other conditions in [53], they have established the existence of a solution (ρ, h) to
the ACOE, with h satisfying (5.2). They have deviated from the vanishing discount
approach and have, instead, utilized Tychonoff’s fixed point theorem in their analysis.
We again note that, in all these investigations, a restrictive growth condition on the
cost function is imposed, as noted in Remark 5.7.

The Lyapunov stability condition necessarily imposes a blanket stability (i.e.,
positive recurrence) of certain states (cf. (5.13)), which may be very restrictive. On
the other hand, (5.2) is not easy to verify in general and, indeed, may not hold in
the case of many queueing models [141]. Another generalization of the boundedness
of the solution of the ACOE could be boundedness from below. This will be the case
if the cost function has some “monotone” properties, which naturally arise in various
queueing models. This line of thought has been pursued in various ways in [24], [28],
[74], [76], [77], [141], [142], [155], [156], [172], [190].

Sennott [155], [156] has prescribed very general conditions in this direction. We
will now briefly describe them. Consider the following assumptions.

Assumption 5.14. For every i ∈ S and every β ∈ (0, 1), J∗
β(i) < ∞.

Assumption 5.15. There exists a nonnegative integer L such that

hβ(i) := J∗
β(i)− J∗

β(0) ≥ −L .

Assumption 5.16. There exists a function M : S → R+ such that hβ(i) ≤ M(i)
for all i ∈ S and any β ∈ (0, 1). For every i ∈ S, there exists an a(i) ∈ U(i) such that∑

j

P
(
j

∣∣ i, a(i)
)
M(j) < ∞ .
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Theorem 5.9. Under Assumptions 5.14–5.16, there exists an AC-optimal f ∈
ΠSD.

Proof. Let βn ∈ (0, 1) be such that βn ↑ 1. Let fβn be βn-discount optimal. Let
f be a limit point of fβn as n → ∞. To simplify the notation, all subsequences of
βn will also be denoted by βn. By Assumption 5.16 and a diagonal argument, there
exists a function h : S → R such that limn→∞ hβn(·) = h(·). By Assumption 5.15,
h(·) ≥ −L. Let ρ : S → R+ be a function such that limn→∞ (1 − βn)J∗

βn
(i) = ρ(i).

Using Assumption 5.16, it is easy to see that ρ(i) = ρ∗, a constant. Now, for i ∈ S,

(5.15) (1− βn)J∗
βn

(0) + hβn(i) = c
(
i, fβn(i)

)
+ βn

∑
j∈S

P
(
j

∣∣ i, fβn(i)
)
hβn(j) .

Fix an i ∈ S. Add L to both sides to make (hβn(i) + L) ≥ 0 and take “lim inf” on
both sides of (5.15). Then, by Fatou’s lemma and the assumption of continuity of
P (j | i, ·), we conclude that

ρ∗ + h(i) ≥ c
(
i, f(i)

)
+

∑
j

P
(
j

∣∣ i, f(i)
)
h(j) .

Since h(·) is bounded below, the proof of Theorem 5.1 can be modified to show that
J(i, f) ≤ ρ∗. By Theorem A.2 in the Appendix, J(i, π) ≥ ρ∗ for any π ∈ Π. Hence,
J(i, f) = J∗(i) = ρ∗, and f is AC-optimal. ��

Remark 5.8. (a) From the above proof, it is clear that if ρ is a scalar, h : S → R

is bounded below, and

(5.16) ρ + h(i) ≥ min
a∈U(i)

{
c(i, a) +

∑
j

P (j | i, a)h(j)
}

,

then ρ is the optimal average cost, and any f ∈ ΠSD selecting the minimum on the
right-hand side of (5.16) is AC-optimal. In this case, we may replace the ACOE by
an average cost optimality inequality (ACOI), viz., (5.16).

(b) If, for each i ∈ S, U(i) is finite, then, in the above proof, fβn(i) = f(i) for
large n. Then we can write, for large n,

ρ + h(i) = c
(
i, f(i)

)
+ βn

∑
j

P
(
j

∣∣ i, f(i)
)
hβn(j) .

By Fatou’s lemma,

ρ + h(i) ≥ c
(
i, f(i)

)
+

∑
j

P
(
j

∣∣ i, f(i)
)
h(j) .

Consider the stronger assumption, below.
Assumption 5.17. Assumption 5.16 holds, and

∑
j P (j | i, a)M(j) < ∞, for all

a ∈ A and i ∈ S.
Under Assumption 5.17, using dominated convergence, it is easy to see that

ρ + h(i) = min
a∈U(i)

{
c(i, a) +

∑
j

P (j | i, a)h(j)
}

,
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and we obtain the ACOE. If, for each i ∈ S, there is a finite set Ri ⊂ S such that
P (j | i, ·) = 0 for j �∈ Ri, then Assumption 5.17 will obviously hold. Such a condition
is satisfied for systems whose dynamics have a nearest-neighbour motion property [28].

(c) If there exists an f ∈ ΠSD, under which the process is ergodic, irreducible with
an invariant measure η(f) ∈ P(S), and

∑
i c

(
i, f(i)

)
η(f)(i) < ∞, then Assumptions

5.14 and 5.16 hold. Assumption 5.15 holds if J∗
β(i) is increasing in i. Direct conditions

implying Assumptions 5.14–5.17 can be found in [28], [32], [34], [76], [77], [155], [156],
[172], [190]. See also [141], [142].

(d) Let f ∈ ΠSD be a policy that attains the minimum on the right-hand side
of (5.16). Fix an i ∈ S. If the chain under f is positive recurrent at i, then we can
show that equality holds at i in (5.16). However, the lack of positive recurrence at i
may lead to strict inequality in (5.16). Cavazos-Cadena [33] had exhibited an example
to demonstrate this. He has further shown in his example [33] that Assumptions
5.14–5.16 are satisfied, but the ACOE does not admit any solution.

5.3. The convex analytic approach. We will now describe Borkar’s convex
analytic approach for the average cost case [20]–[26]. The convex analytic approach
to the AC-problem is a natural extension of the linear programming approach when
the state/action spaces are no longer finite. In this approach, we view the control
problem as the problem of minimizing a linear functional on the convex set of “ergodic
occupation measures,” to be defined shortly [20]–[26]. This approach can also be used
to treat other standard cost criteria, but it may be more involved for treating cases
such as the DC criterion. On the other hand, it is more flexible and powerful for
certain other purposes, e.g., pathwise average cost, constrained optimization problem,
among others. Since the techniques involved here are entirely different from what we
have thus far followed, we will embark on a more detailed discussion.

By replacing each U(i) with
∏

k U(k) and P (j | i, ·) by its composition with the
projection

∏
k U(k) → U(i), we may and will assume that the U(i)’s are replicas of a

fixed compact metric space A. We say that an f ∈ ΠSR is stable if the corresponding
process is positive recurrent. We will assume that, under an f ∈ ΠSR, the process has
S as its single communicating class. (This can be relaxed in some cases; see [26] for
a discussion on this.) Therefore, f will have a unique invariant measure η(f) ∈ P(S)
satisfying

η(f)P (f) = η(f) .

Let ΠSSR denote the space of stable stationary policies. ΠSSD is defined analogously.
For an f ∈ ΠSSR, denote by η̂(f) ∈ P(S × A) the “ergodic occupation measure”
defined by ∫

S×A

g dη̂(f) =
∑
i∈S

η(f)(i)
∫

A

g(i, a)f(i)(da)

for g ∈ Cb(S ×A). We will consider the sample path average cost optimality, which
is stronger than the usual AC-optimality. Let

IR =
{
η̂(f) : f ∈ ΠSSR

}
, ID =

{
η̂(f) : f ∈ ΠSSD

}
.

Note that η̂(f) can only be defined for an f ∈ ΠSSR. To consider optimality in Π, we
will need to consider the following empirical processes. Let π ∈ Π and let (Xt, At) be
the corresponding processes with initial law µ ∈ P(S). Define the P(S ×A)-valued
empirical process {νt}t≥1 by

(5.17) νt(C ×D) =
1
t

t−1∑
s=0

I
{
Xs ∈ C, As ∈ D

}
, t ≥ 1 ,
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for C, D Borel in S, A, respectively. Let S = S ∪ {∞} be the one-point compactifi-
cation of S. By abuse of notation, we may identify νt with the element of P(S ×A)
that restricts to it on S ×A. Since P(S ×A) is compact, {νt}, viewed as a sequence
of P(S×A)-valued random variables, converges to a sample path dependent compact
limit set in P(S ×A). We characterize this set in Lemma 5.1, below, the statement
of which calls for some new notation. Note that any element ν ∈ P(S × A) can be
decomposed as

(5.18) ν(B) = δνν′
(
B ∩ (S ×A)

)
+ (1− δν)ν′′

(
B ∩ ({∞} ×A)

)
for B Borel in S×A, δν ∈ [0, 1] is uniquely specified and ν′ ∈ P(S×A) (respectively,
ν′′ ∈ P({∞} × A)) is uniquely specified if δν > 0 (respectively, δν < 1). We may
render ν′, ν′′ unique at all times by imposing an arbitrary fixed choice thereof when
δν = 0, respectively, 1.

Lemma 5.1. Outside a set of zero probability (with respect to Pπ
µ ), the following

holds: For any limit point ν of {νt} in P(S ×A) for which δν > 0,

ν′ = η̂(f)

for some f ∈ ΠSSR.
Proof. By the martingale stability theorem [117, p. 53],

lim
t→∞

1
t

t∑
s=1

[
I{Xs = i} − Eπ

µ

[
I{Xs = i}

∣∣ Fs−1

]]
= lim

t→∞
1
t

t∑
s=1

[
I{Xs = i} −

∑
j∈S

P (i | j, As−1)I{Xs−1 = j}
]

= lim
t→∞

[
νt({i} ×A)−

∫
P (i | · , ·) dνt

]
= 0 a.s.,

for each i ∈ S. Consider a sample path outside the set of zero probability on which
the above fails for any i ∈ S. Then, for any ν as in the statement of the lemma, we
must have

ν′({i} ×A) ≥
∫

P (i | · , ·) dν′, i ∈ S .

Note that an inequality is obtained here, since the second term on the right-hand side
of (5.18) is obviously nonnegative. Summing over i ∈ S on both sides, it follows that
equality must hold. Decomposing ν′ as ν′(i, da) = ν(i)f(i)(da), where ν ∈ P(S) is
the marginal on S and i �−→ f(i) ∈ P(A) is a version of the regular conditional law
that defines an element of ΠSR, we obtain

ν(i) =
∑
j∈S

ν(j)P (f)(i, j) .

Hence, ν = η(f), and the conclusion follows. ��
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Lemma 5.2. The sets IR and ID are closed; also, IR is convex and has its extreme
points in ID.

Proof. Let η̂(fn) ∈ IR and η̂(fn) → ν for some ν in P(S × A). Then, for all
i ∈ S,

η̂(fn)({i} ×A) =
∫

P (i | · , ·) dη̂(fn) , n ≥ 1 .

Letting n → ∞, ν({i} × A) =
∫

P (i | · , ·) dν. Now argue as in the proof of the
preceding lemma to conclude that ν = η̂(f) for some f ∈ ΠSSR. This proves that IR

is closed. The proof that ID is closed is similar. Let f1, f2 ∈ ΠSSR and 0 ≤ λ ≤ 1.
Define f ∈ ΠSSR as follows:

f(i) =
λη(f1)(i)f1(i) + (1− λ)η(f2)(i)f2(i)

λη(f1)(i) + (1− λ)η(f2)(i)
.

Then using the properties of invariant measures, it is not difficult to see that

η(f) = λη(f1) + (1− λ)η(f2),

η̂(f) = λη̂(f1) + (1− λ)η̂(f2) ,

showing that IR is convex. Now let f ∈ ΠSSR be such that, for some i0 ∈ S and
0 < λ < 1, there exist φ1, φ2 ∈ P(A) such that∫

P (· | i0, a)f(i0)(da) = λ

∫
P (· | i0, a)φ1(da) + (1− λ)

∫
P (· | i0, a)φ2(da),

∫
P (· | i0, a)φ1(da) �=

∫
P (· | i0, a)φ2(da).

Define f1, f2 ∈ ΠSR as

fi(j) =
{

f(j), j �= i0,

φi, j = i0.

Then it can be shown [24] that f1, f2 ∈ ΠSSR, and any two of η(f), η(f1), η(f2) are
distinct from each other. Let b ∈ (0, 1) be such that

λ = bη(f1)(i0) /
(
bη(f1)(i0) + (1− b)η(f2)(i0)

)
.

Then we can argue as before to conclude that η̂(f) = bη̂(f1) + (1− b)η̂(f2). Therefore
η̂(f) is not an extreme point of IR. This implies that, for η̂(f ′) to be an extreme
point of IR, P (· | i, a) must be constant over a ∈ supp

(
f ′(i)

)
, for each i ∈ S. Hence,

P (f ′′) = P (f ′), for all f ′′ ∈ ΠSSR such that supp
(
f ′′(i)

)
⊂ supp

(
f ′(i)

)
, for each

i ∈ S. In this case, η(f ′′) = η(f ′). Suppose that for some i, say i = 1, there exist
α ∈ (0, 1) and φ′

1, φ
′
2 ∈ P(A), φ′

1 �= φ′
2, such that f ′(1) = αφ′

1 + (1 − α)φ′
2 . Define

f ′
1, f

′
2 ∈ ΠSSR by

f ′
k =

{
φ′

k if i = 1,
f ′(i) if i �= 1,

k = 1, 2 .

It follows that η(f ′) = η(f ′
1) = η(f ′

2). It is also easy to check that

η̂(f ′) = αη̂(f ′
1) + (1− α)η̂(f ′

2) ,

η̂(f ′
1) �= η̂(f ′

2) ,
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which contradicts the extremality of η̂(f ′). Hence, f ′(1) must be a Dirac measure.
Applying this argument to each i ∈ S, we deduce that f ∈ ΠSSD. ¿From this, it
follows that the extreme points of IR lie in ID. ��

We now proceed to show the existence of a sample path average cost optimal
f ∈ ΠSSD. It is clear that a blanket stability condition or some condition on the
cost that penalizes unstable behavior is required to give the desired existence. For
example, consider the case where c(i, a) = exp(−i), which rewards unstable behavior.
Clearly, the cost for any f ∈ ΠSSR is almost surely positive. On the other hand,
provided that ΠSSR �= ΠSR, there exists an unstable policy in ΠSR that results in
an almost-sure zero cost and is, therefore, optimal (the hypothesis that under some
f ∈ ΠSR the process has S as its single communicating class plays a crucial role in
this assertion). We want to rule out this possibility, as stability is a very desirable
property of a policy. We wish to find conditions under which our goal will be achieved.
Let f ∈ ΠSSR. Define

ρ(f) :=
∫

c dη̂(f) , ρ∗ := inf
f∈ΠSSR

ρ(f) .

Note that, under f ∈ ΠSSR, J(i, f) = ρ(f) for each i ∈ S. We consider two sets of
hypotheses.

Assumption 5.18 (the near-monotonicity condition). It holds that

lim inf
i→∞

min
a∈A

c(i, a) > ρ∗.

Intuitively, Assumption 5.18 penalizes the drift of the process away from some
finite set, requiring the optimal policy to exert some kind of a “centripetal force”
pushing the process back toward this finite set. Thus, the optimal policy gains the
desired stability property. If c(i, a) = k(i) for some k : S → R+ and k(i) is increasing,
then this condition will automatically be satisfied. Such penalizing conditions quite
often occur in queueing applications (see [20], [155], [156], [172], [190]).

Assumption 5.19 (stability condition (cf. Assumptions 5.7–5.12)). ΠSR = ΠSSR

and IR is compact.
Assumption 5.19′. Equivalent conditions to Assumption 5.19 are
(i) ΠSD = ΠSSD and ID is compact;
(ii) The mean return times to a prescribed state (say 0) are uniformly integrable

over all f ∈ ΠSR;
(iii) This is the same as (ii), but with ΠSD replacing ΠSR.
Theorem 5.10. Under Assumption 5.18 or Assumption 5.19, there exists an

f ∈ ΠSSD, which is sample path average cost optimal in ΠSR.
Proof. ¿From Lemma 5.2, it can be shown by an application of Choquet’s theorem

[25], [26] that, if ν �−→
∫

c dν attains its minimum on IR, it will do so for an f ∈ ΠSD.
Under Assumption 5.19, it can be shown that f �−→ η̂(f) is continuous. Therefore,
the desired result follows under Assumption 5.19. We next consider the case under
Assumption 5.18. Let fn ∈ ΠSR be such that ρ(fn) ↓ ρ∗. By identifying η̂(fn) with
the element of P(S ×A) that restricts to it on S ×A for each n and then dropping
to a subsequence if necessary, we may assume that η̂(fn) → ν in P(S ×A) for some
ν. Let n →∞ in the equation

η̂(fn)({j} ×A) =
∫

P (j | · , ·) dη̂(fn) , j ∈ S
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and argue as in Lemma 5.1 to conclude that, for ν′ as in (5.18), δν > 0 implies that

ν′({j} ×A) =
∫

P (j | · , ·) dν′, j ∈ S .

Decomposing ν′ as ν′(i, da) = ν(i)f(i)(da), i ∈ S, we have ν = η(f) and therefore
ν′ = η̂(f). Let cm = c ∧ m for m ≥ 1 and pick ε > 0 such that Assumption 5.18
continues to hold with ρ∗ + ε in place of ρ∗. Then

ρ∗ = lim
n→∞

∫
c dη̂(fn)

≥ lim
n→∞

∫
cm dη̂(fn)

≥ δν

∫
cm dη̂(f) + (1− δν)

(
(ρ∗ + ε) ∧m

)
.

Letting m →∞,
ρ∗ ≥ δνρ∗ + (1− δν)(ρ∗ + ε) .

This is possible only if δν = 1 and
∫

c dη̂(f) = ρ∗. ��
The above theorem, however, does not ensure optimality of the cost-minimizing

policy in IR with respect to arbitrary policies. For the near-monotone case, this can
be resolved without any further assumptions, but, for the stable case, we need the
following.

Assumption 5.20. If τ = min
{
t ≥ 1 : Xt = 0

}
, then

sup
π∈Π

Eπ
0

[
τ2

]
< ∞ .

Remark 5.9. Assumption 5.20 clearly implies Assumption 5.19. The converse
need not be true, as can be shown by an explicit example [24]. Some sufficient con-
ditions for Assumption 5.20 are (i) a Lyapunov condition [28], which we will describe
shortly (cf. Theorem 5.11), (ii) the strong uniform recurrence condition of Doeblin
and its variants [178], and (iii) the condition that there exist an N < ∞ for which

sup
π∈Π

sup
i
Pπ

i (τ ≥ N) < 1,

where τ is as above.
Theorem 5.11. Under Assumption 5.18 or Assumption 5.20, there exists an

f ∈ ΠSD, which is sample path average cost optimal.
Proof. Under Assumption 5.20, it can be shown [26] that the processes νt as

defined in (5.17) are tight over Π. Therefore, δν as in the statement of Lemma 5.1
may be taken to be 1. This resolves the case under Assumption 5.20. Under (A5.18),
let ν be a limit point of {νt} in P(S ×A) along some subsequence. Then, as in the
proof of Theorem 5.9, it can be shown that

(5.19) lim inf
t→∞

∫
c dνt ≥ ρ∗.

Since this is true for any limit point ν of {νt} in P(S ×A) and for all sample points
outside a set of probability zero, the desired result follows in this case also. ��
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Remark 5.10. Some open problems arising in this context are:
(i) Can Assumption 5.20 be replaced by Assumption 5.19 while retaining the

desired optimality?
(ii) If ΠSR = ΠSSR, will Assumption 5.19 hold automatically?
Remark 5.11. The condition in (5.19) implies a much stronger optimality, which

will be discussed in §6.
Now, after the existence result of Theorem 5.11, an alternative treatment of the

ACOE is possible. We will present a brief description without proofs. For details, see
[24], [26], [28]. Define h : S → R by

(5.20) h(i) = Ef0
i

[
τ−1∑
t=0

(
c
(
Xt, f0(Xt)

)
− ρ∗

)]
, i ∈ S ,

where τ = min{t ≥ 1 : Xt = 0} and f0 ∈ ΠSD is any sample path average cost
optimal policy. In [22], [24], it is shown that

(
h(·), ρ∗

)
satisfies the ACOE under the

following additional hypothesis called stability under local perturbations.
Assumption 5.21. Given an f ∈ ΠSSD with ρ(f) < ∞, any f ′ ∈ ΠSD ob-

tained from f by changing the actions at most finitely many states is also stable and
ρ(f ′) < ∞.

A sufficient, though not necessary, condition for Assumption 5.21 to hold is that
every state has at most finitely many neighbors; i.e., for each i ∈ S, there is a finite
set Ri ⊂ S such that P (j | i, ·) = 0 for j �∈ Ri.

In many cases, the solution (ρ∗, h) of the ACOE can be characterized (Theo-
rem 5.12, below). The usual characterization of AC-optimal f ∈ ΠSD in terms of the
ACOE can also be proved for the foregoing.

Theorem 5.12. Assume Assumption 5.18 and let f0, h be defined as above
(cf. (5.20)). Let

H =
{
(ρ, w) : (ρ, w) satisfies the ACOE, w(0) = 0, inf w(·) > −∞

}
.

Then (ρ∗, h) is the unique element of H corresponding to the minimum value of ρ (i.e.,
if (ρ′, w′) is another element of H, then ρ′ ≥ ρ∗ with equality if and only if w′ = h).
Now, instead of Assumption 5.18, suppose that c is bounded and the following Lya-
punov condition holds: There exists an w : S → R+, a finite A ⊂ S and an ε > 0
such that

(a) 0 ∈ A and the set
{
i ∈ Ac : P (j | i, a) > 0, for some j ∈ A, a ∈ A

}
is

finite;
(b) limi→∞ w(i) = ∞;
(c) Under any π ∈ Π, µ ∈ P(S)

Eπ
µ

[
(w(Xt+1)− w(Xt) + ε)I{Xt �∈ A}

∣∣ Ft

]
≤ 0 , a.s.;

(d) There exists a random variable Z and a scalar λ > 0 such that E[exp(λZ)] <
∞ and, for all b ≥ 0,

Pπ
µ

(
|w(Xt+1)− w(Xt)| > b

∣∣ Ft

)
≤ P (Z > b) .

Then (ρ∗, h) is the unique solution of the ACOE in the class {(ρ, w) : w(0) =
0, lim supi→∞ h(i)/w(i) < ∞}.
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Remark 5.12. An alternative “intrinsic” formulation of the ACOE is also possible.
For any f ∈ ΠSSD, define hf : S → R by

hf (i) = Ef
i

[
τ−1∑
t=0

(
c
(
Xt, f(Xt)

)
− ρ(f)

)]
, i ∈ S .

We say that f is locally AC-optimal if it yields a lower cost than any other element of
ΠSD obtainable from f by changing f in at most finitely many states. In addition to
the foregoing hypotheses, assume that every locally AC-optimal f is AC-optimal (for
bounded c, a sufficient condition for this is that ΠSD = ΠSSD and

{
η(f) : f ∈ ΠSSD

}
is tight). We then have that f is sample path average cost optimal if and only if, for
i ∈ S,

hf (i) = inf
a

{∑
j

P (j | i, a)hf (j) + c(i, a)− ρ(f)
}

.

This statement is “intrinsic” in the sense that all quantities (i.e., hf , ρ(f)) are com-
putable in terms of f . An interesting open problem is to characterize the most general
conditions under which local AC-optimality implies AC-optimality.

Remark 5.13. The Lyapunov condition in Theorem 5.12(ii) implies Assumption
5.20 and has many other implications [26], but condition (ii)(d) there is rather strong,
and, due to this, it may be difficult to construct such a function in a given situation.
A partial answer to this question is given in [74]. It would be interesting to investigate
if the Lyapunov conditions studied by [55], [91] (cf. Assumption 5.13), which do not
involve condition (ii)(d) above, imply Assumption 5.20.

6. Borel state and action spaces. We consider in this section the case in which
S and A are general Borel spaces. This is a natural setting for many problems, e.g.,
control of stock in water reservoirs, allocation of a resource between production and
consumption, control of biological populations, harvesting a natural resource; see [17],
[51], [82], and references therein for several examples. Also, the equivalent formulation
of POCMP in terms of the conditional distribution of the (unobservable) state leads
to a problem with an uncountable Borel state space, as we see in §7.

In this more general context, the ACOE is written as

ρ(x) + h(x) = inf
a∈U(x)

{
c(x, a) +

∫
S

h(y)P (dy | x, a)
}

= T (h)(x) , x ∈ S ,

(6.1)

where ρ, h ∈ M(S). As in §5, a pair of functions (ρ, h) as above is called a solution
to the ACOE, and, if ρ and h are bounded, we will say that the solution is bounded.
Also, as in Theorem 5.1, our aim is to relate the AC problem to the existence of
solutions to the ACOE. We have the following theorem.

Theorem 6.1. Suppose that (ρ, h) is a solution to the ACOE and that, for each
policy π ∈ ΠM , the following holds:

(6.2) lim
t→∞

Eπ
x

[
h(Xt)

t

]
= 0 ∀x ∈ S .

Then we have the following:
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(i) There holds

(6.3) lim sup
n→∞

1
n + 1

Eπ
x

[
n∑

t=0

ρ(Xt)

]
≤ J(x, π) ,

and if π ∈ ΠSD is such that π(x) attains the infimum in (6.1), then equality is attained
in (6.3);

(ii) If ρ(x) = ρ∗ ∈ R, for all x ∈ S, then J∗(x) = ρ∗, for all x ∈ S, and any
π∗ ∈ ΠSD such that π∗(x) attains the infimum in (6.1) is average optimal.

The proof of Theorem 6.1 follows that of Theorem 5.1 and is essentially contained
in [177], more explicitly in [80], [148]; see also [78, pp. 66–68], [82, pp. 53–55], [150,
pp. 93–94]. Note that (i), above, says that if ρ(·) is taken as the cost function to define
another CMP

(
S,A, U, P, ρ

)
then, for any π ∈ ΠM , the average cost incurred under

the cost function ρ(·) does not exceed that under cost function c(· , ·).
Given the results above, it is of interest to find conditions under which there

exists a solution (ρ, h) to the ACOE, satisfying (6.2). If h is bounded, then (6.2)
is satisfied trivially. Also, if the random variables {h(Xt)} are uniformly integrable
under Pπ

x , for π ∈ ΠM and x ∈ S, then there exists a constant 0 < Kπ
x < ∞ such that

Eπ
x

[
|h(Xt)|

]
≤ Kπ

x . Hence, if such a uniform integrability condition holds under every
π ∈ ΠM and x ∈ S, then (6.2) is also satisfied trivially. The latter approach has been
used by Shwartz and Makowski for some queueing problems [166]–[168].

6.1. Bounded costs. We first assume that c(· , ·) is bounded. When there
are bounded solutions (ρ, h) to the ACOE, then much stronger results than those in
Theorem 6.1 (i) can be obtained. To state these, some definitions are needed.

Let R and H be bounded, measurable, real-valued functions on S, i.e., R, H ∈
Mb(S) and let π∗ ∈ Π. Following the terminology of Dynkin and Yushkevich [51],
the triplet (R, H, π∗) is said to be canonical if

(6.4) JN (x, π∗, H) = J∗
N (x, H) = H(x) + NR(x) ∀N ∈ N0 , x ∈ S ,

and π∗ ∈ Π is said to be a canonical policy if it is an element of some canonical
triplet. Note that, if (R, H, π∗) is a canonical triplet, then π∗ is N -stage optimal, for
all N ∈ N0, when H is taken as the terminal cost. This concept was introduced by
Yushkevich [204]. For finite models, Denardo and Fox [37] used a similar approach.

A policy π∗ ∈ Π is said to be strong average optimal if

(6.5) lim sup
N→∞

1
N

JN (x, π∗) ≤ lim inf
N→∞

1
N

JN (x, π) ∀x ∈ S, π ∈ Π .

Alternate definitions of strong average optimality are given in [69], [70]. Clearly, a
strong average optimal policy π∗ is also average optimal, and the limit of the sequence{
1/NJN (x, π∗)

}
, as N → ∞, exists. An interpretation of (6.5) is that the “most

pessimistic” average performance under π∗ is no worse than the most “optimistic”
performance under any other policy. We have the following result.

Theorem 6.2. Let π∗ ∈ ΠSD, let ρ, h ∈ Mb(S), and let c ∈ Mb(K). Then
(ρ, h, π∗) is a canonical triplet if and only if

(6.6) ρ(x) = inf
a∈U(x)

{∫
S

ρ(y)P (dy | x, a)
}
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and

(6.7) ρ(x) + h(x) = inf
a∈U(x)

{
c(x, a) +

∫
S

h(y)P (dy | x, a)
}

and π∗(x) attains the infimum in both (6.6) and (6.7), for all x ∈ S.
Proof. Necessity. Let (ρ, h, π∗) be a canonical triplet. Then, by (6.4),

h(x) + ρ(x) + Nρ(x) = J∗
N+1(x, h)

= T
(
J∗

N

)
(x)(6.8)

= c
(
x, π∗(x)

)
+

∫
S

J∗
N (y, h)P

(
dy

∣∣ x, π∗(x)
)
.

Since J0(x, π∗, h) = J∗
0 (x, h) = h(x), then (6.7) follows from (6.8) by letting N = 0.

Furthermore, since ρ(·), h(·), and c(· , ·) are bounded, then dividing both sides of (6.8)
by N and letting N →∞ yields (6.6).

Sufficiency. Let (ρ, h) satisfy (6.6) and (6.7) and let π∗(x) attain the infimum in
these expressions. We use induction to show that (ρ, h, π∗) is a canonical triplet. For
N = 0, this is trivially satisfied. Suppose that N ∈ N0 is the first integer for which
(6.4) fails; then

J∗
N (x, h) = T (J∗

N−1)(x)

= T (h + (N − 1)ρ)(x)

= inf
a∈U(x)

{
c(x, a) +

∫
S

h(y)P (dy | x, a) + (N − 1)
∫

S

ρ(y)P (dy | x, a)
}

≥ T (h)(x) + (N − 1) inf
a∈U(x)

{∫
S

ρ(y)P (dy | x, a)
}

= T (h)(x) + (N − 1)ρ(x) = h(x) + Nρ(x).

On the other hand,

J∗
N (x, h) ≤ JN (x, π∗, h)

= c
(
x, π∗(x)

)
+

∫
S

J∗
N−1(y, π∗, h)P

(
dy

∣∣ x, π∗(x)
)

= c
(
x, π∗(x)

)
+

∫
S

[
h(y) + (N − 1)ρ(y)

]
P

(
dy

∣∣ x, π∗(x)
)

= T (h)(x) + (N − 1)ρ(x) = h(x) + Nρ(x)

contradicting our hypothesis. Therefore, (ρ, h, π∗) is a canonical triplet. ��
The results in Theorem 6.2 were obtained by Yushkevich [204]; see also [51]. Note

that (6.7) is the ACOE and that (6.6) allows ρ(·) to be treated as a constant, with
respect to the optimization problem. Of course, if ρ(x) = ρ∗ for all x ∈ S, then (6.6)
is satisfied trivially. The coupled equations (6.6) and (6.7) were apparently introduced
by Howard [95, pp. 61–62], in the context of finite state CMP for which, under some
policies, {Xt} has several ergodic classes, i.e., the so-called multichain case. In this
case, different ergodic classes may have different optimal average cost, and ρ(·) gives
this cost, as will be shown.
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¿From Theorem 6.2, we see that the canonical policy π∗ is a measurable selector
for both (6.6) and (6.7). However, Assumption 2.2 in §2 is not enough to guarantee
the existence of selectors in either (6.6) or (6.7), since ρ and h are assumed to be
bounded and measurable functions, but not necessarily lower semicontinuous. For
this situation, the following condition is needed.

Assumption 6.1. The transition kernel P (· | x, a) is strongly continuous in (x, a);
that is, u ∈Mb(S) implies that

∫
S

u(y)P (dy | · , ·) ∈ Cb(K).
It follows that under Assumptions 2.1, 2.3, 6.1, measurable selectors exist for

each of (6.6) and (6.7), and π∗ ∈ ΠSD will be a canonical policy if and only if it is a
selector for both (6.6) and (6.7). If (ρ, h, π∗) is a canonical triplet, then (ρ, h) solves
the ACOE, and (6.2) is satisfied, since h is bounded. Consequently, the results of
Theorem 6.1 follow. The next result presents other important implications.

Theorem 6.3. Let (ρ, h, π∗) be a canonical triplet, and let c ∈ Mb(K). Then,
for each x ∈ S,

(i) JN (x, π∗) ≤ JN (x, π) + span(h), for every π ∈ Π;
(ii) π∗ is strong average optimal;
(iii) J(x, π∗) = J∗(x) = ρ(x);
(iv) h−(x) + ρ(x)/(1− β) ≤ J∗

β(x) ≤ h+(x) + ρ(x)/(1− β);
(v) If ρ(x) = ρ∗ ∈ R, for all x ∈ S, then, for every π ∈ Π,

lim sup
N→∞

1
N

N−1∑
t=0

c(Xt, At) ≥ ρ∗, Pπ
x –a.s.,

when X0 = x, and {At} is generated using the policy π. Furthermore,

lim
N→∞

1
N

N−1∑
t=0

c(Xt, At) = ρ∗, Pπ
x –a.s.,

if and only if

lim
N→∞

1
N

N−1∑
t=0

Φ(Xt, At) = 0 , Pπ
x –a.s.,

where Φ : K → R is given by

Φ(x, a) := c(x, a) +
∫

h(y)P (dy | x, a)− ρ∗ − h(x);

(vi) π∗ is sample path average cost optimal.
Proof. To prove (i), note that, for all π ∈ Π,

JN (x, π∗, h) = Eπ∗
x

[
N−1∑
t=0

c(Xt, At) + h(XN )

]

≤ Eπ
x

[
N−1∑
t=0

c(Xt, At) + h(XN )

]
= JN (x, π, h).

Hence,

JN (x, π∗) ≤ JN (x, π) + Eπ
x [h(XN )]− Eπ∗

x [h(XN )]

≤ JN (x, π) + span(h) ∀π ∈ Π.
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By the boundedness of h(·), we have that

lim
N→∞

1
N

JN (x, π∗, h) = lim
N→∞

[
h(x) + Nρ(x)

N

]
= ρ(x) .

Furthermore, since JN (x, π∗, h) = JN (x, π∗) + Eπ∗
x [h(XN )], then

ρ(x) = lim
N→∞

1
N

JN (x, π∗),

and (ii)–(iii) follows from (i).
Next, since (ρ, h) solve the ACOE, then (ρ, h−) and (ρ, h+) are also solutions

to the ACOE. Since h−(·) ≤ 0 ≤ h+(·), then by Lemma 2.1 we have that T (h−) ≤
T (βh−) = Tβ(h−), and T (h+) ≥ T (βh+) = Tβ(h+). Then, (iv) follows by induction,
using Theorem 2.1 (iv); see [64].

Turning our attention to (v) and (vi), observe that, due to (6.7), Φ(x, a) ≥ 0 for
all (x, a) ∈ K. Also, by the (Markov) property (2.3) in §2, we have that, for any
π ∈ Π,

Φ(Xt, At) = Eπ
x

[
c(Xt, At) + h(Xt+1)− ρ∗ − h(Xt)

∣∣∣ Ht, At

]
, Pπ

x –a.s.

Let
Zt := c(Xt, At) + h(Xt+1)− h(Xt)− ρ∗ − Φ(Xt, At)

and

MN :=
N−1∑
t=0

Zt =
N−1∑
t=0

c(Xt, At)−Nρ∗ + h(XN )− h(X0)−
N−1∑
t=0

Φ(Xt, At) .

Note that {Zt} is a (Gt,Pπ
x ) martingale difference, where Gt := σ(Ht+1, At+1). Since

{Zt} is bounded uniformly in t, by the martingale stability theorem

lim
N→∞

MN

N
= lim

N→∞

1
N

N−1∑
t=0

Zt = 0 , Pπ
x –a.s.

Therefore, by the boundedness of h(·),

lim
N→∞

[
1
N

N−1∑
t=0

c(Xt, At)− ρ∗ − 1
N

N−1∑
t=0

Φ(Xt, At)

]
= 0 , Pπ

x –a.s.

Finally, (v) and (vi) follow, since Φ(x, a) ≥ 0 for all (x, a) ∈ K and since, for a
canonical policy π∗, Φ(Xt, At) = 0, Pπ

x –a.s. ��
The results in (i)–(iii) of Theorem 6.3 are essentially contained in [51, Chap. 7];

that in (iv) is motivated by similar results in [136] and [64]; (v) and (vi) are due
to Georgin [72], see also [82, pp. 52–55]. Also, the function Φ defined in (v) was
introduced by Mandl [124] and is often referred to as Mandl’s discrepancy function.

In view of Theorem 6.3, it follows that a canonical triplet yields the desired results.
We therefore look for conditions on the primary objects like the cost function c and
transition kernel P , which imply the existence of a canonical triplet, so that the theory
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can be used in a given practical situation. To this end, a standard procedure is to
assume some ergodicity conditions that will ensure the existence of a bounded solution
to the ACOE. We have already discussed several such conditions for the countable state
case (cf. Assumptions 5.1–5.5). Analogues of such assumptions are also available in the
literature, an extensive survey of which appears in [86]. We will focus on a particular
ergodicity condition that not only subsumes many such conditions but also facilitates
easily implementable numerical schemes. Our presentation here follows essentially
that in [82, Chap. 3].

Assumption 6.2. There exists a number α < 1 such that

sup
k,k′∈K

∥∥P (· | k)− P (· | k′)
∥∥

TV
≤ 2α ,

where ‖ · ‖TV denotes the total variation norm.
Example 6.1. Let S = R, A ⊂ R, a compact set. Consider the system

Xt+1 = F (Xt, At) + G(Xt)Wt , X0 = x ,

where F : R×A → R, G : R → R are bounded, continuous and G(·) > 0, and {Wt} is
a sequence of independent N(0, 1) random variables (N(a, b) stands for the Gaussian
distribution with mean a and variance b). In this case, the transition kernel is given
by

P (· | x, a) = N
(
F (x, a), G2(x)

)
.

Using the assumed conditions on F, G we can show that Assumption 6.2 holds. We
omit the details. An important consequence of Assumption 6.2 is given below; for a
proof and further discussion, see [82, Chap. 3].

Lemma 6.1. Suppose that Assumption 6.2 holds. Then, for any f ∈ ΠSD, the
corresponding process {Xt} has a unique invariant measure η(f) ∈ P(S) satisfying

(6.9)
∥∥P t

(
·
∣∣ x, f(x)

)
− η(f)(·)

∥∥
TV

≤ 2αt, t = 0, 1, ... ,

where P t
(
·

∣∣ x, f(x)
)

denotes the t-step transition probability measure under f with
X0 = x.

Remark 6.1. (a) Lemma 6.1 also holds for any f ∈ ΠSR.
(b) It follows from (6.9) that, for any f ∈ ΠSD, P t

(
·
∣∣ x, f(x)

)
converges to η(f)

in total variation norm, uniformly in x, and at a geometric rate.
(c) It is clear that, for any f ∈ ΠSD,

J(µ, f) =
∫

S

c(x, f(x))η(f)(dx)

for any initial law µ.
(d) Compare (6.9) with Assumption 5.5 In view of Theorem 5.4, Assumption 6.2

may be viewed as a representative counterpart of Assumptions 5.1–5.5 for the general
state space case.

We now introduce the concept of span-contraction.
Definition 6.1. Let T : Mb(S) → Mb(S). T is said to be a span-contraction

if, for some γ ∈ [0, 1),

span(Tu− Tv) ≤ γ span(u− v) for all u, v ∈Mb(S) .
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Let ∼ be the equivalence relation on Mb(S) defined by u ∼ v if and only if there exists
some constant C such that u(x)− v(x) = C for all x ∈ S. Let M̃b(S) = Mb(S)/ ∼,
the quotient space, endowed with the quotient norm induced by the span seminorm.
For v ∈ Mb(S), let ṽ denote the corresponding element of M̃b(S) and T̃ : M̃b(S) →
M̃b(S) be the canonically induced map, i.e., T̃ ṽ = T̃ v, v ∈ Mb(S). It is easily seen
that, if T is a span-contraction on Mb(S), then T̃ is a contraction on M̃b(S) and
therefore has a unique fixed point. In turn, it follows that the map T has a span-fixed
point; i.e., there exists a v∗ ∈ Mb(S) such that span(Tv∗ − v∗) = 0 or, equivalently,
Tv∗ − v∗ is a constant. It also follows that any two span-fixed points of T must differ
by a constant.

We now replace Assumption 2.3 with the following
Assumption 6.3. (i) The multifunction U(x) is continuous; (ii) c(· , ·) ∈ Cb(K).
We have the following result; for a proof, see [82, Lemma 3.5].
Lemma 6.2. Under Assumptions 2.2, 6.2, and 6.3, the operator T defined in (2.5)

maps Cb(S) to Cb(S) and is a span-contraction.
Corollary 6.1. Under Assumptions 2.2, 6.2, and 6.3, the ACOE has a bounded

solution (ρ∗, h∗) ∈ R× Cb(S).
Proof. This follows from the fact that there exists a h∗ ∈ Cb(S) such that

span(Th∗ − h∗) = 0. Hence, Th∗ = h∗ + ρ∗ for some constant ρ∗. ��
Remark 6.2. (a) Assume Assumptions 6.2 and 6.3. Let (ρ∗, h∗) ∈ R × Cb(S) be

a solution to the ACOE and fix x0 ∈ S. Define h(·) = h∗(·)− h∗(x0). Then (ρ∗, h) is
also a solution to the ACOE. By the span-contraction property of T , it is the unique
solution in R × Cb(S) satisfying h(x0) = 0; i.e., if (ρ′, h′) ∈ R × Cb(S) is any other
solution of the ACOE in R× Cb(S) such that h′(x0) = 0, then ρ′ = ρ and h′ = h.

(b) In view of the span-contraction property of the operator T , the value iteration
scheme described in §4 can be extended to this case; for details, we refer to [82,
Chap. 3].

(c) Note that Corollary 6.1 asserts the existence of a canonical triplet.
Remark 6.3. In §4 we have identified the duality between the linear programming

formulation and the ACOE under the irreducibility assumption. This has been ex-
tended by Yamada [203] to the case when the state space S is a compact subset of
Rn and the transition law has a density that satisfies a certain “positivity” condition.
Hernández-Lerma, Hennet, and Lasserre [84] have further extended this result to the
Borel state space setting under Assumption 6.2.

Kurano [105]–[107] has studied the problem for compact state and action spaces,
under the hypothesis of Doeblin. Doeblin’s condition for the general state space can
be described as follows.

Assumption 6.4. There exists a nontrivial finite measure µ on
(
S,B(S)

)
, a posi-

tive integer A, and an ε > 0 such that

P "
(
A

∣∣ x, f(x)
)
≥ 1− ε if µ(A) ≥ ε ,

for all f ∈ ΠSD and x ∈ S.
Theorem 6.4. Let the state and action spaces be compact and Assumptions 6.3

and 6.4 hold. Then there exist an f ∈ ΠSD and a set A ∈ B(S) with µ(A) > ε such
that P

(
A

∣∣ x, f(x)
)

= 1 for all x ∈ S, and f is optimal, provided that the initial law
is supported on the set A.

Furthermore, assume the following.
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Assumption 6.5 (reachability). For any x ∈ S and D ∈ B(S) with µ(D) > ε (µ
and ε as in Assumption 6.4, there exists a π ∈ Π such that

Pπ
x

( ∞⋃
t=0

{
Xt ∈ D

})
= 1 .

Assumption 6.6. One of the following two conditions is satisfied:
(i) µ(∂D) = 0 if µ(D) > 0, where ∂D denotes the boundary of D;
(ii) For each D ∈ B(S) with µ(D) > ε, P (D | x, a) is continuous in (x, a).
Theorem 6.5. Under Assumptions 6.3–6.6 there exists an f ∈ ΠSD, which is

optimal.
Remark 6.4. (a) The proof of Theorem 6.3 exploits the idea involved in Lemma 5.1

of extracting a stationary randomized policy from a limit point of empirical processes.
A novel idea in [105] is to remove the randomization by using the ergodic decomposi-
tion of Markov processes under Assumption 6.4. The compactness is used to ensure
the tightness of the empirical processes under any policy. This can be dropped if the
cost function has a penalizing condition or if there is a blanket stability of Lyapunov
type. The details closely mimic the development at the end of §5.

(b) Wijngaard [201] has also obtained the existence of an optimal f ∈ ΠSD under
Doeblin’s condition using an operator theoretic method.

We will now discuss the vanishing discount approach to obtain a bounded solution
to the ACOE. For a fixed x0 ∈ S, let hβ(·) = J∗

β(·)−J∗
β(x0) denote the differential dis-

counted value function. For a general state space, the usual diagonalization procedure
used on a countable state space is not amenable. Nevertheless, if hβ(·) is uniformly
bounded and equicontinuous, then we can use a more subtle diagonalization involving
the Arzela–Ascoli theorem to take the required limits and obtain a bounded solu-
tion to the ACOE. This was studied by Ross [148]. Following [17], [72], [73], we will
discuss some sufficient conditions to obtain the required uniform boundedness and
equicontinuity of hβ(·).

Assumption 6.7. For each β ∈ (β′, 1), for some 0 < β′ < 1, and fβ ∈ ΠSD, the
corresponding state process has a unique invariant probability measure η(fβ) such
that

(6.10) sup
x∈S

β∈(β′,1)

∞∑
t=1

‖P t(· | x, fβ(x))− η(fβ)(·)‖TV < ∞ .

The following result is now easy to establish.
Lemma 6.3. Under Assumptions 6.1, 6.3, and 6.7, hβ(·) := J∗

β(·) − Jβ(x0),
x0 ∈ S fixed, is uniformly bounded, and is equicontinuous for β ∈ (β′, 1).

Corollary 6.2. Under Assumptions 6.1, 6.3, and 6.7, the ACOE has a solution
(ρ∗, h) such that h ∈ Cb(S).

Remark 6.5. If Assumption 6.4 is satisfied and we further impose the condition
that, for every f ∈ ΠSD, the corresponding state process has a single ergodic class,
then (6.10) holds. In particular, if P (dy | x, a) has a density p(y, x, a), with respect
to some σ-finite measure µ, and there exists a nonnegative measurable function p0

satisfying
∫

p0(y)µ(dy) > 0 and p(y, x, a) ≥ p0(y), for all (x, a), then Assumption 6.4
holds and (6.10) can be easily verified. If (x, a) → p(y, x, a) is continuous, then by
Scheffe’s theorem, p(· | x, a) is strongly continuous in (x, a).
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6.2. Unbounded costs. We now drop the boundedness condition on the cost
function and discuss some recent developments involving refinements and extensions of
the vanishing discount approach. Since for unbounded costs the uniform boundedness
of the differential discounted value function hβ(·) is rather unnatural, we attempt to
extend the procedure of [155], [156] to the present case. To this end, we make the
following analogues of Assumptions 5.14–5.16.

Assumption 6.8. There exists a nonnegative function b ∈ M(S), a constant
M ≥ 0, and a sequence {βn} ⊂ (0, 1), βn ↑ 1, such that for all x ∈ S, (i) −M ≤
hβn(x) ≤ b(x), and (ii)

∫
S

b(y)P (dy | x, a) < ∞, for all a ∈ U(x).
Assumption 6.9. There exists a policy π and an initial state x̂ such that

J(x̂, π) < ∞.
Assumption 6.10. There exists β′ ∈ (0, 1) such that supβ∈(β′,1) h̃β(x) < ∞, where

h̃β(x) = J∗
β(x)− infx∈S J∗

β(x).
Assumption 6.11. The transition kernel P (· | x, a) is strongly continuous in a, for

each x ∈ S.
Under Assumptions 6.8 and 6.11, defining h(x) = lim infn→∞ hβn(x), x ∈ S, and

using Fatou’s lemma, we can show that there exists a constant ρ∗ such that

(6.11) lim
n′→∞

(1− βn′)J∗
βn′ (x) = ρ∗ for all x ∈ S ,

where βn′ ↑ 1 is a subsequence of {βn}, and

(6.12) ρ∗ + h(x) ≥ min
a∈U(x)

{
c(x, a) +

∫
S

h(y)P (dy | x, a)
}

, x ∈ S ,

which is the ACOI (see (5.16)) for this case. Similarly, under Assumptions 6.9–6.11,
we can find a constant ρ∗ such that, along a suitable sequence βn ∈ (β′, 1), βn ↑ 1,
limn→∞(1− βn) infx∈S J∗

β(x) = ρ∗. Then, defining h(x) = lim infn→∞ h̃βn(x), we can
deduce (6.12). Thus, we have the following result.

Theorem 6.6. Under Assumptions 6.8 and 6.11 or under Assumption 6.9–6.11,
there exists a constant ρ∗ and a function h, which is bounded below and satisfies (6.12).
Any policy π ∈ ΠSD realizing the minimum on the right-hand side of (6.12) is average
optimal and ρ∗ is the minimum average cost.

Remark 6.6. For details, we refer to [83], [85], [140]. In the case of a countable
state space, a number of sufficient conditions on the transition kernel and the cost
function that enable us to verify Assumptions 5.14–5.16 are available, as mentioned
in §5. This does not seem to be the case for a general Borel state space model,
although several interesting examples have been studied in [83], [85], and [140]. Also,
Assumption 6.11 is a very strong condition and will not, in general, be satisfied for the
transition kernel of the equivalent problem for a partially observable model. Thus, this
case needs further investigation. Finally, note that Assumption 6.10 may in principle
be easier to verify than Assumption 6.8.

Remark 6.7. We note that Theorem 6.6 provides only an ACOI, and not the
ACOE. In many situations, the discounted value function is convex (e.g., in linear
systems with quadratic cost [14]), or concave (e.g., the separated problem in partially
observable models). This class of problems has been used in [61] to obtain the ACOE
under Assumptions 6.8, 6.11, and some additional assumptions.
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7. Partially observable controlled Markov processes. Thus far, we have
assumed that the complete history of the process Ht is available to the decision-maker,
at each stage t ∈ T . However, in many situations, some components of the state
process may not be directly available to the controller since, e.g., it may be impossible
or too costly to measure these. Furthermore, due to imprecisions in the measuring
devices, only noisy observations of the state may be available. When these situations
arise, the problem is said to be a partially observable controlled Markov process.
Here, we study POCMP with finite or countably infinite state and observation spaces,
and finite or compact action set. A major portion of our exposition concentrates
on the vanishing discount method, where we see that the particular structure of the
POCMP can be employed to yield stronger results than those available for general
Borel spaces. We also review Borkar’s convex analytic approach, specialized to the
partially observable case [26].

7.1. Models with partial state information. The model for this problem
is essentially that in [51, Chap. 8] and is as follows. The state process is described
by a pair

{
Xt, Yt

}
t∈T

taking values in a product of Borel spaces X × Y . Only the
second component

{
Yt

}
t∈T

of the state process is available for decision-making, and,
reflecting this, Y is called the observation or message space, and Yt the observation
process. With A denoting the action space, the evolution of the system is governed
by a measurable stochastic kernel P on X × Y given X × Y ×A.

Let µ ∈ P(X × Y ) be an initial distribution of the state. Decomposing (disinte-
grating) the measure µ, we have

µ(dx, dy) = Q0(dy) ψ0(dx | y) ,

where Q0 is the marginal of µ on Y and ψ0 is a version of the regular conditional
law, defined Q0 almost surely; we pick any version from this equivalence class and
keep it fixed thereafter. Note that knowledge of µ, since the value of Y0 is available
to the controller, implies that an a posteriori distribution ψ0 (given Y0 = y) for the
unobserved initial state is introduced. We include ψ0 into the observed history by
letting

H0 := P(X)× Y , Ht := Ht−1 × Y ×A , t ∈ N0 .

The set of admissible actions is specified by a strict, measurable, compact-valued
multifunction U : Y → B(A). Hence, in this context, an admissible policy is a
sequence π = {πt}t∈T of Borel measurable stochastic kernels πt on A given Ht satis-
fying, for all t ∈ T , the constraint

πt

(
U(yt)

∣∣ ht

)
= 1 ∀ht ∈ Ht .

The set of all admissible policies is again denoted by Π.
Remark 7.1. In general, decisions take into account past and present information,

not just the last observation. Note that the constraints on the actions cannot depend
on the unobservable component Xt of the state. If this type of constraint must be
included in the model, then it must be provided to the controller as an additional
observation. Similarly, if the cost process {c(Xt, Yt, At)} is available to the controller,
then it should also be regarded as an additional component in the observation process
[51, p. 201].

Remark 7.2. Quite often, µ is specified as

µ(dx, dy) = Q0(dy | x)µ0(dx),
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where µ0 ∈ P(X) is an initial distribution for X0, and Q0 is a stochastic kernel on Y
given X [15, Chap. 10], [82, Chap. 4].

With µ ∈ P(X × Y ) and an admissible policy π specified, there exists a unique
probability measure Pπ

µ on
(
Ω,B(Ω)

)
, where Ω := (X × Y ×A)∞, defined by

Pπ
µ (dx0, dy0, da0, . . . , dat−1, dxt, dyt)

= µ(dx0, dy0) π0(da0 | ψ0, y0) P (dx1, dy1 | x0, y0, a0) · · ·
πt−1(dat−1 | ψ0, y0, a0, . . . , yt−1)P (dxt, dyt | xt−1, yt−1, at−1) .

7.2. Transformation into a completely observable model. A common ap-
proach in the analysis of a partially observable (PO) model is to construct a completely
observable (CO) model, equivalent to the original one in the sense that corresponding
policies have equal costs. The advantages in doing this are obvious, since the theory
of CO problems is much better developed. However, the price usually paid is that the
dimensionality of the new state space is substantially larger than that of the original
one.

Such an equivalent CO problem can be obtained in many ways. The main idea
is to specify an information state process that summarizes, at each time, all relevant
information for decision-making. Clearly, Ht =

(
ψ0, Y0, A0, . . . , At−1, Yt

)
can be used

as an information state process, but this leads to a nonstationary CO model, in which
“growing memory” difficulties arise; see [15, Chap. 10]. We present here the more
standard approach where the inferential knowledge of Xt is summarized using its
conditional probability distribution, given the entire observed history up to time t.
We first present the construction of the equivalent CO model for general Borel state
spaces and then specialize to models with countable state space. Also, the following
assumption will be in effect throughout this section.

Assumption 7.1. The transition kernel P (· | x, y, a) and the cost function c(x, y, a)
do not depend on y, and U(y) = A for all y ∈ Y .

7.2.1. Borel state space. Given a PO model
(
X×Y ,A, U, P, c

)
satisfying As-

sumption 7.1, we construct a CO model
(
P(X),A, Ũ ,K, c̃

)
as follows. Let

{
Ψt, Yt

}
t∈T

and
{
H̃t

}
t∈T

denote the state process and the history spaces, respectively. The set

of admissible actions is selected by letting Ũ(ψ) = A for all ψ ∈ P(X). We define
the cost function c̃ by

(7.1) c̃(ψ, a) :=
∫

X

c(x, a) ψ(dx) , ψ ∈ P(X) .

It remains to construct the transition kernel K. Working on the canonical sample space
Ω̃ =

(
P(X)×A

)∞, we first define a stochastic kernel q on X × Y given P(X)×A
by

(7.2) q(dx, dy | ψ, a) :=
∫

X

P (dx, dy | x′, a) ψ(dx′) , ψ ∈ P(X),

and, decomposing q, we obtain

(7.3) q(dx, dy | ψ, a) = Q(dy | ψ, a) Ψ(dx | ψ, a, y) .

Equation (7.3) is the filtering equation. For fixed (ψ, a), the map y �→ Ψ, as defined
implicitly in (7.3), is a measurable mapping from Y to P(X). Consequently, along
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with the distribution Q on Y , it induces a distribution K on B
(
P(X)

)
, which is a

measurable function of (ψ, a) or, in other words, a stochastic kernel on P(X) given
P(X) ×A. It follows that the model

(
P(X),A,K, c̃

)
, with state process

{
Ψt

}
t∈T

,
forms a completely observable controlled Markov process, with transition kernel given
by

(7.4) K(B | ψ, a) :=
∫

Y

I
{
Ψ(· | ψ, a, y) ∈ B

}
Q(dy | ψ, a) , B ∈ B

(
P(X)

)
.

The distribution µ̃0 of Ψ0, corresponding to an initial distribution µ of the PO model,
is taken to be

(7.5) µ̃0(B) :=
∫

Y

µ(B, dy) , B ∈ B
(
P(X)

)
.

Given a history ht = (ψ0, y0, . . . , at−1, yt) ∈ Ht in the PO model, we can con-
struct ψ1, ψ2, . . . in a recursive manner by starting from ψ0 and, having obtained
ψt−1, solving for Ψ in (7.3), with (ψ, a, y) = (ψt−1, at−1, yt), and letting ψt = Ψ. In
this manner, we obtain a corresponding history h̃t = (ψ0, a0, . . . , at−1, ψt) ∈ H̃t for
the CO model; we denote this correspondence by the map gt : Ht → H̃t. We can
then assign to each admissible policy π̃ ∈ Π̃ in the CO model a corresponding policy
π = g∗(π̃) in the PO model, defined by

(7.6) πt(· | ht) := π̃t

(
·
∣∣ gt(ht)

)
, ht ∈ Ht .

Clearly, every policy π ∈ Π can also be regarded as a policy in Π̃; in other words,
the map g∗ is onto. If P π̃

µ̃ is the probability measure induced by the policy π̃ and the
initial distribution µ̃ (corresponding to µ) on the canonical sample space Ω̃, then, for
each C ∈ B(X),

(7.7) Pg∗(π̃)
µ (Xt ∈ C | Ht = ht) = Ψt(C) , P π̃

µ̃–a.s.

Utilizing (7.1), (7.4), and (7.5), it can be verified that

(7.8) E
g∗(π̃)
µ

[
c(Xt, At)

]
= Eπ̃

µ̃

[
c̃(Ψt, At)

]
∀ t ∈ T ,

thus establishing that the two models are indeed equivalent as claimed. It follows
that the process Ψt summarizes all information, relevant for control purposes, and is
called for this purpose a sufficient statistic (see [50], [161], [162]). We define the set of
separated policies ΠS as those policies π ∈ Π for which there a Markov policy π̃ on the
equivalent CO problem such that π = g∗(π̃), as defined in (7.6). In other words, with
π̃ = {ft}t∈T ∈ Π̃M , ft : P(X) → P(A) and for each initial distribution µ ∈ P(S),

πt(· | ht) = ft

(
Ψt)(·) , P π̃

µ̃0
–a.s.

Thus, the actions taken using a separated policy only depend on Ht through the
conditional distribution of Xt. In other words, the following separation principle
holds: If an optimal policy exists in Π, one exists in ΠS . Hence, the process can be
controlled optimally by first estimating the state via the conditional distribution and
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choosing control actions based solely on the latter. These and other results, in various
degrees of generality, were independently obtained by various authors, e.g., [3], [5],
[89], [138], [151], [163], [174], [175], [199], [205].

Example 7.1. A partially observable version of the stochastic nonlinear system in
Example 2.1 is described by the equations

Xt+1 = F (Xt, At, Wt) ,

Yt = G(Xt, At−1, Vt) ,

Y0 = G0(X0, V0) ,

where G and G0 are Borel measurable, and the disturbance {Vt}t∈T is an i.i.d. sequence
of random variables taking values in a Borel space V , with a common distribution
PV ; furthermore, it is assumed that X0, {Wt}, and {Vt} are mutually independent.

7.2.2. Countable state space. We now specialize to the case where the state
space X × Y is a finite or countably infinite set, the action space A is a finite or
compact set and with Assumption 7.1 in effect. Thus, U(y) = A for all y ∈ Y , and
the kernel of the process takes the form P (x′, y′ | x, a). We also assume that the cost c
and the kernel P are continuous with respect to a ∈ A. The space P(X) is identified
with the set ∆ of probability vectors, i.e.,

(7.9) ∆ :=

{
ψ ∈ [0, 1]X :

∑
x∈X

ψ(x) = 1

}

endowed with the topology given by the metric

d(ψ1, ψ2) :=
∑
x∈X

∣∣ψ1(x)− ψ2(x)
∣∣ = ‖ψ1 − ψ2‖1 ,

where ‖ · ‖1 stands for the standard A1-norm on RX .
In general, the recursive (filtering) equation (7.3) used to compute ψt+1, is ob-

tained via a decomposition of measures technique; see [15, Chap. 10], [51, Chap. 8],
[82, Chap. 4], [205]. This is particularly simple to accomplish (using the Bayes rule)
when X and Y are countable or when the system is described by a linear system
function and the disturbances are Gaussian; see [5], [14], [103], [174], [175]. For this
purpose, we need the following definitions (compare with (7.2), (7.3)):

q(x, y | ψ, a) :=
∑

x′∈X

P (x, y | x′, a)ψ(x′),(7.10)

V (y, ψ, a) :=
∑
x∈X

q(x, y | ψ, a),(7.11)

T (y, ψ, a)(·) :=

{
q(· ,y|ψ,a)
V (y,ψ,a) , if V (y, ψ, a) �= 0,

0 , otherwise.
(7.12)

Note that the map ψ → T (y, ψ, a) maps ∆ into itself. In the countable case, ψt can
be computed by letting ψt = T (yt, ψt−1, at−1). Here, V (y, ψ, a) is interpreted as the
(one-step ahead) conditional probability of the observation being y given an a priori
distribution ψ for the core state, under decision a. Likewise, T (y, ψ, a) is interpreted
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as the a posteriori conditional probability distribution of the core state, given that
decision a was made, observation y obtained, and an a priori distribution ψ. Also, the
kernel in (7.4) takes the form

(7.13) K(B | ψ, a) :=
∑
y∈Y

V (y, ψ, a) I{T (y, ψ, a) ∈ B} , B ∈ B(∆) ,

while the cost c̃ is computed by

(7.14) c̃(ψ, a) :=
∑
x∈X

c(x, a)ψ(x) .

Remark 7.3. It is common to specify, instead of the kernel P , a transition kernel
P on X given X ×A, and an observation kernel Q on Y given X ×A [14], [63], [82],
[128], [170]. Note that this is only a special case of our presentation, which happens
when the kernel P admits the decomposition

P (x, y | x′, a) = Q(y | x, a)P (x | x′, a) .

In this case, we can express (7.10)–(7.12) in a convenient vector form by viewing ψ
as an element of RX and defining the transition matrix

[
P (a)

]
x,x′ := P (x | x′, a) and

the observation matrix Qy(a) := diag
{
Q(y | x, a) : x ∈ X

}
. Then, with q denoting

the vector in RX defined by qx(y | ψ, a) := q(x, y | ψ, a) and 1′ = (1, . . . , 1), we have

q(y | ψ, a) = Qy(a)P (a)ψ,(7.10′)

V (y, ψ, a) = 1′Qy(a)P (a)ψ(7.11′)

(analogously for (7.12)).
Note that a nonrandomized separated admissible policy can be viewed as a se-

quence of maps πt : ∆ → A. Then an equivalent, completely observable, discounted
cost problem (DC′) can be formulated as finding a separated admissible policy that
minimizes

Jβ(ψ, π) := Eπ
ψ0

[ ∞∑
t=0

βtc̃(Ψt, At)

]
.

The average cost problem (AC′) is analogously defined.
Note that the one-stage cost function c̃(ψ, a) is linear in ψ ∈ ∆. It is easy to

show that the expectation operator corresponding to the kernel K preserves concavity
(convexity) [6], [50]. The following results complement those in Theorem 2.1.

Theorem 7.1. For a (DC′) decision problem, J∗
β(·) is a concave function, for all

0 < β < 1. The DCOE is given by

(7.15) J∗
β(ψ) = min

a∈A

{
c̃(ψ, a) + β

∑
y∈Y

V (y, ψ, a)J∗
β

(
T (y, ψ, a)

)}
,

and any (nonrandomized) separated stationary policy that attains the minimum above
is optimal.

Remark 7.4. The optimality equation (7.15) is obtained from the general theory
of CMP [15], [82]. For other results, see [5]–[7], [14], [50], [128], [161], [169], [170],
[171]. Also, for a survey of relevant computational methods, see [119].
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In this context, a pair (ρ, h) is said to be a solution to the ACOE if, for all ψ ∈ ∆,

(7.16) ρ + h(ψ) = min
a∈A

{
c̃(ψ, a) +

∑
y∈Y

V (y, ψ, a)h
(
T (y, ψ, a)

)}
.

7.3. The vanishing discount approach. As shown in §5, for a countable state
space CMP, boundedness conditions on the differential discounted value function were
sufficient for solutions to the corresponding ACOE to exist. We consider here the
following hypothesis.

Assumption 7.2. There exists a sequence βn ↑ 1, such that hβn is bounded.
Despite the fact that the model

(
∆,A,K, c̃

)
has a general Borel state space, it

has two special features that simplify the analysis via the vanishing discount method.
The first of these features is the concavity of the discounted value function, while
the second is the fact that the kernel K(· | ψ, a) vanishes on the complement of a
countable set (for fixed ψ and a), and thus the integrals with respect to K reduce to
infinite sums.

For the finite state and action space case, the concavity of the discounted value
function has been exploited by Platzman [136] and by Ohnishi, Mine, and Kawai [132].
These authors utilize the fact that a collection of concave functions, defined on some
relatively open convex set C, which are finite and pointwise bounded, is uniformly
bounded and equi-Lipschitzian relative to any closed subset of C [143, Thm. 10.6].
Thus, under Assumption 7.2, the finite dimensionality of ∆ and the concavity of
hβ(·) are used in [132], [136] to obtain a bounded solution (ρ∗, h) to the ACOE, via
the vanishing discount approach. In particular, they partition ∆ into its interior, its
vertices, and its edges, i.e.,

∆ =
⋃

j∈J
∆j .

Note that |J | = 2|X|+1−1 and that each set ∆j is a relatively open convex set. Given
a sequence βn ↑ 1, then the concavity of hβ(·) and Assumption 7.2 are used to obtain
subsequences βn(j) such that {hβn(j)(·)} converges on ∆j . Platzman [136] defines a
metric on ∆ that accomplishes this partition. Let

I(ψ) :=
{
i ∈ X : ψ(i) > 0

}
, ψ ∈ ∆ ,

d(ψ1, ψ2) := 1−min
{

ψ1(i)
ψ2(i)

: i ∈ I(ψ2)
}

, ψ1, ψ2 ∈ ∆ ,

D(ψ1, ψ2) := max
{
d(ψ1, ψ2); d(ψ2, ψ1)

}
.

In [135, pp. 88–89], Platzman shows that D(· , ·) is a metric that leaves ∆ discon-
nected and with components identical to the elements of the partition

{
∆j

}
j∈J . The

following is shown in [136, Lemma A.1].
Lemma 7.1. Let f : ∆ → R be concave and bounded below; then∣∣f(ψ1)− f(ψ2)

∣∣ ≤ span(f) D(ψ1, ψ2) .

Hence, under Assumption 7.2, {hβ(·)}β∈(0,1) is an equi-Lipschitzian family, with
common Lipschitz constant given by the (smallest) uniform bound, and the Arzela–
Ascoli theorem can be used as in [148] to obtain a bounded solution to the ACOE.
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If the state space is infinite, the above method does not work, simply because
the partition induced by the Platzman metric results in a nonseparable space. In this
situation, the particular structure of the kernel has been employed in [63] to develop
a theoretical framework based on the notion of invariant subsets (subprocesses) of a
CMP, and sufficient conditions are given for the existence of solutions to the ACOE,
in the case of a finite action space. The key point is to note that, if we let B(ψ, a) :={
T (y, ψ, a) : y ∈ Y

}
, which is a countable set since Y is countable, then K

(
B(ψ, a) |

ψ, a
)

= 1. Thus, at any time t ∈ N0, the set of possible next states for Ψt is the set⋃
a∈A B(Ψt, a), which is countable, provided that A is finite. This special structure

has also been identified by other authors, e.g., [5, p. 187], [136, p. 369], [170, pp. 19–20].
We briefly summarize the work in [63]. The notions of descendents, ancestors,

and relatives of a point ψ ∈ ∆ are first introduced. The descendents of ψ are defined
as the smallest subset of ∆ containing ψ that is invariant under the action of the maps
in the collection

{
T (y, ·, a) : y ∈ Y , a ∈ A

}
, while the ancestors of ψ are defined as

all the points in ∆ that reach ψ under the application a finite sequence of these maps.
Finally, the relatives of a point ψ, denoted by R(1)

ψ , is the set formed by the union
of its descendents and ancestors. Note that the definition of the descendents is an
extension, to the present context, of Doob’s concept of consequent sets [45, p. 206].
Subsequently, the genealogical tree GTψ of ψ is defined by

GTψ :=
⋃
n∈N

R(n)
ψ ,

where the sets R(n)
ψ are defined recursively as

R(n+1)
ψ :=

⋃
s∈R(n)

ψ

R(1)
s , n ∈ N .

The descendents of a point form a countable set, but the ancestors can, in general, be
uncountably many. To guarantee that the relatives and hence the genealogical tree of
a point is a countable set, the following condition is introduced.

Assumption 7.3. For all y ∈ Y , a ∈ A, and ψ ∈ ∆, T−1(y, ψ, a) is a countable
set.

Introduce the relation ψ ∼ ψ′ if GTψ = GTψ′ . It follows that “∼” defines an
equivalence relation on ∆ resulting in a partition of ∆ into equivalence classes that are
precisely the sets GTψ. Under Assumptions 7.2 and 7.3, the standard diagonalization
argument can be employed on each equivalence class GTψ to construct a pair (ρ∗, hGTψ )
that solves the ACOE on GTψ (the boundedness hypothesis (Assumption 7.2) can be
weakened by letting the constant M depend on the equivalence class). Then, by
defining h(ψ) := hGTψ (ψ) for all ψ ∈ ∆, (ρ∗, h) clearly solves the ACOE on ∆. One
peculiarity of this approach is that the resulting function h is not guaranteed to be
measurable. This is not a major problem though, since an important consequence of
the particular structure (with finite action space) is that the “measurability of various
objects is of no essential concern” for the equivalent problem [15, p. xi]. The approach
in [63] fails when the action space A is not finite.

Since the vanishing discount method relies heavily on the boundedness of the
differential discounted value function, the problem of finding sufficient conditions on
the cost and the kernel of the process for this to hold becomes important. Platzman
[136] has given (reachability and detectability) conditions for Assumption 7.2 to hold;
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however, these conditions are difficult to verify. On the other hand, many models of
interest possess special properties, which allow the verification of Assumption 7.2 very
easily. We examine some of these properties next.

Suppose that a partial order “≺∆” has been defined on ∆ and let “≺A” denote a
linear order on A; we assume that A is finite. We also identify X with N0 and endow
it with its natural ordering.

Definition 7.1. Consider
(
(∆,≺∆), (A,≺A),K, c̃

)
and let ψ1, ψ2 ∈ ∆. We

state the following:
(i) The value functions are monotone if

ψ1 ≺∆ ψ2 =⇒ J∗
β(ψ1) ≤ J∗

β(ψ2) for all 0 < β < 1;

(ii) A (nonrandomized) stationary separated policy π is monotone if

ψ1 ≺∆ ψ2 =⇒ π(ψ1) ≺A π(ψ2) .

Two frequently used partial orders on ∆ are the stochastic dominance ≺st and
the monotone likelihood ratio ≺lr, defined below.

Definition 7.2. Let ψ1, ψ2 ∈ ∆; we state the following:
(i) ψ1 ≺st ψ2 if

∑
i≥q ψ1(i) ≤

∑
i≥q ψ2(i), for all q ∈ X;

(ii) ψ1 ≺lr ψ2 if ψ1(j)ψ2(i) ≤ ψ1(i)ψ2(j), for all i, j ∈ X such that i ≤ j.
Let ej denote the element of ∆ with the jth component equal to 1, j ∈ X; thus,

e.g., e0 = (1, 0, 0, . . . ). The following is easily shown.
Lemma 7.2. If ψ1, ψ2 ∈ ∆ and ψ1 ≺lr ψ2, then ψ1 ≺st ψ2. Also, for all ψ ∈ ∆,

e0 ≺lr ψ.
Definition 7.3. An action aj ∈ A is called a reset action if, for some j ∈ X,

T (y, ψ, aj) = ej , for all y ∈ Y and ψ ∈ ∆.
A reset action aj corresponds to the core state of the system being j, with prob-

ability one, at the next time epoch after action aj has been taken. This type of action
arises naturally in manufacturing systems subject to inspection, maintenance, and
replacement. The following results derive from the work of Sondik [170]; see also [63].

Lemma 7.3. If there exists a reset action aj ∈ A, then

J∗
β(ψ)− J∗

β(ej) ≤ c̃(ψ, aj) ∀ψ ∈ ∆ .

If X is finite and for each j ∈ X there is a corresponding reset action, then for each
β ∈ (0, 1) there exists J ∈ X such that

0 ≤ J∗
β(ψ)− J∗

β(eJ) ≤ M ∀ψ ∈ ∆ ,

where M := max
{
c(i, a) | i ∈ X, a ∈ A

}
.

Remark 7.5. Note that, if J∗
β(·) is monotone with respect to ≺lr and if there is

an action a0 ∈ A that resets the state to e0, then 0 ≤ J∗
β(ψ) − J∗

β(e0) ≤ c̃(ψ, a0)
uniformly in β ∈ (0, 1). Furthermore, note that when X is finite, a constant M > 0
exists such that c̃(ψ, a0) ≤ M , for all ψ ∈ ∆, and thus Assumption 7.2 holds.

Models with a replacement action that resets the system to an “as new” state e0

have been considered in [2], [118], [131], [132], [149], [188], [189], [191]–[195]. Related
problems are those considered in [66], where a reset action to a most desirable state is
available, and in [90], where (maintenance) reset actions aj are available for all j �= 0,
with X a finite set.
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7.4. The convex analytic method. We will now briefly describe Borkar’s
convex analytic approach. The action set A is assumed to be any compact metric
space. We also assume that c and P are continuous in a. We will consider the
pathwise average cost. This cannot, in general, be written as an equivalent cost in
terms of

{
Ψt

}
, but it is natural to propose that

(7.17) lim sup
T→∞

1
T

T−1∑
t=0

c̃(Ψt, At)

as a substitute. Any µ ∈ P(∆×A) can be decomposed as

(7.18) µ(dψ, da) = µ(dψ)Φ(ψ)(da),

where µ is the marginal of µ on ∆ and Φ is the regular conditional law defined µ
almost surely. We always work with one arbitrary representative of this equivalence
class. Define Γ ⊂ P(∆×A) by

(7.19)

Γ =
{

µ ∈ P(∆×A)
∣∣∣∣ For µ,Φ as in (7.18), µ is invariant under
the stationary randomized policy Φ

}
=

{
µ ∈ P(∆×A)

∣∣∣ ∫∫∫
f(ψ)K(dψ | ψ′, a)Φ(ψ′)(da)µ(dψ′)

=
∫

f dµ for all f ∈ Cb(∆)
}

.

¿From (7.19) we can easily check that Γ is closed. Note that the set of invariant
probability measures for the process

{
Ψt

}
controlled by a stationary randomized policy

Φ, when nonempty, need not be a singleton. In general, it will form a closed convex
set in P(∆), the extreme points of which correspond to ergodic measures. That is,
the above process with one of these extreme measures (say, µ) as the initial condition
will be ergodic. Then (7.17) will almost surely equal

∫
c̃ dµ. In view of the ergodic

decomposition of a stationary Markov process, this will also be the case for other
invariant measures (which will be a convex combination of the ergodic ones). Define

ρ∗ = inf
µ∈Γ

∫
c̃ dµ .

We assume that ρ∗ < ∞. We consider two alternative conditions under which the
above infimum will be a minimum.

Assumption 7.4 (near-monotone case). c satisfies limi→∞ infa c(i, a) = ∞.
Assumption 7.5 (stable case). Assumption 5.19′ (ii) holds.
Observe that the “near-monotonicity” condition here is more restrictive than the

one used in §5. We now state the following result; the proof is analogous to that of
Theorem 5.10.

Lemma 7.4. Under either Assumption 7.4 or Assumption 7.5, the map µ �→∫
c̃ dµ attains its minimum on Γ.

Define the P(∆×A)-valued process
{
ηt

}
by∫

f dηt =
1
t

t−1∑
m=0

f(Ψt, At), t ≥ 1 , f ∈ Cb(∆×A) ,

where
{
Ψt

}
is governed by some policy. Again, we can prove the following analogue

of Lemma 5.1.
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Lemma 7.5. With probability 1, any limit point of
{
ηt

}
in P(∆×A) lies in Γ.

Consider the near-monotone case. Suppose that, for a given sample path, a
subsequence of

{
ηt

}
has no limit point in P(∆×A). Arguments similar to those in

the proof of Theorem 5.1 can be used to show that the cost must go to +∞ along this
subsequence. In view of Lemma 7.5, this leads to

(7.20) lim inf
T→∞

1
T

T−1∑
t=0

c̃(Ψt, At) ≥ ρ∗ a.s.

Along with Lemma 7.4, this would seem to lead to the existence of an optimal sta-
tionary randomized policy. There is, however, one catch. It is not a priori clear that
any initial law for

{
Ψt

}
would be in the domain of attraction of the element(s) of Γ

that minimize the cost (or, for that matter, whether this domain of attraction can
be reached in a finite random time from any initial law under some policy). Simi-
lar “reachability” problems surface when we try to extend the dynamic programming
equations. These are circumvented under somewhat stringent conditions in [136], as
we have already discussed.

Finally, we can prove the convexity of Γ. Again, it is unclear how (and whether)
we can characterize the extreme points of Γ as those corresponding to stationary
(nonrandomized) policies. As the ACOE is not available in this approach, the existence
of an optimal stationary policy remains an open issue in general. In the stable case, it
is not clear if (7.20) holds, and thus this case remains open to investigation. To sum
up, the convex analytic approach to POCMP needs to be further studied.

8. Multiobjective and constrained models. An important success of the
convex analytic approach discussed in §5 is in the domain of multiobjective problems,
in which there is more than one cost (objective) function. We will first consider a mul-
tiobjective CMP with average cost criterion recast as a CMP with several constraints.
CMP with one or multiple constraints have been studied in [1], [16], [26], [40], [41],
[44], [92], [93], [97], [120], [129], [145], [146], [166]. Our presentation follows [25], [26].

We consider the case when S = {0, 1, 2, . . . }; A, the action space, is a prescribed
compact metric space; and P (j | i, a) is continuous in a for fixed i, j. Also, U(i) = A
for all i ∈ S. In the constrained CMP problem, we have, in addition to the cost
function c ∈ Cb(S × A), m additional “costs” ci ∈ Cb(S × A), 1 ≤ i ≤ m and are
required to satisfy

(8.1) ai ≤
∫

ci dη̂(f) ≤ bi , 1 ≤ i ≤ m

for prescribed numbers bi > ai, f ∈ ΠSD, and η̂(f) ∈ P(S ×A) is as in §5. (We are
assuming all costs are bounded for simplicity. Also, we are confining our attention to
ΠSSR; this suffices under reasonable hypotheses, as we saw in §5.) We will assume
Assumption 5.20 in §5.

Recall that IR =
{
η̂(f) : f ∈ ΠSSR

}
. Let ĨR be the subset of IR, where the

constraints (8.1) are satisfied. Then ĨR is closed and convex. We assume also that it
is compact (this will be true under Assumption 5.20 in §5). Under this assumption,
we can show, as in §5, that there exists an f∗ ∈ ΠSR that is optimal for this problem.
We will now proceed to show that f∗ requires randomization in at most m states.

Let g ∈ Cb(S ×A). For some a ∈ R, let H = IR ∩
{
ψ :

∫
g dψ ≤ a

}
, assumed

to be nonempty. Clearly, H is closed and convex. Let η̂(f) be an extreme point of H.
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Suppose that it is not an extreme point of IR itself. Then there exist distinct measures
η̂(f11), η̂(f12) such that at least one of them (say η̂(f11)) is not in H, and η̂(f) is a
convex combination of the two. Suppose that η̂(f21) ∈ IR \H, η̂(f22) is another such
pair. Then it can be shown that η̂(fij), 1 ≤ i, j ≤ 2 are collinear (IR, ĨR, H, and so
on are viewed as subsets of M(S × A), the Banach space of finite signed measures
on S ×A). Therefore, all pairs of points in IR satisfying (a) at least one of them is
not in H, and (b) η̂(f) is a convex combination thereof, lie on a single straight line in
M(S ×A). Let Z denote the intersection of this line with IR. Under our hypotheses
on IR, Z is a closed finite line segment. Let η(f1), η(f2) denote its endpoints. Then it
can be shown that η(fi), i = 1, 2 are extreme points of IR. By Lemma 5.2, fi ∈ ΠSSD;
also, f1 and f2 are distinct since η̂(f) is not an extreme point of IR. Therefore, there
exists an a′ ∈ (0, 1) such that

η̂(f) = a′η̂(f1) + (1− a′)η̂(f2) .

Arguing as in the proof of Lemma 5.2, it is clear that for each i ∈ S we may take
f(i) to be a convex combination of f1(i) and f2(i). Let f̃ ∈ ΠSD be such that, for
each i ∈ S, f̃(i) = either f1(i) or f2(i). Then, under our hypotheses (Assumption
5.20 of §5), we can show that η̂(f̃) ∈ Z. Now consider Z as a union of two closed line
segments Z1 and Z2, Z1 being the line segment between η̂(f1) and η̂(f), and Z2 that
between η̂(f2) and η̂(f). Let {f ′

n} be a sequence in ΠSD, defined as follows: f ′
0 = f1,

and

f ′
n(i) =

{
f2(i), i ≤ n,

f1(i), i > n.

Then, by the above considerations, η̂(f ′
n) ∈ Z. Since f ′

n → f2 as n →∞, we conclude
that η̂(f ′

n) → η̂(f2) (the map f �→ η̂(f) is continuous under Assumption 5.19). Thus,
the sequence η̂(fn), n ≥ 0 starts in Z1 and eventually moves into Z2. Let n denote
the first time this happens. Then either η̂(f ′

n) = η̂(f) or η̂(f) is a convex combination
of η̂(fn) and η̂(fn−1). Since f ′

n(i) = f ′
n−1(i) for i �= n, the arguments employed in

Lemma 5.2 show that we may take f(i) = the Dirac measure at f ′
n(i) for i �= n and

f(n) = a suitable convex combination of Dirac measures at f1(n) and f2(n). We have
established the following result.

Theorem 8.1. Each extreme point of H corresponds to an η̂(f) such that f ∈
ΠSR satisfies the following claim: For all but at most one i, f(i) is a Dirac measure
at some point of A. For the single remaining i, if any, f(i) is a convex combination
of two such Dirac measures.

A variant of the above theorem leads to the following result [27].
Theorem 8.2. The minimum of ν �→

∫
c dν on ĨR, is attained at an η̂(f) ∈

ĨR, where f is either deterministic or satisfies the following claim: There are states
i1, . . . , ik ∈ S and positive integers n1, . . . , nk > 1 such that f requires randomization
among nj values at state ij, 1 ≤ j ≤ k; requires no randomization for the remaining
states; and

∑k
i=1 ni ≤ m.

Once this existence result is available, necessary conditions for optimality can be
obtained from the standard Lagrange multiplier theory.

Theorem 8.3. There exist λi, βi ≥ 0, 1 ≤ i ≤ k such that η̂(f), as in Theo-
rem 8.2, minimizes

η �→ F
(
η, {λi}, {βi}

)
:=

∫
c dη −

k∑
i=1

λi

(
bi −

∫
ci dη

)
−

k∑
i=1

βi

(∫
ci dη − ai

)
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on IR. Furthermore, if ĨR has nonempty interior, the following saddle-point property
holds: For all λi, βi ≥ 0, 1 ≤ i ≤ k, η ∈ IR,

F
(
η̂(f), {λi}, {βi}

)
≤ F

(
η̂(f), {λi}, {βi}

)
≤ F

(
η, {λi}, {βi}

)
.

Remark 8.1. The result in Theorem 8.1 cannot be improved in general. Indeed,
in [26] there is a counterexample to show the nonexistence of an optimal f ∈ ΠSD for
the CMP with one constraint.

Remark 8.2. We have discussed the stable case only. Analogous results can be
obtained for the near-monotone case (conditions similar to Assumption 5.18). For
details, we refer to [25].

Remark 8.3. When the action set A is countable, analogous results are obtained
in [1].

We next consider another multiobjective CMP with AC criterion. We have m cost
functions ci ∈ Cb(S×A), 1 ≤ i ≤ m. All cost functions are of equal importance, and,
as a result, the optimality problem cannot be recast as a constrained one. Therefore,
we directly deal with the optimality problem with a vector cost criterion. This has
been studied in [48], [75].

Let IR be compact. Consider the vector cost criterion(∫
c1 dη̂(f), . . . ,

∫
cm dη̂(f)

)
, η̂(f) ∈ IR .

In general, there need not exist an f ∈ ΠSSR that minimizes all of
∫

ci dη̂(f) over
IR. This motivates the concept of Pareto optimality. An f ∈ ΠSSR is said to be
Pareto optimal if there does not exist any f ∈ ΠSSR for which

∫
ci dη̂(f) ≤

∫
ci dη̂(f),

1 ≤ i ≤ m, with inequality being strict for at least one i. Pareto optimality is
clearly the minimal requirement for any reasonable notion of an optimal solution for
the multiobjective problem with no priority among objectives. The Pareto optimal
solutions can be characterized as follows.

Theorem 8.4. Any f ∈ ΠSSR that minimizes
∑m

i=1 λi

∫
ci dη̂(f) for some λi > 0,

1 ≤ i ≤ m is Pareto optimal. Conversely, any Pareto optimal f ∈ ΠSSR minimizes
the above functional for some choice of λi ≥ 0, 1 ≤ i ≤ m.

Remark 8.4. Note that the converse is only partial, since we have λi ≥ 0 instead
of λi > 0. It becomes exact if S and A are finite.

We often reduce a vector cost criterion as above to a scalar one by introducing
a “utility function.” One such case is that of finding the “shadow minimum” for the
problem of minimizing the vector cost ν �→

[∫
c1 dν, . . . ,

∫
cm dν

]
∈ Rm on IR. Letting

L denote the range of this map, L can be shown to be closed and convex. Suppose
that y∗

i = min
{∫

ci dν : ν ∈ IR

}
, 1 ≤ i ≤ m. Let y∗ = (y∗

1 , . . . , y∗
m). The point y∗ is

called the ideal (or utopian) point. The point x∗ ∈ L that is closest to y∗ is called the
shadow minimum. This point is unique and is characterized by

〈y∗ − x∗, z − x∗〉 ≤ 0 , z ∈ S .

For finite S and A, a combined linear-quadratic program can find x∗ explicitly [75].
The point x∗ is easily seen to be Pareto optimal.

9. Conclusions. We hope this paper has provided a useful presentation of the
problems and techniques in average cost control of Markov processes. As is amply
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clear, there is not a globally applicable approach. Instead, we expect to build a
library of special tricks, a collection of simple verifiable sufficient conditions under
which the problem is accessible, possibly with different techniques. Going one step
further, there are the more difficult, partially observable, and multiobjective problems.
Though these have seen some significant results of late, there remains much more that
eludes satisfactory analysis. A similar comment applies to computational aspects
and adaptive control, two topics we have not touched upon here. For computational
aspects, we refer to [81], [87], [137], [180] and, for adaptive control, [26], [82], [102].
Also, we have not dealt with the vast literature on sensitive optimality [137], [182],
nor with some some other criteria, such as overtaking [111], variance sensitive [198],
and weighted cost [60], [65], [99]. Finally, the discrete-time models have interesting
applications to continuous-time problems, for which we refer to [14, §6.7], [109], [159],
[206].

Appendix. Multifunctions and measurable selectors. Let V and W de-
note nonempty Borel spaces and let 2W denote the collection of all nonempty subsets of
W . A multifunction (or set-valued function) Φ from V to W is a map Φ : V → 2W .
The subset Dom(Φ) :=

{
v ∈ V : Φ(v) �= ∅

}
is called the domain of Φ. When

Dom(Φ) = V , we say that the map Φ is strict. In what follows, we assume that Φ
is a strict multifunction. If, for each v ∈ V , Φ(v) is a compact (closed, measurable)
subset of W , then Φ is said to be compact (closed, measurable)-valued. A selector (or
selection) of Φ is a function ϕ : V → W such that ϕ(v) ∈ Φ(v), for all v ∈ Dom(Φ).
The set of (Borel) measurable selectors of Φ will be denoted by S(Φ). The graph of
Φ, denoted by Graph(Φ), is defined as

Graph(Φ) :=
{
(v, w) : v ∈ V , w ∈ Φ(v)

}
.

For a set W ∈ 2W , we define

Φ−1[W ] :=
{
v ∈ V : Φ(v) ∩W �= ∅

}
,

and we say that Φ is (Borel) measurable if Φ−1[B] ∈ B(V ), for each closed subset B of
W . If Φ is closed-valued, then measurability of Φ implies that Graph(Φ) ∈ B(V ×W );
furthermore, if Φ is compact-valued, then the converse also holds [88], [184, Thm. 4.2].
The multifunction Φ is called upper semicontinuous if, for every v ∈ V and every
open set G ⊃ Φ(v), there exists a neighborhood N of v such that Φ(v′) ⊂ G, for all
v′ ∈ N ; it is called lower semicontinuous if, for every v ∈ V and every open set G
such that G ∩ Φ(v) �= ∅, Φ−1(v) contains an open neighborhood of v. Also, Φ is said
to be continuous if it is both upper and lower semicontinuous.

The following result, in different variations, has been shown by several authors
[15, §7.5], [47, Lemma 6, p. 38], [51, Chap. 2], [88], [154] and also summarized in [82],
[184, Thm. 9.1].

Theorem A.1. Let Φ be a compact-valued, measurable, strict multifunction from
V to W . Let f : Graph(Φ) → R be a measurable function, such that, for each
v ∈ V , f(v, ·) is lower semicontinuous on Φ(v). Then there exists a measurable
selector ϕ∗ ∈ S(Φ) such that

f
(
v, ϕ∗(v)

)
= min

w∈Φ(v)

{
f(v, w)

}
∀ v ∈ V .

Let f∗ : V → R, defined by f∗(v) := f
(
v, ϕ∗(v)

)
. If Φ is upper semicontinuous and

f is bounded below, then f∗ ∈ L(V ). Also, if Φ is continuous and f ∈ Cb(V ×W ),
then f∗ ∈ Cb(V ).



discrete-time controlled markov processes 337

A Tauberian theorem. The following Tauberian theorem plays a very impor-
tant role in the analysis of the average cost criterion. For its proof, which is very
difficult to locate in the literature in this particular format, we refer to [176].

Theorem A.2. Let {an} be a sequence of nonnegative numbers and β ∈ (0, 1).
Then

lim inf
N→∞

1
N

N−1∑
m=0

am ≤ lim inf
β↑1

(1− β)
∞∑

n=0

βnan

≤ lim sup
β↑1

(1− β)
∞∑

n=0

βnan ≤ lim sup
N→∞

1
N

N−1∑
m=0

am .
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[126] A. Martin-Löf, Existence of a stationary control for a Markov chain maximizing the average
reward, Oper. Res., 15 (1967), pp. 866–871.

[127] B. L. Miller and A. F. Veinott, Jr., Discrete dynamic programming with a small interest
rate, Ann. Math. Statist., 40 (1969), pp. 366–370.

[128] G. E. Monahan, A survey of partially observable Markov decision processes: theory, models,
and algorithms, Management Sci., 28 (1982), pp. 1–16.

[129] P. Nain and K. W. Ross, Optimal priority assignment with hard constraint, IEEE Trans.
Automat. Control, AC-31 (1986), pp. 883–888.

[130] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco,
CA, 1965.

[131] M. Ohnishi, H. Kawai, and H. Mine, An optimal inspection and replacement policy under
incomplete state information, European J. Oper. Res., 27 (1986), pp. 117–128.

[132] M. Ohnishi, H. Mine, and H. Kawai, An optimal inspection and replacement policy under
incomplete state information: average cost criterion, in Stochastic Models in Reliability
Theory (S. Osaki and Y. Hatoyama, eds.), Lect. Notes Econ. Math. Systems, Vol. 235,
Springer-Verlag, Berlin, 1984, pp. 187–197.



342 arapostathis, et al.

[133] S. Orey, Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand, London,
1971.

[134] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York,
1967.

[135] L. K. Platzman, Finite Memory Estimation and Control of Finite Probabilistic Systems, Ph.D.
thesis, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 1977.

[136] , Optimal infinite horizon undiscounted control of finite probabilistic systems, SIAM J.
Control Optim., 18 (1980), pp. 362–380.

[137] M. L. Puterman, Markov decision processes, in Handbooks in Operation Research and Man-
agement Science (D. P. Heyman and M. J. Sobel, eds.), Vol. 2, North–Holland, Amsterdam,
1990, pp. 331–434.

[138] D. Rhenius, Incomplete information in Markovian decision models, Ann. Statist., 2 (1974),
pp. 1327–1334.

[139] U. Rieder, Measurable selection theorems for optimization problems, Manuscripta Math., 24
(1978), pp. 115–131.

[140] R. K. Ritt and L. I. Sennott, Optimal stationary policies in general state Markov decision
chains with finite action set, Math. Oper. Res., to appear.

[141] D. R. Robinson, Markov decision chains with unbounded costs and applications to the control
of queues, Adv. Appl. Probab., 8 (1976), pp. 159–176.

[142] , Optimality conditions for a Markov decision chain with unbounded costs, J. Appl.
Probab., 17 (1980), pp. 996–1003.

[143] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[144] Z. Rosberg, P. Varaiya, and J. Walrand, Optimal control of service in tandem queues, IEEE
Trans. Automat. Control, AC-27 (1982), pp. 600–610.

[145] K. W. Ross, Randomized and past dependent policies for Markov decision processes with multiple
constraints, Oper. Res., 37 (1989), pp. 474–477.

[146] K. W. Ross and R. Varadarajan, Markov decision processes with sample path constraints:
The communicating case, Oper. Res., 37 (1989), pp. 780–790.

[147] S. M. Ross, Non-discounted denumerable Markovian decision models, Ann. Math. Statist., 39
(1968), pp. 412–423.

[148] , Arbitrary state Markovian decision processes, Ann. Math. Statist., 39 (1968),
pp. 2118–2122.

[149] , Quality control under Markovian deterioriation, Management Sci., 17 (1971), pp. 587–596.

[150] , Introduction to Stochastic Dynamic Programming, Academic Press, New York, 1983.

[151] Y. Sawaragi and T. Yoshikawa, Discrete time Markovian decision processes with incomplete
state observation, Ann. Math. Statist., 41 (1970), pp. 78–86.

[152] M. Schäl, On continuous dynamic programming with discrete time parameters, Z. Wahrsch.
Verw. Geb., 21 (1972), pp. 279–288.

[153] , On dynamic programming: compactness of the space of policies, Stochast. Process. Appl.,
3 (1975), pp. 345–364.

[154] , Conditions for optimality in dynamic programming and for the limit of n-stage optimal
policies to be optimal, Z. Wahrsch. Verw. Geb., 32 (1975), pp. 179–196.

[155] L. I. Sennott, A new condition for the existence of optimal stationary policies in average cost
Markov decision processes, Oper. Res. Lett., 5 (1986), pp. 17–23.

[156] , Average cost optimal stationary policies in infinite state Markov decision processes with
unbounded costs, Oper. Res., 37 (1989), pp. 626–633.

[157] , Average cost semi-Markov decision processes and the control of queueing systems, Probab.
Engrg. Inform. Sci., 3 (1989), pp. 247–272.

[158] , The average cost optimality equation and critical number policies, preprint.

[159] R. F. Serfozo, An equivalence between continuous and discrete time Markov decision processes,
Oper. Res., 27 (1979), pp. 616–620.

[160] L. Shapley, Stochastic games, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), pp. 1095–1100.

[161] A. N. Shiryaev, On the theory of decision functions and control by an observation process with
incomplete data, in Selected Translations in Mathematical Statistics and Probability, Vol. 6,
American Mathematical Society, Providence, RI, 1966, pp. 162–188.

[162] , Some new results in the theory of controlled random sequences, in Selected Transla-
tions in Mathematical Statistics and Probability, Vol. 8, American Mathematical Society,
Providence, RI, 1970, pp. 49–130.



discrete-time controlled markov processes 343

[163] A. N. Shiryaev, On Markov sufficient statistics in non-additive Bayes problems of sequential
analysis, Theory Probab. Appl., 9 (1964), pp. 604–618.

[164] S. E. Shreve and D. P. Bertsekas, Alternative theoretical frameworks for finite horizon
discrete-time stochastic optimal control, SIAM J. Control Optim., 16 (1978), pp. 953–978.

[165] , Dynamic programming in Borel spaces, in Dynamic Programming and Its Applications,
M. L. Puterman, ed., Academic Press, New York, 1978, pp. 115–130.

[166] A. Shwartz and A. M. Makowski, An optimal adaptive scheme for two competing queues
with constraints, in Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions,
eds.), Lecture Notes on Control and Information Sciences, Springer-Verlag, Berlin, 1986.

[167] , On the Poisson Equation for Markov Chains, Report No. EE-646, Faculty of Electrical
Engineering, Technion, Israel Institute of Technology, Haifa, Israel, 1987.

[168] , Comparing policies in Markov decision processes: Mandl’s lemma revisited, Math. Oper.
Res., 15 (1990), pp. 155–174.

[169] R. D. Smallwood and E. J. Sondik, The optimal control of partially observable Markov process
over a finite horizon, Oper. Res., 21 (1973), pp. 1071–1088.

[170] E. J. Sondik, The Optimal Control of Partially Observable Markov Processes, Ph.D. thesis,
Electrical Engineering Dept., Stanford University, Stanford, CA, 1971.

[171] , The optimal control of partially observable Markov decision problems over the infinite
horizon: Discounted costs, Oper. Res., 26 (1978), pp. 282–304.

[172] S. S. Stidham Jr. and R. R. Weber, Monotonic and insensitive optimal policies for control
of queues with unbounded costs, Oper. Res., 87 (1989), pp. 611–625.

[173] R. E. Strauch, Negative dynamic programming, Ann. Math. Statist., 37 (1966), pp. 871–890.

[174] C. Striebel, Sufficient statistics in the optimum control of stochastic systems, J. Math. Anal.
Appl., 12 (1965), pp. 576–593.

[175] , Optimal Control of Discrete Time Stochastic Systems, Lecture Notes Econom. Math.
Systems, Vol. 110, Springer-Verlag, Berlin, 1975.

[176] R. Sznadjer and J. A. Filar, Some comments on a theorem of Hardy and Littlewood, J.
Optim. Theory Appl., 75 (1992), to appear.

[177] H. M. Taylor, Markovian sequential replacement processes, Ann. Math. Statist., 38 (1965),
pp. 1677–1694.

[178] L. C. Thomas, Connectedness conditions for denumerable state Markov decision processes, in
Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas, and D. F.
White, eds.), Academic Press, New York, 1980, pp. 181–204.

[179] H. C. Tijms, On Dynamic Programming with Arbitrary State Space, Compact Action Space and
the Average Reward as Criterion, Report BW 55/75, Mathematisch Centrum, Amsterdam,
1975.

[180] , Stochastic Modelling and Analysis: A Computational Approach, John Wiley, Chichester,
UK, 1986.

[181] J. Van der Wal and J. Wessels, Markov decision processes, Statist. Neerlandica, 39 (1985),
pp. 219–233.

[182] A. F. Veinott, Discrete dynamic programming with sensitive discount optimality criteria, Ann.
Math. Statist., 40 (1969), pp. 1635–1660.

[183] O. V. Viskov and A. N. Shiryaev, On controls leading to optimal stationary models, Trudy
Mat. Inst. Steklov, 71 (1964), pp. 35–45. (In Russian.)

[184] D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977),
pp. 859–903.

[185] H. M. Wagner, On the optimality of pure strategies, Management Sci., 6 (1960), pp. 268–269.

[186] A. Wald, Sequential Analysis, John Wiley, New York, 1947.

[187] , Statistical Decision Functions, John Wiley, New York, 1950.

[188] R. Wang, Optimal replacement policy with unobservables states, J. Appl. Probab., 14 (1977),
pp. 340–348.

[189] , Computing optimal quality control policies — two actions, J. Appl. Probab., 14 (1977),
pp. 826–832.

[190] R. R. Weber and S. S. Stidham Jr., Optimal control of service rates in networks of queues,
Adv. Appl. Probab., 15 (1987), pp. 202–218.

[191] C. C. White, A Markov quality control process subject to partial observation, Management Sci.,
23 (1977), pp. 843–852.

[192] , Optimal inspection and repair of a production process subject to deterioration, J. Oper.
Res. Soc., 29 (1978), pp. 235–243.



344 arapostathis, et al.

[193] C. C. White, Bounds on optimal cost for a replacement problem with partial observation, Naval
Res. Logist. Quart., 26 (1979), pp. 415–422.

[194] , Optimal control — limit strategies for a partially observed replacement problem, Internat.
J. Systems Sci., 10 (1979), pp. 321–331.

[195] , Monotone control laws for noisy, countable-state Markov chains, European J. Oper.
Res., 5 (1980), pp. 124–132.

[196] C. C. White and D. J. White, Markov decision processes, European J. Oper. Res., 39 (1989),
pp. 1–16.

[197] D. J. White, Dynamic programming of Markov chains and the method of successive approxi-
mations, J. Math. Anal. Appl., 6 (1963), pp. 373–376.

[198] , Mean, variance, and probabilistic criteria in finite Markov decision processes: A review,
J. Optim. Theory Appl., 56 (1988), pp. 1–29.

[199] P. Whittle, Sequential decision processes with essential unobservables, Adv. Appl. Probab., 1
(1969), pp. 271–287.

[200] , Optimization over Time: Dynamic Programming and stochastic control, II, John Wiley,
Chichester, UK, 1983.

[201] J. Wijngaard, Stationary Markovian decision problems and perturbation theory of quasicompact
linear operators, Math. Oper. Res., 2 (1977), pp. 91–102.

[202] , Existence of average optimal strategies in Markovian decision problems with strictly
unbounded costs, in Dynamic Programming and Its Applications, M. L. Puterman, ed.,
Academic Press, New York, 1978, pp. 369–386.

[203] K. Yamada, Duality theorem in Markovian decision problems, J. Math. Anal. Appl., 50 (1975),
pp. 579–595.

[204] A. A. Yushkevich, On a class of strategies in general Markov decision models, Theory Probab.
Appl., 18 (1973), pp. 777–779.

[205] , Reduction of a controlled Markov model with incomplete data to a problem with complete
information in the case of Borel state and control spaces, Theory Probab. Appl., 21 (1976),
pp. 153–158.

[206] , On reducing a jump controllable Markov model to a model with discrete time, Theory
Probab. Appl., 25 (1980), pp. 58–59.

[207] A. A. Yushkevich and R. Ya. Chitashvili, Controlled random sequences and Markov chains,
Russian Math. Surveys, 37 (1982), pp. 239–274.

[208] H. Zijm, The optimality equations in multichain denumerable Markov decision processes with
average cost criterion: The bounded cost case, Statist. Decisions, 3 (1985), pp. 143–165.


