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1 Introduction

Consider a system of M autonomous agents labeled {1, 2, . . . ,M} and a ran-
dom vector X which the agents wish to estimate. Such problems are called
distributed estimation problems and have numerous practical applications
such as in sensor networks or group decision problems. In a distributed es-
timation problem, each agent’s estimate of X is updated when he makes an
observation of X or when he receives a message from another agent. Thus
each agent’s estimate begins as a coarse initial guess and is then refined
over time. Much of the research in distributed problems involves determin-
ing how each agent’s estimate evolves over time and how to determine when
two or more agents will agree about X.

This report aims to summarize two important papers addressing these
issues. The first is Agreeing to Disagree[1], published by Robert Aumann
in the journal The Annals of Statistics in 1976, and the second is Asymp-
totic Agreement in Distributed Estimation[2], published by Vivek Borkar
and Pravin Varaiya in the journal IEEE transactions on Automatic Con-
trol in 1982. The first Section is an introduction to the concept of common
knowledge and an attempt to motivate the results in Aumann’s work. Next
we bridge Aumann’s work with that of Borkar and Varaiya and provide
an introduction and summary of their work with some partial sketches of
proofs. Finally we conclude with some discussion of possible improvements
and open issues.

An attempt is made throughout the report to introduce and explain any
mathematical concepts which the average reader may not be familiar with.
The interested reader can find more thorough explanations in the referenced
books on probability theory, particularly [3] and [4].

2 Common Knowledge

Two people, 1 and 2, are said to have common knowledge of an event A if
both know it, 1 knows that 2 knows it, 2 knows that 1 knows it, 1 knows that
2 knows that 1 knows it, and so on. For example, if 1 and 2 are both present
to witness the event A occurring and they can each clearly see the other,
then the event becomes common knowledge. This idea is an important
one in distributed estimation problems, game theory and other areas of
applied mathematics. The above definition, although intuitive, cannot be
easily adopted in any mathematical models. This was rectified by Robert
Aumann’s 1976 paper Agreeing to Disagree [1], which will be summarized
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in this section.
Let (Ω,B, p) be a probability space. (Ω,B) represents the set of all

possible states of the world and p the prior probability measure. This inter-
pretation means that if an agent has no information about the state of the
world, then for any event A ∈ B he concludes that the probability that A
has occurred is p(A). Before proceeding, we need a few definitions.

Definition 1. A decomposition (or partition) of Ω is a disjoint covering
of Ω by non-empty p-measurable sets.

We should note that one can induce a partial ordering on the class of all
decompositions. Let P1 and P2 be two partitions of Ω. We say that P1 ≺ P2

if for all A ∈ P2 there exists B ∈ P1 such that A ⊆ B. In other words, every
element of P2 is contained in an element of P1, so P2 is a refinement of P1.
Clearly, any two decompositions are not necessarily comparable, but we can
always define a least upper bound (or max) and a greatest lower bound (or
min). This allows us to define the following:

Lemma 1. Let P1 and P2 be two decompositions of Ω. Then:

(i) The least upper bound (or join) exists and is given by

P1 ∨ P2 =
{
A1 ∩A2 6= ∅

∣∣∣∣ Ai ∈ Pi, i = 1, 2
}

(ii) The greatest lower bound (or meet) exists and is denoted P1 ∧ P2

Remark 1. We will also use the symbols ∨ and ∧ to denote the similar
operations on σ-fields. Given two σ-fields F and G, F ∨ G = σ(F ∪ G) and
F ∧ G = F ∩ G.

The notion of a decomposition will be essential in modeling how indi-
vidual agents filter their information.

Definition 2. An information partition is a decomposition P of Ω. If
the state of the world is ω ∈ Ω, then the agent is informed of the partition
element containing ω denoted P(ω).

For a given state ω ∈ Ω, we can consider what it means for an agent to
have knowledge of some event A ∈ B. If an agent has knowledge of A ∈ B
then the agent should know with certainty (i.e. with probability one) that
the event occurred. Thus, the conditional probability p(A|P(ω)) should be
equal to one. In other words:

p(A|P(ω)) =
p(A ∩ P(ω))
p(P(ω))

= 1
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which is only true when p(A∩P(ω)) = p(P(ω)) which means P(ω) ⊂ A (or
P(ω) − N ⊂ A for a measure zero set N ⊂ P(ω), but we will ignore this
possibility for now). This motivates the following definition.

Definition 3. We say an agent has knowledge of A at ω if P(ω) ⊂ A.

We also sometimes say that the agent knows A. Note that this definition
depends on the state ω ∈ Ω. Now consider two agents, 1 and 2, with
information partitions P1 and P2 respectively and assume that A ∈ B is
common knowledge for 1 and 2 at some ω ∈ Ω. It is an implicit assumption
that both 1 and 2 know how information is imparted to each other, thus
1 knows 2’s information partition P2 and vice versa. Since A is common
knowledge at ω, both 1 and 2 know it, thus P1(ω) ⊂ A and P2(ω) ⊂ A.
Now consider the statement 1 knows that 2 knows A. Now, 1 does not know
precisely which partition element, P2(ω) ∈ P2, 2 was informed of so we
must consider all the possibilities. Since the state must be some ω ∈ P1(ω),
1 knows that P2(ω) must intersect P1(ω). So if 1 knows that 2 knows A,
then A must contain any P ∈ P2 which intersects P1(ω) or else 1 could never
be certain whether or not 2 knows A. The argument is similar for agent 1.
Thus A must contain all partition elements of P2 which intersect P1(ω) and
all partition elements of P1 which intersect P2(ω). Continuing this logic for
the statement 1 knows that 2 knows that 1 knows A and so on, one can see
that A must contain all sequences of partition elements P 1, P 2, . . . , Pn where
P 1 = P1(ω) or P 1 = P2(ω), the partition elements P i belong alternatively
to P1 and P2 (i.e. P i ∈ P1, P i+1 ∈ P2, P i+2 ∈ P1...) and P i ∩ P i+1 6= ∅.
This implies (with a bit of thought) that A must contain the element of the
greatest lower bound P1∧P2 which contains ω. The main contribution from
[1] is the theorem/definition:

Theorem 1. Given that the state of the world is ω ∈ Ω, an event A is
said to be common knowledge at ω for agents 1 and 2 if A contains the
partition element of P1 ∧ P2 corresponding to ω.

Given this definition, Aumann goes on to show that if two people have the
same priors for an event A and their posteriors for A are common knowledge
then they must be equal, hence they cannot agree to disagree. The proof
of this theorem is immediate from the above theorem. The importance of
this work is the casting of common knowledge into a useful set theoretic
framework. In the next section we will discuss generalizations of this idea.
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2.1 Extensions of Aumann

The discussion in the previous section assumed a given state of the world
ω ∈ Ω and asked what it means for an event to be common knowledge for
two agents at ω. Now, if we try to ask a slightly different question, such
as what it means for an event A ∈ B to be common knowledge for agents 1
and 2 for every state ω ∈ Ω, we get a slightly unsatisfactory answer. Using
theorem 1, this means that every partition element P ∈ P1∧P2 is contained
in A thus A = Ω.

It turns out that the appropriate question to ask is: for an event A,
what does it mean for the occurrence or non-occurrence of A to be common
knowledge for every ω ∈ Ω? Thus for every ω ∈ Ω, either A or Ac is
common knowledge for two agents 1 and 2. Using theorem 1 this implies
that for every P ∈ P1 ∧ P2, either P ⊂ A or P ⊂ Ac. It is easy to see that
this forces A to be a union of partition elements of P1∧P2. As an aside, note
that given any partition P of Ω one can define a σ-field σ(P) by taking all
countable unions of partition elements. Furthermore, given two partitions
P1 and P2 their respective σ-fields σ(P1) and σ(P2), it is not hard to see
that

σ (P1 ∧ P2) = σ(P1) ∩ σ(P2)

This leads us the first generalization of Aumann’s common knowledge.

Definition 4. An event A ∈ B is common knowledge for 1 and 2 if
A ∈ σ(P1 ∧ P2) (equivalently 1A is measurable on σ(P1) and σ(P2)).

Thus measurability seems to be the correct tool to model common knowl-
edge. This observation allows us to extend the idea of common knowledge
to random variables.

From this point on, we will consider σ-fields as information structures
in place of the more primitive notion of information partitions. Since every
information partition generates a σ-field (but not vice versa) there is no loss
of generality. Thus if we have a group of M agents {1, 2, . . . ,M} then we
will associate σ-fields F1,F2, . . . ,FM (for each i, Fi ⊂ B) with the informa-
tion available to each agent. Then we have the following generalization of
common knowledge.

Definition 5. A random variable X : Ω→ R is said to be common knowl-
edge for agents {1, 2, . . . ,M} if X is measurable with respect to each σ-field
F1,F2, . . . ,FM .
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3 Distributed Estimation

Suppose we have a set A := {1, 2, 3, . . . ,M} of M agents and a random
vector X which the agents wish to estimate. Furthermore, suppose each
agent receives signals at random times from the environment and that these
signals contain some information about X. After agent m receives a signal,
he can update his estimate of the random variable X with whatever new
information was contained in the signal. In such a scenario, there is obviously
no reason for any of the agents to agree on their estimates of X (although
they may do so). Now suppose the agents can communicate with each
other. Suppose that at random times m transmits her estimate of the state
vector to a random subset of other agents. Using this information, the other
agents can then update their estimates accordingly and then transmit these
to other agents and the process continues until an equilibrium is reached.
Again, it is not necessary that all the agents agree; indeed, some may never
even communicate. But we can ask the question: under what conditions
will all (or a subset) of the agents agree on the estimate of X? This is the
question answered by [2] in the paper Asymptotic Agreement in Distributed
Estimation and there is a very interesting connection between this answer
and the concept of common knowledge discussed in the previous sections.
In this section we will attempt to set up the problem and understand the
results in [2].

Let R+ denote the set of non-negative real numbers and let X be an
integrable random vector.

Definition 6. Let (Ω,F , p) be a probability space, (Ft)t∈R+ be a filtration
(i.e. a family of σ-fields such that Fs ⊂ Ft ⊂ F for all s < t) and (Xt)t∈R+

be a family of random variables adapted to the family (Ft) (i.e. Xt is mea-
surable with respect to Ft for all t ∈ R). Then (Xt) is a continuous time
martingale with respect to the family (Ft) if:

(i) E|Xt| <∞ ∀t ∈ R+

(ii) E[Xt|Fs] = Xs ∀s, t ∈ R+ such that s ≤ t

Many of the discrete-time martingale theorems carry over to continuous-
time provided (Ft) is a complete right continuous family. (Ft) is right con-
tinuous if

Ft =
⋂
s>t

Fs

where the right hand side of the above equation can be thought of as the
limit from the right. (Ft) is a complete family if each Ft contains all sets
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of probability zero. Given a continuous time martingale, one can (almost)
always complete the filtration and obtain a complete right continuous family.
For more details the reader is referred to [3]. We will assume from now on
that every filtration is complete and right continuous.

Let Fm
t be the filtration representing the information available to m at

time t. Let Xm
t be m’s best estimate of the random vector X at time t. If

we assume that each agent m is trying to minimize a cost function of the
form

J(Xm
t ) = E

[
(X −Xm

t )2 |Fm
t

]
Then one can show that Xm

t is given by

Xm
t = E[X|Fm

t ]

The above equation implies that (Xm
t ,Fm

t ) is a martingale. To see this,
note that by definition of conditional expectation, Xm

t is measurable on Fm
t

for every t ∈ R+ and using the law of iterated expectations, we have

E [|Xm
t |] ≤ E [E[ |X| |Fm

t ]] = E|X| <∞

where we used the fact that |Xm
t | ≤ E[|X| | Fm

t ] almost surely. Finally, for
s < t we have Fm

s ⊂ Fm
t , so using the law of iterated expectations again we

have
E[Xm

t |Fm
s ] = E[E[X|Fm

t ]|Fm
s ] = E[X|Fm

s ] = Xm
s

Thus m’s estimate of X is a martingale.

Theorem 2. (Xm
t ,Fm

t ) is a martingale.

The most natural question to ask is: Does each each agent’s estimate
Xm

t converge to something as t→∞? From an above calculation, we have

sup
t∈R+

E[|Xm
t |] ≤ E|X| <∞

Thus the martingale convergence theorem guarantees that each agent’s es-
timate Xm

t converges almost surely to some random variable as t→∞. Let
us define

Xm
∞ := lim

t→∞
Xm

t a.s.
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Furthermore, one can show that the family (Xm
t ) is uniformly integrable.

Using the fact that |Xm
t | ≤ E[|X| | Fm

t ] almost surely we have

E
[
|Xm

t | 1{|Xm
t |>c}

]
≤ E

[
E [|X| | Fm

t ] 1{|Xm
t |>c}

]
= E

[
E
[
|X|1{|Xm

t |>c} | Fm
t

]]
= E

[
|X|1{|Xm

t |>c}

]
=

∫
1{|Xm

t (ω)|>c}|X(ω)|dP (ω)

And by Markov’s inequality we have that

P ({|Xm
t (ω)| > c}) ≤ E[|Xm

t |]
c

≤ E[|X|]
c

Combining the above with the fact that X is an integrable random vector,
one can show (with some work) that E

[
|Xm

t | 1{|Xm
t |>c}

]
→ 0 as c → ∞

uniformly in t. This implies that the family (Xm
t ) is uniformly integrable

and therefore Xm
∞ closes the martingale on the right, i.e.

Xm
t = E [X | Fm

t ] = E [Xm
∞ | Fm

t ]

Now that we know each agent’s estimate converges, a more interesting ques-
tion is: For two agents m and p, are there certain conditions under which
Xm
∞ = Xp

∞? To answer this question, one needs to explicitly consider the
messages transmitted between agents (note that this is implicitly contained
in {Fm

t }). This requires a further extension of our model.
Let tmj be an increasing sequence of (Fm

t )-stopping times. At each tmj ,
m transmits his estimate Xm

tmj
to a random subset of agents Am

j ⊂ A. Sup-
pose that m receives signals from the environment and from other agents
at random times. Let rm

j be the (Fm
t )-stopping times at which m receives

a message from another agent and call this message Zm
j . We will assume

that all transmission times are finite (tmj < ∞) and that every agent sends
messages infinitely often (limj→∞ t

m
j =∞).

Define a transception at m to be either a transmission or a reception at
m. Let τm

n be the transception times for agent m. Since the reception and
transmission times are stopping times, so are the transception times. Let Gm

n

be the σ-field generated by the first n transceptions at m. Thus Gm
n contains

the information from the estimates transmitted by m and received by m up
to the nth transception, but does not explicitly include any information
contained in the signals from the environment.
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Let rm
k (p) be the time at which agent m receives the kth message from

agent p and let Zm
k (p) be this message. Also, assume that each agent learns

the identity of the transmitting agent whenever he receives a message. Set
rm
k (p) = ∞ if m receives fewer than k messages from p. Similarly, let
tmk (p) be the times at which m sends messages to p and let Xm

k (p) be these
messages. Again, set tmk (p) = ∞ if m sends fewer than k messages to p.
Finally, let qm

k = n if the kth transmission from m to any agent occurs
at the nth transception time. qm

n is clearly a (Gm
n )-stopping time. Lastly,

assume that transmission delays are finite and no transmissions are lost or
corrupted. That is:

{ω | tmk (p) <∞} =
{
ω | rp

k(m) <∞
}

(3.1)

for all k.
Note that since Gm

qm
k

represents the information generated by transcep-
tions at m, it includes the information transmitted by m at the stopping
time qm

k which is Xm
qm
k

. Thus Xm
qm
k

is measurable on Gm
qm
k
⊂ Fm

qm
k

so we have

Xm
qm
k

= E[X|Fm
qm
k

] = E[X|Gm
qm
k

]

Since (Xm
t ) is a uniformly integrable family, the optional sampling theorem

guarantees that (Xm
tmj
,Fm

tmj
) and (Xm

qm
k
,Gm

qm
k

) are martingales and

lim
k→∞

Xm
qm
k

= Xm
∞ and lim

j→∞
Xm

tmj
= Xm

∞

Let Gm
∞ be the limit σ-algebra of the filtration Gm

qm
k

. That is

Gm
∞ =

∨
k∈N
Gm

qm
k

From the above convergence results, we have that Xm
∞ is measurable on Gm

∞.
Now that the model is fully described, we can obtain some immediate

results. Let Smp be the event that m sends his estimate to p infinitely often.
We can write Smp as

Smp =
∞⋂

k=1

{ω|tmk (p) <∞}

=
∞⋂

k=1

∞⋃
n=1

{ω| p ∈ Am
j and tmj < τm

n for at least k distinct j}
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Since for any k, n ∈ N, the set in the last line is measurable on Gm
n we have

that {ω|tmk (p) < ∞} and hence Smp are measurable on Gm
∞. Similarly, one

can express Smp as:

Smp =
∞⋂

k=1

{ω|rp
k(m) <∞}

=
∞⋂

k=1

∞⋃
n=1

{ω| rp
j < τp

n for at least k distinct messages from m}

and obtain that {ω|rp
k(m) < ∞} and Smp are measurable on Gp

∞. Thus
1{Smp} is common knowledge for Gm

∞ and Gp
∞. This agrees with our intuition,

because both agents know who they are transmitting to and who they are
receiving messages from. Thus, the event that they communicate infinitely
often should be common knowledge.

Now, the transmission delays are assumed finite but we have not as-
sumed that messages are received in the same order as they are transmitted.
Suppose that the kth message transmitted from m to p is actually the `thk
message received at p from m. Then the message received by p, Zp

`k
(m) is

exactly Xm
tmk (p). Using this and equation (3.1) we have the following equality

Xm
tmk (p)1{ω|tmk (p)<∞} = Zp

`k
(m)1{ω|rp

k(m)<∞}

This is a key equality as it provides a link betweenXm
∞ andXp

∞. {ω|tmk (p) <∞}
monotonically decreases to the set Smp as k →∞ and thus

lim
k→∞

Xm
tmk (p)1{ω|tmk (p)<∞} = Xm

∞1{Smp} a.s.

Similarly, 1{ω|rp
k(m)<∞} monotonically decreases to Smp and on this set, m

sends messages infinitely often to p, so `k →∞ as k →∞, so we have

lim
k→∞

Zp
`k

(m)1{ω|rp
k(m)<∞} = lim

k→∞
Xm

tmk (p)1{ω|tmk (p)<∞}

= Xm
∞1{Smp} a.s.

Since each term in the sequence Zp
`k

(m)1{ω|rp
k(m)<∞} is measurable on Gp

k ,
we obtain that Xm

∞1{Smp} is measurable on Gp
∞. This result is summarized

as the following theorem.

Theorem 3 (Borkar). Xm
∞1{Smp} and 1{Smp} are common knowledge for

Gm
∞ and Gp

∞.
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This theorem has some very interesting consequences. Note that the
theorem implies that Xm

∞1{Smp} and 1{Smp} are measurable on the σ-field
Gm
∞ ∩ G

p
∞. By symmetry, Xp

∞1{Spm} and 1{Spm} are also measurable on
Gm
∞ ∩ G

p
∞. Let S = Smp ∩ Spm, thus S denotes the event that m and

p communicate infinitely often. It follows that Xm
∞1{S} is measurable on

Gm
∞ ∩ G

p
∞. Thus we can write

Xm
∞1{S} = E[X|Gm

∞]1{S}
= E[X1{S}|Gm

∞]
= E[X1{S}|Gm

∞ ∩ Gp
∞]

The above expression for Xm
∞1{S} is symmetric in m and p so it is equally

true for Xp
∞1{S} thus we obtain the following corollary.

Corollary 1 (Borkar). Xm
∞1{S} = Xp

∞1{S} a.s.

The above corollary says that on any sample path ω where m and p
communicate infinitely often, Xm

∞(ω) and Xp
∞(ω) must agree (i.e. m and p

agree asymptotically).
At this point, it is natural to ask if this result holds for two agents who

communicate infinitely often through other agents rather than directly. In
the case of two agents, both agents knew they were communicating infinitely
often with each other, and more importantly each agent knew that the other
knew they were communicating infinitely often. If we consider the case of
three or more agents, it is possible that 2 agents may communicate infinitely
often through a third agent without knowing that they do so. Furthermore,
even if each agent were aware that they were communicating indirectly, it
is still possible that neither agent will know that the other knows about
their communication. In the case of multiple agents, it turns out that the
concept of common knowledge it the key to understanding when we will
have asymptotic agreement.

Definition 7. A sequence of agents m1,m2, . . . ,mn,mn+1 = m1 forms a
communicating ring for an event S ∈ F if S ⊂ Smimi+1 for i = 1, 2, 3, . . . , n.

Thus each agent in a communicating ring communicates infinitely of-
ten with every other member either directly or indirectly through another
agent. The following lemma will be prove useful in proving a result about
asymptotic agreement for communicating rings. For a proof of this lemma,
see [2].
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Lemma 2. Let W1, . . . ,Wn,Wn+1 = W1 be integrable random vectors and
H1, . . . ,Hn be σ-fields such that Wi = E[Wi+1|Hi], i = 1, . . . , n. Then
W1 = · · · = Wn a.s.

The following theorem extends the results about asymptotic agreement
from two agents to a communicating ring of n agents.

Theorem 4 (Borkar). Suppose that

(i) m1,m2, . . . ,mn+1 = m1 forms a communicating ring for 1{S}

(ii) 1{S} is common knowledge for Gm1
∞ , Gm2

∞ , . . . , Gmn
∞

Then Xm11{S} = Xm21{S} = · · · = Xmn1{S} a.s.

Proof. We will present the main steps in the proof. From theorem 3 and
the fact that Gmi∞ ∩ G

mi+1
∞ ⊂ Gmi∞ we can write

Xmi
∞ 1{Smi,mi+1} = E[X|Gmi

∞ ∩ G
mi+1
∞ ]1{Smi,mi+1}

= E[E[X|Gmi+1
∞ ]|Gmi

∞ ∩ G
mi+1
∞ ]1{Smi,mi+1}

= E[Xmi+1
∞ |Gmi

∞ ∩ G
mi+1
∞ ]1{Smi,mi+1}

= E[Xmi+1
∞ 1{Smi,mi+1}|Gmi

∞ ∩ G
mi+1
∞ ]

Since by hypothesis (i), S ⊂ Smi,mi+1 and by hypothesis (ii), S ∈ Gmi∞ for
all i, we can multiply both sides by 1{S} to get

Xmi
∞ 1{S} = E[Xmi+1

∞ 1{S}|Gmi ∩ Gmi+1 ]

Letting Wi = Xmi∞ 1{S} and Hi = Gmi ∩ Gmi+1 , the result follows directly
from lemma 2.

Using the properties of conditional expectation, it is not difficult to show
that because Xm1

∞ 1{S} = Xm2
∞ 1{S} = · · · = Xmn

∞ 1{S}, each agent’s estimate
is given by

Xmi
∞ 1{S} = E[X|Gm1

∞ ∩ · · · ∩ Gmn
∞ ]1{S}

An important corollary is

Corollary 2 (Borkar). Suppose that with probability one all the agents
form a communicating ring. Then the estimate of each agent converges
to E[X|G1

∞ ∩ · · · ∩ GM
∞ ] almost surely.
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The first hypothesis in theorem 4 states that every pair of agents in the
communicating ring sends messages to each other infinitely often either di-
rectly or indirectly through other agents in the ring. The second hypothesis
states that for an event S, all of the agents know that they are members of
the communicating ring. It is important to note that the first hypothesis
does not imply the second. We could have agents m1,m2,m3 where m1

sends messages to m2 infinitely often, m2 to m3 i.o., and then m3 to m1

i.o.. Although they form a communicating ring, m1 may not be able to infer
whether m2 sends messages to m3 i.o. In fact one can find counter examples
where members of a communicating do not agree asymptotically when the
second hypothesis is violated. The reader is referred to [2] for more details.

3.1 (Non)Optimality of the Asymptotic Estimate

Assume that with probability one, all agents form a communicating ring.
Then all agents agree asymptotically and their estimates converge to X̂
given by

X̂ = E[X|G1
∞ ∩ G2

∞ ∩ · · · ∩ GM
∞ ]

Now suppose the agents were to share their raw information rather than
their processed estimates of X. Such a situation could arise if all the agents
were to send their information to some central processor which would then
make the estimate of X. Define Fm

∞ by

Fm
∞ =

∨
t≥0

Fm
t

Then the full information estimate X∗ (i.e. given all the raw information
from all agents) is

X∗ = E[X|F1
∞ ∨ F2

∞ ∨ · · · ∨ FM
∞ ]

Since more information is considered when computing X∗, it is clear that
X∗ will be at least as good an estimate as X̂. In fact, in some situations,
X∗ can be strictly better than X̂. The following example from [2] illustrates
this.

Example 1. Take Ω = [0, 1] × [0, 1] and p to be Lebesgue measure. Let
A ⊂ Ω be the hashed region in figure 1 and let X = 1{A} be the random
variable agents 1 and 2 wish to estimate. Suppose that agent 1 observes
1{B} and agent 2 observes 1{C}. Then each agent will independently form the
estimate X1

t = X2
t = E[X] = 0.5 a.s. Furthermore, if the agents transmit
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Figure 1: Figures for example 1

their estimates to each other, neither will change his or her estimate since
they already agree. Now suppose the agents share their raw information
instead of just their estimates of X. Then the agents will be able to observe
1{B∩C},1{B∩Cc},1{Bc∩C} and 1{Bc∩Cc}. Thus the full information estimate
X∗ will be the random variable that takes values 0.75 and 0.25 each with
probability 0.5. Thus X∗ can be strictly better than X̂.

4 Discussion and Concluding Remarks

The paper Agreeing to Disagree [1] is a very popular and seminal paper
which set the initial framework for many other works in distributed esti-
mation problems, including Borkar and Varaiya [2]. Aumann’s approach
is simplistic but his important contribution is the set theoretic framework
for the concept of common knowledge, which had not been previously stud-
ied in a mathematical framework. Generalizations of his ideas to the more
powerful language of measure theory are, as we have seen, immediate. The
paper by Borkar and Varaiya [2] can be seen as a significant extension of
Aumann’s “agreeing to disagree” result. For the case of two agents, the
asymptotic agreement result is very similar to Aumann’s “agreeing to dis-
agree” result except cast in the language of measure theory. The case for
multiple agents could be made simple as well, if we merely assume that all
agents communicate with all other agents infinitely often. However this is a
bit simplistic and unrealistic. The result in [2] is much stronger than this.
All that is required is that a group of agents forms a communicating ring,
and that the event that they form the ring is common knowledge for all the
ring members.

There are a few unanswered questions posed by the authors of [2]. Firstly,
although we have conditions under which all (or a subset) of agents will agree
asymptotically, in any practical application decisions have to be made in
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finite time. It would thus be useful to get bounds on the rate of convergence.
Secondly, since the full information estimate X∗ is always better than X̂,
it would seem that having the agents share their raw data is better than
sharing their estimates (processed data).

The first point is certainly important for any applications. One would
suspect that the rate of convergence would depend on the size of the commu-
nicating ring and how often the members of the ring exchange estimates of
X. However, since neither of these factors are incorporated into the model
as described in [2] any satisfactory answer to the first question would re-
quire additional constraints. As far as I know, this is an open problem in
the general case.

The second point raises another interesting question about the role of a
central processor in a distributed estimation problem. In order to make the
most accurate estimate of X, all agents should be sharing their raw data
with each other or preferably with a central processor which would then
make the full information estimate. However, this is at ends with practical
considerations as sharing raw data would likely use more resources (power,
bandwidth, etc) than first pre-processing the data and then sharing it in a
more compact form. Perhaps a solution is for agents to share their estimates,
but also their raw data whenever possible depending on some measure of
their available resources (e.g. battery life...). It is not clear how to analyze
such a system, but one would expect a better estimate because at least some
raw data will be exchanged.

In conclusion, the papers Agreeing to Disagree and Asymptotic Agree-
ment in Distributed Estimation provide some very interesting answers to
problems concerning distributed estimation and have found applications in
numerous fields such as game theory and economics. Distributed estimation
problems are abundant in the world around us and distributed problems are
still an open field of research today.
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