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ABSTRACT 
Performance evaluation of TCP traffic in OBS networks has been under intensive study, since TCP constitutes the 
majority of Internet traffic. As a reliable and publicly available simulator, ns2 has been widely used for studying 
TCP/IP networks; however ns2 lacks many of the components for simulating optical burst switching networks. In 
this paper, an ns2 based OBS simulation tool (nOBS), which is built for studying burst assembly, scheduling and 
contention resolution algorithms in OBS networks is presented. The node and link objects in OBS are extended in 
nOBS for developing optical nodes and optical links. The ingress, core and egress node functionalities are combined 
into a common optical node architecture, which comprises agents responsible for burstification, routing and 
scheduling. The effects of burstification parameters, e.g., burstification timeout, burst size and number of 
burstification buffers per egress node, on TCP performance are investigated using nOBS for different TCP versions 
and different network topologies. 

I. INTRODUCTION 
Increasing demand for services with very large bandwidth requirements, e.g., grid networks, facilitates the 
deployment of optical networking technologies [1]. Using Dense Wavelength Division Multiplexing (DWDM) 
technology, optical networks are able to meet the huge bandwidth requirements of future Internet Protocol (IP) 
backbones [2]. Currently, IP routers are interconnected with virtual circuits over synchronous optical networks 
(SONET) through multiprotocol label switching (MPLS) [3]. However, optical circuit switching (OCS) is not 
suitable for carrying bursty IP traffic with time-varying bandwidth demand. In addition, delays during connection 
establishment and release increase the latency especially for services with small holding times. An alternative to 
OCS is optical packet switching (OPS), which can adapt to changing traffic demands and requires no reservation, 
but the optical buffering and signal processing technologies have not matured enough for deployment of OPS in 
core networks in the near future.  

Optical Burst Switching (OBS) is proposed as a short-term feasible solution that can combine the strengths and 
avoid the shortcomings of OCS and OPS [4]. In OBS, the IP packets reaching the edge router are aggregated into 
bursts before being transmitted in the optical core network. Optical burst switching (OBS) is a sub-wavelength 
transfer mode that is halfway between optical circuit switching and optical packet switching.  OBS separates the 
data and control planes in the optical and electrical domain, respectively, in order to eliminate the technological 
problems involved in the all-optical processing of the packet header in optical packet switching. A variable-length 
optical burst is composed of several IP packets in order to avoid small size optical packets, so that the stringent 
requirements for transmission and synchronization in the optical domain can be avoided. 

nOBS enables performance analysis of OBS networks with wavelength converters and FDLs while carrying TCP 
traffic, and it implements various burst assembly, scheduling and routing algorithms. nOBS has been developed over 
ns2 [5].  

 One of the first ns2 based optical burst switching network simulators is OWns [6], which uses an older version of 
ns2 and implements a limited number of assembly, scheduling and routing algorithms for OBS networks. OIRC 
OBS-ns [7] is a re-designed and improved version of OWns. However, OIRC OBS-ns does not allow simulating a 
network structure composed of OBS subnetworks (clouds) and electronic edge nodes as shown in Fig. 1. 
Furthermore, OIRC OBS-ns supports only shortest path routing, whereas other routing algorithms cannot be used. 



On the other hand, nOBS can be used to simulate general OBS network topologies composed of optical clouds as 
shown in Fig. 1. nOBS also allows use of any routing algorithm in an OBS network by implementing source routing. 

A core OBS network model is shown in Fig. 1 where OBS clouds interconnect edge routers. The edge nodes of an 
OBS network, i.e., ingress and egress nodes, fulfill the burstification and deburstification functions. The edge node 
architecture in nOBS allows users to specify the parameters of the burst aggregation algorithm as well as how 
packets belonging to different TCP flows that are forwarded to the same egress node, are mapped into burstifiers. 
The edge nodes are also responsible for generating and transmitting the burst control packet, which corresponds to 
the burst header. The control packet has all the necessary information so that each intermediate optical switch in the 
core OBS network can schedule the data burst and also configure its switching matrix in order to switch the burst 
optically. nOBS uses the Just-Enough-Time (JET) reservation protocol [8], where the edge node transmits the 
optical burst after an offset time following the transmission of the control packet. In JET, the control packet tries to 
reserve resources for the burst just sufficient enough for transmission of the burst on each link it traverses. The core 
nodes in nOBS perform the scheduling function using wavelength converters and fiber delay lines (FDL), if 
necessary. In nOBS, the wavelength converters and FDLs are combined into pools that are shared among all ports. 
This sharing architecture is called Share-per-Node (SPN), which achieves the best loss performance among other 
sharing architectures [9]. The user can specify the number of FDLs and wavelength converters in the pools at each 
node. The scheduling algorithms that are currently implemented in nOBS are Latest Available Unused Channel with 
Void Filling (LAUC-VF) [10] and Minimum Starting Void (Min-SV) [11]. The routing of the bursts within the OBS 
network is performed in nOBS using the minimum-hop path between the ingress and egress nodes.  

The paper is organized as follows. In the next section, the architecture of nOBS is described in detail. nOBS is used 
for studying the effects of burstification algorithms and parameters on TCP performance, and the results of this 
study are presented in Section III. Section IV concludes the paper. 

II. SIMULATOR ARCHITECTURE 
nOBS is developed by extending existing structures of ns2 (version 2.27). The node and link objects in ns2 are 
reconfigured with new components to become optical node and optical link. The address classifier at the node 
entrance has been replaced with a classifier that differentiates TCP segments from optical bursts. The 
implementation of the optical source routing agent helps realize typical OBS simulation scenarios.  
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Figure 1. OBS network 

The architecture of an OBS node in nOBS is shown in Fig. 2. Ingress, core and egress node functionalities are 
combined into the nOBS optical node and are indicated by paths 1, 2 and 3 respectively.  

The process of burstification (path 1) starts with a packet in electrical domain arriving at the optical node through an 
access link. This packet is first processed by Optical Classifier (OpClassifier). Upon seeing that the next hop for this 
packet is in the optical domain, OpClassifier forwards the packet to the Burst Agent (BurstAgent).  BurstAgent puts 
the packet in an assembly buffer that corresponds to a burst and control packet pair. When a burst is ready for 
  



transmission, its associated control packet is sent to OpClassifier and then forwarded to Optical Source Routing 
Agent (OpSRAgent). OpSRAgent puts the optical domain routing information into the control packet and the 
corresponding burst. It then checks for a suitable interval through the Burst Scheduler block. This block includes 
OpSchedule, OpConverterSchedule and OpticalFDLSchedule, which keep records of the reservations on outgoing 
channels, wavelength converters and FDLs, respectively. If a suitable interval is found, OpSRAgent sends the 
control packet and schedules the burst to be transmitted after an offset time.  Otherwise, the burst is dropped. 

OpSRAgent is basically an ns2 source routing agent improved to handle optical packets. When the simulation 
scenario is described in the TCL code, all nodes (electrical or optical) are commanded to install an OpSRAgent 
instance and routes for each node to all possible destinations are explicitly defined in the simulation scripts. 
Therefore, the users can select the routes of packets according to the paths generated by the specific routing 
algorithm used. In all nodes, newly created packets are sent to OpSRAgent, which writes the path that will be used 
by the packet in the packet header. In other words, if an application running on ingress router produces data to be 
sent into the OBS network, the burstification path starts with OpSRAgent, where the route information for the 
packet is written, followed by the OpClassifier which will forward the packet to the BurstAgent.  

Required functionalities of optical nodes are divided into four separate modules (Burst Scheduler, OpSRAgent, 
OpClassifier, BurstAgent) for reducing the model complexity and allowing easier modification or addition of 
algorithms. All optical ingress, egress and core nodes require the same functionalities of Burst Scheduler, 
OpSRAgent and OpClassifier. The only difference between these node types is that core nodes may not need 
BurstAgent when there is no burstification and deburstification in the core. However, some users may also need to 
attach traffic agents and burstify/deburstify on the optical core nodes. Therefore, ingress, egress and core nodes 
share the same node architecture and there is no need to specify the type of the optical node when creating it in the 
simulation script. 
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Figure 2. Optical node architecture in nOBS 

In the case of optical forwarding (path 2), an optical packet is received by the OpClassifier through an incoming 
WDM link. Since the next hop is in the optical domain, OpClassifier forwards the packet to the OpSRAgent, which 
queries the Burst Scheduler block for a valid reservation. If the optical packet is a control packet and a reservation 
for the associated burst is possible, then the control packet is forwarded to the corresponding WDM link. If the 
optical packet is a burst and a reservation has been already made, the burst is forwarded to the WDM link. 
Otherwise, the optical packet is dropped. 

  



When the next hop for an optical packet is not in the optical domain, OpClassifier sends this optical packet to the 
BurstAgent for deburstification (path 3).  If the optical packet is a control packet, it is dropped. If it is a burst, then 
the packets inside the burst are sent to the OpClassifier, which forwards them to OpSRAgent. OpSRAgent sends 
these packets through outgoing electrical links towards their destination nodes. 
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Figure 3. WDM link architecture in nOBS 

The architecture of an optical link in nOBS is shown in Fig. 3. This structure is based on the existing ns2 link 
configuration.  Instead of the store-and-forwarding scheme of packet switched networks implemented in ns2, cut-
through forwarding is applied. Original Queue of ns2 blocks the link for other packets during the transmission of a 
packet, until a scheduler event created by LinkDelay signals the end of the packet transmission. The OpQueue 
module in nOBS immediately forwards all incoming packets to OpLinkDelay without any blocking, packet 
dropping or queueing since wavelength reservation, contention resolution and FDL buffering operations are already 
performed by Burst Scheduler and OpSRAgent in the node architecture. It was possible to remove OpQueue and 
connect loss module and OpDelayLink directly, but OpQueue is kept for easier implementation of future OBS 
architectures, which may need a queue component on the links. When the Loss module associated with the link 
determines that an optical packet must be dropped, the packet is sent to OpNullAgent component, which frees 
individual packets inside the burst. The operations on the link are memoryless and independent of the wavelength. 
Therefore multiple packets arriving at the same time on different wavelengths can be served without affecting each 
other. 

The main components of nOBS, the classifier, the burst agent, the source routing agent and the optical schedulers, 
are described below in more detail. 

II.1 OpClassifier 
A new classifier called OpClassifier is implemented in nOBS for classifying and forwarding packets inside optical 
nodes. The id numbers of optical nodes in the same domain as this node are given to OpClassifier in a TCL script by 
using the command optic_nodes and stored in a table called opticnodes. Therefore, OpClassifier knows the nodes 
that are in the same OBS domain. When a packet arrives to OpClassifier, OpClassifier checks the type and 
destination of the incoming packet and handles the packet as follows: 

� If the incoming packet is not an optical burst and the packet’s destination address is not this node, OpClassifier 
checks the source routing table of the packet. Looking up in the routing table of the packet, OpClassifier checks 
whether the packet’s next node is in opticnodes. If it is, the packet needs to enter the OBS domain, furthermore 
the node that owns this OpClassifier should act as an ingress node and apply burstification. Therefore, 
OpClassifier forwards this packet to the burstifier agent called BurstAgent. Otherwise, OpClassifier realizes that 
this packet is coming from the BurstAgent after the deburstification process. In this case, the packet is leaving 
the OBS domain, so OpClassifier forwards this packet to the source routing agent that will forward the packet to 
the next hop over an electronic link. 

� If the packet is an optical burst and the packet’s destination address is this node, it means that a burst has 
reached its destination. OpClassifier forwards the packet to the BurstAgent for the deburstification process. 

� If the packet is an optical burst and the packet’s destination address is not this node, it means that this is a burst 
in transit. Therefore, OpClassifier forwards this packet to the source routing agent that will forward it to the 
next hop which is specified in the source routing table of the packet. 

� If the packet is not an optical burst and the packet’s destination address is this node, it means that the packet is 
coming from the BurstAgent after deburstification process and the receiver of this packet is in this node. 
OpClassifier forwards this packet to the port classifier, which will forward the packet to its destination agent. 

  



II.2 BurstAgent 
BurstAgent is responsible for the burstification of electronic packets and deburstification of optical bursts. A single 
BurstAgent is attached to OpClassifier in each optical node. When a new packet arrives from OpClassifier, 
BurstAgent checks whether this packet is an electronic packet or an optical burst. If the packet received from 
OpClassifier is an optical burst, BurstAgent disassembles the IP packets inside the payload of the burst and sends 
these IP packets back to the OpClassifier to be delivered to their destination agents. 

If the packet is an electronic packet, BurstAgent compares the source routing table of the packet with the list of 
nodes contained in the table opticnodes and finds the corresponding egress node from where this packet will leave 
the OBS domain. Next, BurstAgent inserts the incoming packet to one of the assembly queues responsible for 
burstifying packets destined for this destination egress node. The assembly algorithm implemented in the 
BurstAgent is a hybrid size/timer-based algorithm that keeps track of the size of the burst and the delay experienced 
by the first packet in the burst. BurstAgent creates a burst when the delay of the first packet reaches a given timeout, 
or the number of IP packets in the burst reaches a threshold. In our ingress node model, the number of assembly 
buffers per egress router, M, can be between 1 and the number of flows, N, as shown in Fig. 4.  An incoming packet 
is forwarded to a per egress burstifier queue group based on the routing information, and it is classified further into 
an assembly buffer based on the flow ID depending on N and M. If an incoming optical packet is the first packet in 
the assembly queue, BurstAgent starts the burstification delay timer.  When the burst is ready for transmission, 
BurstAgent creates a control packet carrying all the necessary information for this burst. Before sending the burst, 
BurstAgent copies the packets in the assembly queue to the burst’s payload. Then, BurstAgent sends the control 
packet to OpClassifier. Sending only the control packet to OpClassifier is enough, because other agents in the node 
can reach the data packet by using a pointer contained in the control packet pointing to the optical burst to be 
transmitted.  

nOBS also allows the user to select whether ACK packets will be burstified or not. Setting ackdontburst variable to 
1 allows preventing burstification of ACK packets. In this case, ACK packets are sent to the OBS network as soon 
they are received and they are carried in the OBS network like ghost packets without any dropping or queuing.  

 
Figure 4. Ingress node model 

II.3 OpSRAgent 
A new source routing agent called OpSRAgent is implemented in nOBS which is responsible for adding the source 
routing information to packets, forwarding the packets to links according to the routing information, and controlling 
when and how to send optical packets using FDLs and wavelength converters.  While creating a simulation scenario 
with nOBS, all the nodes are configured with source routing information within the TCL script. Electrical nodes are 
configured only with ingress and egress routers of all OBS networks, while optical nodes are informed of routes 
within the OBS subnetwork they belong to. Using a separate source routing table for optical nodes provides the 
abstraction, i.e., the cloud structure composed of OBS subnetworks, of the core network within the general topology 
as shown in Fig. 1. 

  



When OpSRAgent receives a packet, OpSRAgent first checks whether source routing information is available in the 
packet header and whether this packet is an optical burst or a control packet. If there is no source routing 
information in the packet header, OpSRAgent considers two scenarios: 

1. If this packet is an electronic packet, OpSRAgent writes the routing information to the header of the packet. 
Then, OpSRAgent checks whether the next hop is an optical node in the same OBS domain. If this is the case, 
OpSRAgent sends the packet to OpClassifier, which forwards the packet to the BurstAgent for burstification. 
Otherwise, i.e., if the optical node is the egress node for this packet, OpSRAgent forwards the packet to the next 
node on an electronic link. 

2. If this packet is an optical burst, it means that OpSRAgent has received a newly created burst and control packet 
pair, so OpSRAgent writes the routing information to the header of both the control packet and the burst.  

After ensuring that the source routing information is available in the packet, OpSRAgent checks whether the current 
node is the destination of this packet. If this is the case, OpSRAgent sends the packet to the OpClassifier. Otherwise, 
if it is an electronic packet, OpSRAgent sends the packet to the next hop via an electronic link. If this is an optical 
packet, OpSRAgent tries to send it to an optical link after checking the schedulers. First, OpSRAgent checks the 
scheduling on this wavelength and link by sending the packet to OpSchedule. OpSchedule returns a result depending 
on the type of the packet and availability of the channel.  

If the packet is a control packet, OpSRAgent takes the following actions based on the result received from the 
OpSchedule: 

1. If there is no contention, OpSRAgent sends the control packet to the optical link for transmission immediately. 
If this is the first hop of the control packet, OpSRAgent sends the burst corresponding to this control packet to 
the optical link after delaying the burst for H∆, where H is the number of hops to be traversed by the burst and 
∆ is the processing delay per hop.  

2. If there is a contention, OpSRAgent checks whether there are unused FDLs or wavelength converters available 
at the node. If there is, OpSRAgent retries the reservation request, by applying different combinations of 
available FDLs and converters and chooses the best schedule, if any, according to the scheduling algorithm. 
OpSchedule learns the availability of FDLs and converters from OpConverterSchedule and OpFDLSchedule, 
respectively, which are described below. If available FDLs or converters cannot resolve the contention, 
OpSRAgent drops the control packet. 

If the packet is a burst, OpSRAgent takes the following actions based on the result received from the OpSchedule: 

1. If there is a reservation for the burst without any contention, OpSRAgent sends the burst to the optical link. If 
there is a required FDL delay specified in the reservation, OpSRAgent delays the burst before sending to the 
optical link. 

2. If there is no existing reservation for the burst, i.e., the control packet could not succeed in making a reservation 
for the burst, OpSRAgent drops the burst. 

II.4 Optical Schedulers 
Each optical node keeps a record of the reservations on outgoing channels, shared FDLs and wavelength converters 
that are present at the node. OpSchedule holds reservations on outgoing channels while OpConverterSchedule and 
OpFDLSchedule maintain schedules for wavelength converters and FDLs, respectively. The wavelength converters 
and FDLS at each node are combined into pools that are shared among all ports at the optical switch, i.e., share-per-
node model. The size of the wavelength converter and the FDL pools at each node can be set independently by the 
user. The user also specifies the maximum FDL delay, which must be limited due to space constraints and for 
preventing spurious TCP timeouts that degrade the performance significantly [12].  

At the ingress node, bursts may be kept in the electrical buffers until they are scheduled and then sent into the 
optical network. If OpSRAgent cannot find a suitable interval for the burst, it checks possible combinations of 
wavelength converters and FDLs depending on the node type. If a burst cannot be scheduled, it is dropped. 
OpSchedule class is responsible for keeping, checking and making reservations on all wavelengths of all links. 
OpSchedule is connected to the OpSRAgent. When OpSchedule receives an optical packet from the OpSRAgent, it 
first checks the type of the packet. If the packet is a control packet, OpSchedule tries to do a reservation for the burst 
specified in the control packet and returns whether reservation is successful or not. If the packet is a burst, 

  



OpSchedule searches for a reservation in its reservation table, which is made earlier by the control packet, and 
returns whether there is a valid reservation or not. OpSchedule uses Latest Available Unscheduled Channel with 
Void Filling (LAUC-VF) or Minimum Starting Void (Min-SV) scheduling algorithms in combination with Just 
Enough Time (JET) signaling. OpSchedule uses a linked-list for storing the reservation list. OpSchedule is 
responsible for calculating and updating the delay between the control and burst packets.  

OpConverterSchedule and OpFDLSchedule are very similar to OpSchedule. These two schedulers are connected to 
the OpSRAgent, and they are responsible for keeping, checking and making reservations of converters and FDLs at 
the corresponding nodal pools. They inform the OpSRAgent when OpSRAgent asks for availability in the specified 
timeline. It is possible to choose whether multiple bursts on a wavelength can use the same FDL subsequently, but 
the second burst may enter the FDL before the first burst leaves the FDL, by using the singleburst parameter from 
the TCL script. Both schedulers use linked lists for storing the reservations. An important difference between these 
two schedulers and OpSchedule is that when OpSRAgent sends a control packet to the OpSchedule, if reservation is 
possible, OpSchedule does the reservation directly. However, OpConverterSchedule and OpFDLSchedule require a 
parameter called action. When a control packet is sent to these schedulers, if action variable is set zero, these 
schedulers only return whether reservation of converter or FDL is possible. They do not do the reservation, unless 
action variable is set one. This is because the scheduling algorithm may use a combination of FDL and wavelength 
conversion for resolving the contention, and the OpSRAgent must make sure that both the queried FDL and 
converter are available. If both schedulers return an affirmative reservation signal, then OpSRAgent informs the 
schedulers to perform the actual reservations. 

In the next section, we present some numerical results for the burstification of TCP traffic that are obtained using 
nOBS. 

III. SIMULATION RESULTS 
The numerical study presented in this paper analyzes the effects of the burst assembly architecture and parameters 
on the performance of TCP flows. In the first part of the simulations, the core network is simply modeled as a single 
fiber with Bernoulli distributed drop probability p, with 1 Gbps bandwidth and 10ms propagation delay as shown in 
Fig. 5.  The access links have 155Mbps bandwidth each with 1ms link propagation delay. 

 
Figure 5 Topology used in simulations 

The total goodput for N=10 TCP Newreno flows with p=0.01 and M=10 is shown in Fig. 6 for a range of assembly 
timeouts and burst size thresholds with a hybrid size/timer-based burst aggregation algorithm. The MSS of the TCP 
sources are set to 1040 bytes. Receive windows of destination nodes are set to 10000 MSS to avoid the limitation on 
congestion window increase. In order to study the effect of the burstification timeout on TCP performance, we used 
the feature of nOBS which allows that TCP ACK packets are not burstified. 

  



 
Figure 6. Total goodput achieved with hybrid size/timer-based burst assembly algorithm (p=0.01) 

For a fixed timeout, the figure shows that goodput increases as the size threshold is increased. However, when the 
burst size threshold becomes larger than the maximum achievable burst size determined by the current timeout, 
size/timer-based algorithm reduces to timer-based algorithm and goodput does not change. For the largest burst size 
threshold, the algorithm acts as the timer-based burstifier. On the other hand, since size/timer-based algorithm 
becomes size based for a timeout value of infinity, the values with the largest timeout gives an idea about the 
performance of the size-based algorithm.  

For a fixed burst size threshold, the achievable burst size increases with increasing timeout until the current size 
threshold is reached. We observe that goodput improves with increasing timeout in this region. The effects of high 
time correlation between delivery and loss events of consecutive packets from a TCP flow as a result of statistically 
independent burst losses are noted as correlation benefits [13]. An important effect of this correlation is the increase 
in the number of packets sent by a TCP source before noticing a loss event as the burst size increases and this 
behavior yields larger congestion windows and higher throughput (Delayed First Loss (DFL) gain) [14]. That is 
why, for a fixed burst size threshold, the goodput improves as the achievable burst size rises up to the size threshold 
with increasing timeout. Once the size threshold is reached, however, further increase in the timeout leads to 
performance deterioration due to additional burst assembly delay (called the delay penalty [13], [14], [15], [16]). 

Since the timer-based algorithm achieves the highest goodput, we resort to the timer-based burstification in the rest 
of the paper for studying the effect of the number of the burstifiers on TCP performance. The TCP Newreno 
performance over a range of time threshold values are plotted in Fig. 7 and Fig. 8 for p=0.001 and p=0.01, 
respectively, for different values of the number of burstifiers, M. The remarks that we made for Fig. 6 can be 
observed also in Fig.7 and Fig. 8. The figures show that as the assembly time threshold is increased, goodput first 
increases, then starts to decrease. In the region where goodput increases with timeout, the delay penalty is small and 
the DFL gain is dominant, therefore increasing the burst size increases the goodput. On the other hand, the 
improvement provided by the DFL gain saturates after some time threshold value and the delay penalty begins to 
dominate which causes the goodput to deteriorate. 

Fig. 7 and Fig. 8 also demonstrate the significant effect of number of burstifiers on TCP goodput. We observe that 
the TCP goodput increases for all timeout values as M increases. TCP flows sharing an aggregation buffer are 
affected from successful delivery and burst loss events together and thus have a tendency to become synchronized. 
When a burst is lost, TCP flows that have packets in that burst decrease their congestion windows simultaneously. 
This quick reduction of accessible optical bandwidth results in serious performance degradation. Increasing the 

  



number of burstifiers per egress node, we can decrease the level of synchronization between TCP flows and obtain 
higher bandwidth utilization as seen in the plots.  

Another important observation is that the rate of deterioration in goodput as time threshold is increased depends on 
loss probability p. When p is large, the congestion window cannot increase to large values due to more frequent 
burst losses. In this case, the increase in time threshold does not increase the burst size significantly and the increase 
in DFL gain with increasing time threshold is not significant. As a result, the goodput decreases more rapidly with 
increasing time threshold due to the delay penalty. On the other hand, large bursts are generated as the time 
threshold is increased for small p, and the DFL gain increases with increasing time threshold. This partially 
compensates the effect of the delay penalty, and the goodput does not degrade much with increasing time threshold. 

TCP flows are classified as slow when only one of their packets is found in a given burst, fast when their whole 
congestion window is found in the burst and medium otherwise [13]. The results presented up to this point deal with 
medium flows since there is not an upper limit on the congestion window sizes. In order to see the performance of 
fast flows and examine the effect of number of TCP flows better, the network is simulated with N=100 Newreno 
flows with the receive windows set to 128 MSS. Fig. 9 shows the results of the simulations for p = 0.01. As the size 
of the sender’s congestion window cannot exceed the receiver’s window, DFL gain stays constant at its maximum 
for large timeouts. Consequently, the effect of delay penalty on goodput can be seen more clearly for large values of 
timeout and the goodput decreases more rapidly with increasing time threshold. In addition, it is observed that a 
relatively low number of buffers may perform close to the per-flow aggregation case. From Fig. 9, we observe that 
for larger values of N, smaller number of burstifiers is sufficient to obtain performances relatively close to the per-
flow burstification, i.e., M=N. Since the cost of additional burstifiers can be compromised by the improvement in 
goodput, employing moderate number of buffers with respect to the number of flows constitutes a cost-effective 
solution. 

 
Figure 7. Total goodput with timer-based assembly for N = 10, p = 0.001, M = 1, 2, 5, 10 and Newreno TCP 

  



 
Figure 8. Total goodput with timer-based assembly for N = 10, p = 0.01, M = 1, 2, 5, 10 and Newreno TCP 

 
Figure 9. Total goodput with timer-based assembly for N = 100, p = 0.01, rcv_wnd = 128 MSS, M = 1, 5, 20, 
100 and Newreno TCP 

In order to emphasize the role of number of burstifiers, we computed the optimum timeout for p=0.01 and p=0.001 
reaching the maximum goodput for three TCP versions, Newreno, Reno and Sack, for different number of 
burstifiers, M=1, 2, 5 and 10 for N = 10 and M=1, 5, 20 and 100 for N = 100. Fig. 10 and Fig. 11 show the 
performance of the timer-based algorithm with N=10 for p=0.001 and p=0.01, respectively. Similarly, Fig. 12 and 

  



Fig. 13 show TCP performance for N = 100. We observe that increasing the number of burst assemblers 
significantly improves the goodput for all three TCP versions since synchronization between TCP flows is reduced 
as the number of burstifiers is increased.  

We also observe that although all three TCP versions exhibit similar characteristics as the number of burstifiers is 
changed, TCP Sack achieves the highest goodput among the three TCP versions. Sack outperforms the other two 
versions since it quickly retransmits the lost segments with selective acknowledgements. Reno and Newreno have 
very close performances, however Newreno slightly outperforms Reno.  

In the second part of the simulations, nOBS is used to simulate an OBS network composed of 3 ingress, 3 egress and 
9 core nodes. The topology of this OBS network is shown in Fig. 14. In this topology, there are 10 TCP connections 
between each source-destination pair Si-Di, i = 1,2, …, 9, i.e., the total number of TCP connections carried over the 
OBS network is 90. Each of the core links has a capacity of 1 Gbps and a propagation delay of 2.5 ms. Each ingress-
optical switch and optical switch-egress link has a capacity of 1 Gbps and a propagation delay of 0.1 ms. On the 
other hand, each access link, i.e., interconnecting source and destination nodes to ingress and egress nodes, has a 
capacity of 500 Mbps and negligible propagation delay. 

The routing table used in these simulations is given below for each source-destination pair (Si-Di, i = 1,…, 9), where 
Ik denotes ingress node k, OSl  denotes optical switch l and Em denotes egress node m. 

S1 → I1 → OS1 → OS2 → OS3 → E1 → D1 
S2 → I1 → OS1 → OS2 → OS5 → OS6 → E2 → D2 
S3 → I1 → OS1 → OS2 → OS5 → OS8 → OS9 → E3 → D3 
S4 → I2 → OS4 → OS1 → OS2 → OS3 → E1 → D4 
S5 → I2 → OS4 → OS5 → OS6 → E2 → D5 
S6 → I2 → OS4 → OS5 → OS6 → OS9 → E3 → D6 
S7 → I3 → OS7 → OS4 → OS5 → OS6 → OS3 → E1 → D7 
S8 → I3 → OS7 → OS4 → OS5 → OS6 → E2 → D8 
S9 → I3 → OS7 → OS8 → OS9 → E3 → D9 
 
Similar to the first part of the simulation studies, flows destined for each egress node are burstified using M = 
1,2,5,10 burstifiers per egress node in order to investigate the effect of the number of burstifiers on TCP Newreno 
performance. For each value of M, the burst assembly time threshold is varied in order to find the maximum 
goodput achieved by each TCP connection. The average maximum goodput, which is computed by taking average 
over all TCP connections, is shown in Fig. 15 for each value of M. The maximum average goodput increases by 
more than 20% as the number of burstifiers per egress node is increased from M = 1 to 2. Further increase of M 
from 2 to 10 generates an additional goodput increase of less than 1%. Since increasing the number of burstifiers at 
the ingress node results in an increase in cost and complexity, switches with efficient burst assembly and relatively 
low cost and complexity can be built by considering moderate values of the number of burstifiers. 

IV. CONCLUSIONS 
nOBS, an ns2 based network simulator for the performance evaluation of TCP over OBS networks is presented. We 
used nOBS in this paper in order to study the effects of the number of burstifiers used at the edge routers on TCP 
performance. Simulations show that increasing the number of assemblers per destination reduces the negative 
effects of synchronization between TCP flows occurring as a result of burst losses. We show that TCP goodput is 
increased significantly when edge routers with multiple burstifiers per destination are used, and the goodput 
increases as the number of burstifiers increase. This conclusion holds for different TCP versions, different number 
of flows, different network topologies and different loss probabilities.  

ACKNOWLEDGEMENTS 
This work is partially supported by FP6 IST e-Photon/ONe+ NoE project and by the Scientific and Technological 
Research Council of Turkey (TUBITAK) under project 104E047. The authors also would like to thank to Ismail 
Cirak who has performed some of the simulations in this paper. 
 

  



 
Figure 10. Maximum goodput as a function of number of burstifiers for p = 0.001, N=10 

 

 
Figure 11. Maximum goodput as a function of number of burstifiers for p = 0.01, N=10 

  



 
Figure 12. Maximum goodput as a function of number of burstifiers for p = 0.001, N=100 

 
Figure 13. Maximum goodput as a function of number of burstifiers for p = 0.01, N=100 

 
 
 
 
 
 
 

  



 
Figure 14. OBS core network topology 

 

 
Figure 15. Maximum average goodput as a function of number of burstifiers 
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