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Abstract 

In order to perform reliable communications, a system needs to have sufficient information about its operational environment, 
such as spectral resources and propagation characteristics. Cognitive-radio technology has capabilities for acquiring accurate 
spectrum, location, and environmental information, due to its unique features such as spectrum, location, and environmental 
awareness. The goal of this paper is to give a comprehensive review of the implementation of these concepts. In addition, the 
dynamic nature of cognitive-radio systems - including dynamic spectrum utilization, transmission, the propagation channel, 
and reception - is discussed, along with performance limits, challenges, mitigation techniques, and open issues. The 
capabilities of cognitive-radio systems for accurate characterization of operational environments are emphasized. These are 
crucial for efficient communications, localization, and radar systems. 

Keywords: Cognitive radio; cognitive positioning system (CPS); cognitive radar; Cramer-Rao lower bound (CRLB); 
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1 .  Introduction 

C ognitive radio (CR) is a promising approach for addressing 
the problems of next-generation wireless systems [ I ] .  

Although a globally recognized and clear-cut definition of cogni­
tive radio does not yet exist [2], there are significant efforts 
towards this goal, such as the formation of the IEEE Standards 
Coordinating Committee 4 1  [3] .  One of the main objectives of this 
committee is to technically define recent terminologies, such as 
cognitive radio, software-defined radio, and spectrum-agile radio.  
In this paper, we adopt a definition that includes the majority of the 
features of cognitive-radio systems reported in the literature [4] : 
sensing, awareness, learning, decision, adaptation, reconfigurabil­
ity, and goal-driven and autonomous operation. It is apparent from 
the definition that cognitive radio is typically envisioned to have 
very sophisticated human-like features [5] .  
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Relying on the fact that spectrum awareness (i .e. , sensing, 
shaping, learning, and optimization) is one of the most crucial 
features of cognitive-radio systems, a significant portion of the 
studies in the literature focused on spectrum awareness and related 
issues [6- 1 2] .  Energy detectors, autocorrelation detectors, and 
cyclic autocorrelation detectors are three common techniques in 
the literature for detection of spectrum opportunities [ 1 3 , 14] .  
Various approaches for spectrum sensing in cognitive-radio sys­
tems have been proposed in the literature. For instance, different 
single-antenna spectrum-sensing techniques were proposed in [ 1 5-
25].  In order to further improve the performance of spectrum 
sensing, cooperative spectrum-sensing techniques have been 
developed [26-33 ] .  In addition, multiple-antenna spectrum-sensing 
methods, such as those in [34-38] were proposed to exploit space­
diversity gain in spectrum-aware systems. More specifically, a 
spectrum-sensing technique based on an energy-detector receiver 

ISSN 1045-9243120101$25 ©2010 IEEE 41 



and mUltiple antennas was proposed in [3 5] .  Finally, we refer the 
readers to [7, 8, 1 0- 1 2] for comprehensive surveys on spectrum 
awareness for cognitive-radio systems. 

Unlike the spectrum-awareness feature, the other features of 
cognitive-radio systems, such as location and environmental 
awareness, have not been thoroughly investigated in the l iterature. 
The main milestones towards embodying location and environ­
mental-awareness features in cognitive-radio systems can be sum­
marized as follows. Haykin introduced the concept of cognitive 
radar, which is a way of learning about the surrounding environ­
ment [39, 40] . In [39], a cognitive radar model that used an intelli­
gent illuminator on the transmitter side and a radar-scene analyzer 
and Bayesian target-tracker methods on the receiver side was pro­
posed. This was followed by the introduction of a radio-environ­
ment mapping method for cognitive-radio networks [4 1 ] .  A joint 
sequential hypothesis testing and adaptive waveform method for 
target recognition in cognitive radar was proposed [42] . A con­
ceptual framework of an environmental-awareness engine for cog­
nitive-radio systems, along with its main functionalities, were pro­
posed in [5 ] .  

On the other hand, the previous work on location awareness 
can be summarized as follows. A conceptual framework for the 
location-awareness engine of cognitive-radio systems was pro­
posed in [43] .  Furthermore, a cognitive positioning system (CPS), 
which is a step towards realization of cognitive location sensing, 
was introduced in [2, 44] . In [2], the range-accuracy adaptation 
featu�e of a cognitive positioning system was introduced without 
providing its performance analysis. Furthermore, in [45] ,  a high­
precision ranging algorithm for dynamic-spectrum-access net­
works was proposed. Theoretical limits on ranging for cognitive­
radio localization systems in the presence of interference were 
studied, and an optimal spectrum-allocation strategy that provides 
the best ranging accuracy was proposed in [46] . The fundamental 
l imits of time-delay estimation in dispersed-spectrum cognitive­
radio systems were investigated in [47] .  In that study, the Cramer­
Rao lower bounds for known and unknown carrier-frequency off­
set (CFO) were derived, and the effects of the number of available 
dispersed bands and modulation schemes were investigated. Also, 
[48] considered time-delay estimation in dispersed-spectrum cog­
nitive-radio systems, and proposed two-step approaches for util iz­
ing the frequency diversity in such systems. In addition, the per­
formance comparison of whole and dispersed-spectrum utilization 
methods for cognitive-radio systems was studied in the context of 
time-delay estimation in [49] .  Finally, the idea of seamless posi­
tioning as a functionality of the location-awareness engine for cog­
nitive-radio systems was introduced in [43 , 5] without proposing a 
specific technique. 

In the literature, there exist studies that combine multiple dif­
ferent concepts for cognitive-radio systems. For instance, a con­
ceptual model that combines location and environmental-aware­
ness concepts was proposed by Yarkan et. al. [50], in order to 
improve the performance of cognitive-radio systems. Haykin 
introduced the concept of cognitive dynamic systems, in which 
cognitive radio for communications and cognitive radar for remote 
sensing were unified [5 1 ] .  In addition, a unified framework that 
combines cognitive radio and cognitive radar was proposed in [52] . 
The concepts of localization and environmental mapping were 
merged, which is known as the simultaneous localization and map­
ping (SLAM) problem in the literature [53, 54] . In addition, in [55-
57],  an ultra-wideband- (UWB) based simultaneous localization 
and mapping technique for mobile nodes was proposed for simple 
two-wall and four-wall scenarios. In that context, a comprehensive 
unified cognitive-radio-system model that combined spectrum, 
environmental, and location awareness concepts was proposed at a 
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conceptual level in [5 ] .  Note that [5] introduced that comprehen­
sive conceptual model without providing the details of how it 
could be implemented and designed. Therefore, in this paper, we 
extend the study in [5] by examining the critical implementation 
issues that need to be addressed for this model in order to move it 
from concept to reality. In addition, the challenges and efforts for 
the deployment of this system model are presented in this study. 

The main focus of this study is to provide an in-depth discus­
sion and overview of challenges, efforts, l imitations, and imple­
mentation issues for the realization of a cognitive-radio-system 
model with spectrum, environmental, and location-awareness 
capabilities. The paper is organized as follows. The overall system 
architecture for cognitive-radio systems with spectrum, location, 
and environmental-awareness capabilities is summarized in Sec­
tion 2.  Section 3 is a brief review of spectrum-aware systems, 
especially spectrum sensing and utilization techniques, and spec­
trum regulations. In Section 4, a discussion of location-aware sys­
tems, along with cognitive positioning systems and seamless posi­
tioning systems, is presented. In Section 5 ,  the details of environ­
mentally aware systems are provided by emphasizing cognitive­
radar and topographical information-estimation functionalities. In 
Section 6, the dynamic operation of cognitive-radio systems, along 
with challenges, adaptation techniques, and open issues, are dis­
cussed in the context of a cognitive-positioning system. Finally, 
the concluding remarks are presented in Section 7. 

2. System Model 

The cognitive-radio architecture [5]  in Figure I is considered 
to be the system model in this paper. Goal-driven and autonomous 
operation are two main features distinguishing cognitive radios 
from legacy radios. Cognitive radios achieve goals by determining 
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Figure 1. A simplified block diagram of the proposed cognitive­
radio-system model. 
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the appropriate radio parameters for the perceived, current, 
dynamic wireless-channel environmental conditions [58] .  The 
goals can be network and node-level goals [59] . Since the focus of 
this paper is cognitive-radio nodes, node-level goals are consid­
ered. In addition, a goal can consist of single or multiple obj ec­
tives. For example, minimization of bit-error-rate (BER), maximi­
zation of throughput, and minimization of power consumption are 
three examples of cognitive-radio objectives [58] .  These objectives 
can be achieved by using artificial-intelligence (AI) methods, such 
as genetic algorithms. For instance, a cognitive engine based on a 
multiple-objective fitness function using a simple weighted-sum 
method was proposed in [58] for the achievement of cognitive­
radio goals. That method was capable of instantly switching oper­
ating goals by simply modifying the objective weighting factor in 
dynamic wireless-channel environments. 

Goal-driven and autonomous operations are managed by the 
cognitive engine in the system model shown in Figure 1 .  In other 
words, the cognitive engine maps the final goals to the local goals, 
and assigns the local goals to the respective specialized engines. 
Finally, the cognitive engine collects and combines the results of 
the assigned local goals to achieve the final goals.  Note that the 
cognitive-radio-system model can have many engines, such as 
policy, interference, and topology engines; however, in this  study, 
we limit the system model to have three engines, which are the 
spectrum, location, and environmental-awareness engines. The 
main functionalities of the spectrum, location, and environmental­
awareness engines are to handle all the tasks related to the spec­
trum" location, and environmental information of the cognitive 
radio, respectively. For instance, the spectrum-awareness engine is 
responsible for performing spectrum-information-related tasks, 
such as estimation of available bands, carrier frequencies, and 
bandwidths. S imilarly, the environmental-awareness engine is 
responsible for handling environmental-information-related tasks, 
such as recognition of objects in the surrounding environment. 
Note that the environmental definition proposed in [5]  is employed 
in this study. This is defined with the fol lowing entities: topog­
raphical information, object information, propagation-channel 
characteristics, and meteorological information. Likewise, the 
location-awareness engine is responsible for handling location­
information-related tasks, such as range and position estimation. 
Once the cognitive engine determines the radio parameters for 
achieving a final goal, it then adapts the radio parameters using the 
arbitrary-waveform generator/processor, as well as the sensing 
interface in the system model [5 ] .  The arbitrary-waveform gen­
erator/processor is an interface that can generate and process any 
type of waveform at the transmitter/receiver side, respectively. The 
sensing interface consists of different sensors, such as radio­
sensing, radio-vision, and radio-hearing devices, to send/acquire 
signals to/from the environment [5 ] .  

Software-defined radio (SDR) i s  a key enabl ing technology 
for deploying cognitive-radio systems such as shown in Figure 1. 
All the engines can be implemented in microprocessors [60] . How­
ever, implementing such sophisticated algorithms in microproces­
sors can require high power consumption, and can generate an 
excessive amount of heat. Therefore, low-complexity spectrum, 
location, and environmentally aware algorithms need to be devel­
oped to in order to address these two issues. In addition, small-size 
and low-power cooling systems can be designed. Adaptive-wave­
form generation and processing include performing baseband and 
RF operations in the transmitter and receiver, respectively, in an 
adaptive manner. Adaptive-waveform generation and processing 
functionalities can be deployed using reconfigurable digital-radio 
processors, such as FPGAs (field-programmable gate arrays) and 
DSPs (digital signal processors) [60] . The evaluation and compari­
son of reconfigurable digital-radio technologies for cognitive-radio 
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systems was studied in [60] . One of the main challenges In imple': 
menting baseband and RF functionalities is the stage of digitizing 
the signal. In an ideal software-defined radio approach, the RF sig­
nal is digitized right after the antenna, and then the digital RF sig­
nal is processed using reconfigurable digital processors. Two main 
challenges to implementing such architectures are designing high­
performance data converters that sample the RF signal at multi­
gigasamples/second (Gsps) rates, and high-performance digital­
radio processors that run at tens of Gbps data rates. Similarly to 
general-purpose microprocessors, reconfigurable digital-radio 
processors have high-power-consumption and overheating prob­
lems. In the second approach, adaptive-waveform generation and 
processing is implemented using mixed digital and analog circuit­
ries. In such an approach, the signal is digitized at the IF stage, and 
the digital IF signal is processed by reconfigurable digital-radio 
processors. This relaxes the requirements of the data converters 
and reconfigurable digital-radio processors. On the other hand, this 
approach requires the use of software-tunable RF components, 
such as software-tunable filters, power amplifiers, and up/down­
converters. Additionally, high-performance software-tunable 
power circuitry, clock-generation circuitry, frequency synthesizers, 
and impedance-matching synthesizers are required. The further 
details of the requirements and challenges of implementing adap­
tive-waveform generation and processing can be found in [60] . 

The sensing interface consists of different sensors, such as an 
antenna, a camera, and an acoustic sensor. The most extensively 
used air-sensing interface is an antenna, which is the main focus in 
this study. There are significant efforts towards the development 
and design of software-tunable antenna systems and RF front-ends 
for software-defined radios. For instance, a reconfigurable antenna 
was proposed in [6 1 ]  that can be tuned electronically to different 
frequency bands while satisfying both high-efficiency and narrow­
instantaneous-bandwidth requirements. In addition, a novel FPGA­
based RF front-end architecture was proposed in [6 1 ] .  The pro­
posed novel RF front-end, coupled with the reconfigurable 
antenna, is a promising architecture for realizing software-defined 
radio. 

Advanced, comprehensive, and intelligent applications can 
be supported by the system model in Figure l. For instance, con­
sider a scenario in which a user is employing a cognitive radio in a 
car, and is moving towards a harsh environment, such as a tunnel 
in an urban area. Assume that the cognitive-radio user operates in 
the normal mode before entering to the tunnel. In the normal mode, 
the main goal is to achieve the best throughput possible while sat­
isfying a power constraint. In addition, it is assumed that �a high 
carrier frequency is used, since penetration is not a major problem 
in the normal mode. We -call the operating mode within the tunnel 
the alert mode. This mode is defined as the mode in which the 
main goal is to keep the level of the quality of service (QoS) as 
close as possible to the quality-of-service level provided outside 
the tunnel. The location-awareness engine tracks the cognitive­
radio user in order to provide its position information. On the other 
hand, the environmental-awareness engine acquires the channel 
environment information within and outside the tunnel, such as the 
propagation model (path-loss coefficient). Furthermore, the spec­
trum-awareness engine provides the available bands within and 
outside the tunnel .  The location-awareness engine detects when the 
cognitive-radio user enters the tunnel, and then the cognitive 
engine switches the operating mode from the normal to the alert 
mode. Since signal penetration and propagation are maj or issues 
for the tunnel environment, the cognitive engine lowers the carrier 
frequency and maximizes the transmitted power, in order to 
improve the penetration. In addition, it adapts the coding and 
modulation to combat the fading. Once the location-awareness 
engine detects that the cognitive-radio user has exited the tunnel, 
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the cognitive� engine then switches the mode back to the no-
rmal 

mode. Note that numerous goal-driven and autonomous applica­
tions can be supported by the system model. Of course, such intel­
ligence comes with additional complexity. However, recent 
advances in software-defined radio technology, mobile computing, 
and processors, such as sophisticated FPGAs, are promising for 
implementing such system models in the near future [60] . There 
are significant efforts from academia, industry, and regulatory 
agencies in the development and design of cognitive-radio sys­
tems. For instance, a real-time MIMO OFDM (orthogonal fre­
quency-domain multiplex) test bed for cognitive radio networks 
was developed in [62], and Mishra et. al. developed a real-time 
cognitive-radio test bed for the physical and link layers. In addi­
tion, a biologically inspired cognitive-radio test bed was developed 
in [63, 64], in order to develop and test genetic algorithms for cog­
nitive-radio systems. 

3. Spectrum-Aware Systems 

Dynamic spectrum utilization is an essential component of 
cognitive-radio and cognitive-positioning systems. As i llustrated in 
Figure I, spectrum sensing is handled through the spectrum­
awareness engine in a cognitive-radio system. Its output can be 
sent to cognitive, location, and environmental-awareness engines. 
A spectrum-awareness engine may also utilize the information 
from the other engines in order to improve its own accuracy. 

As shown by numerous studies in the literature (see, e.g., [6-
1 2]), the spectrum is  util ized inefficiently by today's wireless net­
works. In many scenarios, certain parts of the spectrum are not 
uti lized by any user, which is a waste of spectral resources. In 
some other scenarios, the interference from other users may be 
negligible, due to propagation characteristics and signal attenua­
tion. In such case, some secondary users can have the opportunity 
to re-use certain parts of the spectrum. However, such opportunis­
tic spectrum utilization requires reliable spectrum sensing to make 
sure that the frequency band of interest is not occupied by any pri­
mary users in a given time interval. If the spectrum is available, it 
may then be utilized by an opportunistic network for communica­
tions and/or localization purposes. 

An example of an opportunistic spectrum-utilization 
approach is illustrated in Figure 2, where several primary users 
(PUs) are communicating with a base station (8S).  Moreover, 
there is a secondary network (SN), which tries to utilize the spec­
tral resources of the primary network. The signals of the primary 
users that are far away from the secondary network are attenuated 
significantly, and hence their uplink (UL) spectrum may be avail­
able for reuse in certain regions of the secondary network. For 
example, SU-2 may reuse the spectrum of PU-4, since the received 
signal power from PU-4 is very weak at SU-2. 

3.1  Spectrum Sensing 

Spectrum sensing is one of the most fundamental problems 
for cognitive radios. Two main issues in spectrum sensing are reli­
ability and wideband sensing [65 ] .  Reliable detection of the exis­
tence of primary users is a primary requirement for the minimiza­
tion of interference to existing communications. Note that a hidden 
node is major threat for reliable primary-user detection, where a 
secondary user cannot detect the primary user's signals due to 
shadowing. We will briefly discus two main approaches that 
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improve the reliability of spectrum sensing: collaboration, and 
multi-antenna-based spectrum-sensing methods. 

Spectrum-sensing techniques for opportunistic spectrum 
access have been investigated extensively in the literature. Several 
single-antenna spectrum-sensing techniques were proposed in [ 1 5-
25] .  As discussed in [ 1 3, 1 4], there are three common techniques 
for detection of spectrum opportunities: energy detectors, autocor­
relation detectors, and cyclic autocorrelation detectors. As i llus­
trated in Figure 2, an energy-detector receiver at SU-2 is  a com­
mon spectrum-sensing method for determining the spectrum 
opportunities. An energy detector sets a threshold, and the fre­
quency bands with received power below the threshold are labeled 
as spectrum opportunities. The spectrum-sensing results may be 
further improved through cooperative techniques, as in [26-33],  
where multiple closely located receivers exchange information for 
more-accurately determining spectrum opportunities. 

Multiple-antenna spectrum sensing [34-38] is a second 
alternative for improving the reliability of spectrum-sensing 
results. In Figure 3, spectrum sensing based on an energy-detector 
receiver and mUltiple antennas is il lustrated [35] .  After the signals 
arriving at different antennas are processed with a bank of square­
law devices and integrators, the resulting decision variables are 

Primary 
Network 

f ... 1 fP\I.J f� fPU-4 

PU-3 

Figure 2. An illustration of spectrum opportunities in a secon­
dary network that arise due to propagation effects in a pri­
mary network. P,.x;SU-2 and fpu_;denote the received signal 

energy at SU-2 and the frequency band for primary user i, 
resDectivelv. 
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Figure 3. Multiple-antenna spectrum sensing at a cognitive­
radio receiver (35). 
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compared with a threshold, followed by a multi-antenna spectrum­
sensing block. For example, in [35],  binary spectrum-sensing deci­
sions were made corresponding to each of the antennas. The num­
ber of positive hypotheses (corresponding to the decision that the 
spectrum is occupied) were then compared with a threshold. If this  
was larger than the threshold, the spe�trum was occupied, and oth­
erwise, it was available. On the other hand, [34] coherently com­
bined the multiple-antenna signals, without any prior information 
about the primary system, and fed the spectral-correlation function 
of the combined signal to a feature detector for the final decision. 
The results in [34] and [35]  showed considerable improvement 
when using multiple antennas over the single-antenna spectrum­
sensing technique. 

Another main challenge in spectrum sensing is to sense very 
wide bandwidths, up to several GHz, in real time, in order to relia­
bly detect available bands for opportunistic usage [65). It is a 
challenging task to develop and design an RF front-end and digital­
signal-processing algorithms that satisfy such sensing require­
ments. Along this  l ine, a multi-band joint-detection method was 
proposed in [65] for achieving wideband spectrum sensing. 

3.2 Utilization of S pectrum Opportunities 

After sensing the spectrum and determining the available fre­
quency bands, a cognitive-radio system needs to efficiently util ize 
these -spectral resources in order to perform reliable communica­
tions [9], localization [2, 5], and/or radar [39] functions. In utiliz­
ing available spectral resources, the main criteria to consider are 
performance, complexity, and power consumption. 

In communications systems, performance can be quantified 
via throughput, whereas in localization systems, it is related to 
average position-estimation error [66, 67). On the other hand, the 
performance of radar systems is characterized by probabilities of 
detection and false alarm, as well as accuracy of velocity and posi­
tion estimates (time and Doppler resolution) related to targets [68, 
69). In the aforementioned systems, performance improvements 
can be obtained, such as an increase in system bandwidth and/or 
signal-to-interference-plus-noise (SINR). The main implication of 
improved performance with increased bandwidth is to util ize all of 
the available bands in the spectrum. For example, if a scenario 
such as in Figure 4 is considered, the best theoretical performance 
can be obtained when all the available bands around the center fre­
quencies fc" . . .  , fCK are used. However, in practical scenarios, 

utilization of many dispersed bands, such as in Figure 4, can con­
siderably increase the complexity of the system. For example, 
simultaneous processing of signals that occupy various dispersed 
bands may require antennas and RF components that operate on 
extremely large bandwidths, which are difficult to design [67, 70). 
In addition to increasing complexity, the use of many dispersed 
frequency bands can significantly increase power consumption, 
which is not suitable for battery-operated applications. A suitable 
selection of the available bands and associated power levels should 
therefore be determined in order to meet performance, complexity, 
and cost requirements. 

The center frequencies of the bands can also be important, in 
addition to their bandwidths, in selecting an operating spectrum 
from available bands. As the center frequency increases, more 
attenuation is expected for the signal occupying that band. Cover­
age of a system that employs available bands around high carrier 
frequencies can therefore be reduced, since signal power at a given 
distance decreases in such a case. 
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Figure 4. An example scenario illustrating available (white) 
and unavailable (gray) frequency bands. 

After a cognitive-radio system determines which spectrum to 
utilize, the next important issue is to efficiently util ize that selected 
spectrum. Since there is a limit on the amount of transmitted 
power, the allocation of the signal power among different fre­
quency bands, and inside different frequency components in each 
band, should be optimized in order to maximize system perform­
ance. For example, water-filling algorithms can be used to maxi­
mize the capacity of a communications system [7 1 ,  72] . Similarly, 
power can be optimally distributed among available frequency 
components in order to improve accuracy of a ranging system [46] . 
Theoretical limits on range-estimation accuracy for dispersed 
spectrum utilization were also studied in [47] .  More details on [47] 
are presented in Section 4. 

3.3 FCC Reg ulations and Experimental 
Studies 

The Federal Communications Commission (FCC) in the 
United States has recently announced rules that allow unlicensed 
devices to communicate in the broadcast television (TV) spectrum, 
where the spectrum is not used by licensed devices [73). Even 
though this unused TV spectrum (commonly referred to as "white 
spaces") presents a significant amount of spectrum to be used by 
cognitive-radio devices, the FCC provides a set of conservative 
rules and a framework for the operation of such devices. Some rep­
resentative restrictions from the FCC's  Second Report and Order 
on the operation of white-space devices are as follows [73 ] :  

"All devices, except personal/portable devices operat­
ing in client mode, must include a geolocation capabil­
ity and provisions to access over the Internet a database 
of protected radio services and the locations and chan­
nels that may be used by the unlicensed devices at each 
location. The unlicensed devices must first access the 
database to obtain a list of the permitted channels 
before operating." 

"Fixed and personal/portable devices must also have a 
capability to sense TV broadcasting and wireless 
microphone signals as a further means to minimize 
potential interference. However, for TV broadcasting 
the database will be the controlling mechanism." 

"Devices must adhere to certain rules to further mitigate 
the potential interference and to help remedy potential 
interference should it occur. For example, all fixed 
devices must register their locations in the database. In 
addition, fixed devices must transmit identifying infor­
mation to make it easier to identify them if they are 
found to interfere. "  

"All white space devices are subject to equipment 
certification by the FCC Laboratory. The Laboratory 
will request samples of the devices for testing to ensur� 
that they meet all the pertinent requirements." 
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"The Commission wiJI act promptly to remove any 
equipment found to be causing harmful interference 
from the market and wiJI require the responsible parties 
to take appropriate actions to remedy any interference 
that may occur." 

Several cognitive-radio prototypes and related experimental 
work have been reported in the literature. For example, the FCC 
documented a comprehensive report on the performance evaluation 
of prototype white-space devices in [74]. Five devices (provided 
by Adaptrum, the Institute for Infocomm Research (I2R), Micro­
soft Corporation, Motorola Inc., and Phil ips Electronics North 
America (Philips» have been evaluated in detail for digital TV 
(DTV) scanning and spectrum-sensing capabilities, and field tests 
have been performed. In general, all the white-space devices have 
been capable of perfectly detecting (with 100% successful detec­
tion performance) clean DTV signals at input DTV powers larger 
than - l l O dBm, while some of them achieved 100% successful 
detection performance at input DTV powers lower than -125 dBm. 
As such, the FCC report states that the burden of "proof of con­
cept" has been met. Authorized spectrum-sensing devices in com­
bination with geo-location and database access techniques can be 
used today, and devices relying on sensing alone may be addressed 
in the near future [74]. 

Several experimental studies specific to spectrum sensing 
bave also been reported in the literature [75-77]. For instance, in 
[75], an energy-detector-based wireless test bed was developed to 
measure the required sensing time needed to achieve the desired 
probability of detection and false alarm for signals in a low-SNR 
region. The measurement results showed that a target probability 
of detection of 0.8 (Pd = 0.8 ) with the probability of false alarm 

set to 5% (Pia = 5%) could be achieved for signals greater than 

-104 dBm within a 170 ms sensing time. 

4. Location-Aware Systems 

The essential requirements for goal-driven and autonomous 
location-aware systems are accuracy, continuity, availability, and 
integrity [5, 78]. In order for cognitive radio to support such sys- _ 
terns, a conceptual model for a location-awareness engine was pro­
posed in [5] and [43]. The main functionalities of a location­
awareness engine are location sensing (or a cognitive positioning 
system, CPS), adaptation of location-aware systems, seamless 
positioning and interoperabil ity, security and privacy, statistical 
learning and tracking, mobility management, location-aware appli­
cations, and a location-awareness core. The discussion in this sec­
tion will focus on architectures, fundamental l imits, challenges, 
mitigation approaches, and open issues for cognitive positioning 
systems and seamless positioning systems. 

4.1 Cognitive Positioning Systems 

A cognitive positioning system performs location-sensing 
functionality in a location-awareness engine. In other words, its 
.main task is to provide the positioning accuracy specified by the 
cognitive engine. In order to meet various accuracy requirements, 
range-accuracy adaptation can be achieved by the adaptation of 
system parameters [2]. 

One way to provide range-accuracy adaptation in cognitive 
positioning systems involves the use of Cramer-Rao lower bounds 
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(CRLBs) for the optimization of signal parameters. As an i llustra­
tive example, consider a cognitive positioning system that per­
forms range calculations based on time-of-arrival (TOA) estima­
tion in a single-path additive white Gaussian noise (A WGN) chan­
nel environment. In this scenario, the Cramer-Rao lower bound on 

the variance of any unbiased range estimator J is given by [79] 

� c 
Var d � , {} 2J27r.JSNRf3 

(1) 

where SNR is the signal-to-noise ratio, c is the speed of light, and 
13 is the effective signal bandwidth, defined as 

132 
= 

J:f
2
lsut df 

, 
J:ISUtdf 

(2) 

with SU) denoting the Fourier transform of the transmitted sig­

nal. From Equation (I), it can be observed that the transmitter can 
adapt the ranging accuracy by adjusting the SNR and/or the signal 
bandwidth based on feedback from the receiver. Note that the SNR 
can be adapted in a number of ways, such as by changing modula­
tion type and the number of symbols that are transmitted for time­
of-arrival estimation, i .e., by adjusting the ranging signal duration, 
and by changing the signal power [47]. 

Let's consider a numerical system design for the range-accu­
racy adaptation in a cognitive-radio system with the following 
system parameters. Assume that the cognitive-radio system has a 
capability to adapt the SNR by changing signal power between the 
values of Ptx,l and Ptx,2' where �x,1 and Ptx,2 are the minimum 

and maximum transmitted power levels, respectively. In addition, 
the cognitive-radio system also has a capability to adapt effective 
bandwidth between the values of 131 and 132, where 131 and 132 are 

the minimum and maximum available effective bandwidths, 
respectively. The Cramer-Rao lower bound expression in Equa­
tion (1) for system parameters Ptx,2 = 4Ptx,I and 132 = 8131 is plot-

ted in Figure 5. (It is assumed that ISU)I = I for the sake of 

simplicity.) According to the results, the cognitive radio can theo­

reticalJy adapt the range accuracy between the bounds of CRLBI 
and CRLB2• In other words, a range-accuracy adaptation between 

58.88 m and 0.19 m can be achieved for the given system parame­
ters. Another observation is that the theoretical operational region 
is quantified to be 24 dB, which is simply the region between these 
two bounds. (6 dB is due to power gain (Ptx,z I  Ptx,1 = 4 ), and 18 dB 

is due to bandwidth gain (f3i. /f3? = 64 ». 

Note that practical systems cannot always perform very 
closely to the Cramer-Rao lower bounds. However, it is still rea­
sonable to use these bounds as a metric for adaptation, by consid­
ering certain margins between the bounds and the system's per­
formance. In addition, it is known that maximum-likelihood-(ML) 
and maximum-a-posteriori- (MAP) based location estimators can 
asymptotically achieve the Cramer-Rao lower bounds in l ine-of­
sight (LOS) and non-line-of-sight (NLOS) environments, respec­
tively [80]. Specifically, for high SNRs and/or large signal band­
widths, the positioning accuracy of a cognitive receiver can get 
very close to the theoretical limits. As an illustration of this  issue, 
the performance of practical maximum-likelihood range-accuracy 
adaptation was evaluated for the previous system parameters, and 
is compared to the theoretical bounds in Figure 5. As can be seen 
from the figure, the performance of the practical maximum-likeli-
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hood range-accuracy adaptation depended on tne SNR region [8 1 ,  
82). 

The SNR threshold phenomenon divides the region into two 
sub-regions. The regions before and after the SNR threshold 
(SNRth) are called the nonlinear and linear regions, respectively. 

Note that practical maximum-likelihood range-accuracy adaptation 
asymptotically achieves the Cramer-Rao lower bound in Equa­
tion ( I )  in the l inear region. In other words, the operational region 
for practical maximum-likelihood range-accuracy adaptation is 
mainly determined by the SNR thresholds, which are 
SNRthl = I I  dB for MLI and SNRth2 = 1 7  dB for M�, in this case. 

In addition, cognitive-radio systems can practically perform range­
accuracy adaptation between 8.32 m and 0. 1 9  m. Therefore, it is 
concluded that practical maximum-likelihood range-accuracy 
adaptation is desirable for operating in this linear region. (Ziv­
Zakai lower-bound- (ZZLB) based range-accuracy adaptation can 
perform very closely to practical systems in both nonlinear and l in­
ear regions [83,  84).) The performance of practical maximum-like­
lihood range-accuracy adaptation methods can be improved in 
terms of achieving the Cramer-Rao lower bounds asymptotically in 
several ways. One approach is to use the dispersed spectrum-utili­
zation method, which is discussed later, in Section 6. Another 
approach is to use practically realizable lower bounds, such as the 
Ziv-Zakai lower bound [83 ] ,  as an optimization criterion for range­

,accuracy adaptation methods. 

The expression in Equation (I) illustrates the possibility of 
accuracy adaptation in cognitive positioning systems for single­
path additive-white-Gaussian-noise channels. However, practical 
cognitive positioning systems commonly operate in more-compli­
cated propagation environments. In addition, they have dynamic 
operational characteristics driven by specific goals of the system. 
For example, a cognitive positioning system can utilize a number 
of dispersed frequency bands in the spectrum (Figure 6), and can 
perform range estimation based on signals received from the dis­
persed bands. Furthermore, a cognitive-radio channel can be quite 
dynamic; hence, a cognitive receiver might need to employ certain 
adaptive-positioning algorithms. Therefore, the dynamic opera­
tional characteristics of cognitive systems need special attention 
from the viewpoint of a cognitive positioning system. 

4.2 Seamless Positioning Systems 

It is well  known that the performance of positioning systems 
can be significantly affected during the transition from one type of 
propagation environment to another one (e.g., the transition from 
an outdoor to an indoor environment) [45] .  Therefore, seamless 
positioning is an approach that enables cognitive positioning sys­
tems to seamlessly operate in any environment. In general, seam­
less positioning is defined as a system that maintains the accuracy, 
integrity, continuity, and availability requirements of the cognitive 
engine, regardless of changes in propagation environment. How­
ever, the performance metric of interest will be range accuracy in 
this discussion. Consequently, the main objective of the seamless 
positioning system is to maintain the range accuracy at a prede­
fined level in any propagation environment. 

In this section, two main approaches for seamless positioning 
systems are discussed: Environmental-sensing-based methods, and 
waveform-based methods [5). The main idea behind the first 
approach is to jointly estimate the range parameters (e.g., the path 
delay in the time-of-arrival estimation scenario) and the channel 
parameters, such as the path-loss exponent (n) [85] and the fre­
quency-dependence coefficient of the channel (I() [45] .  In this 
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approach, the effects o f  the channel environment on the range 
accuracy are inherently incorporated into the range estimation, 
since the channel parameter reflects the changes in the propagation 
environment. In [85] ,  an RSS-based location-estimation method 
that jointly estimated the [x y] coordinate information and n was 
proposed. It was shown that the proposed algorithm kept the prede­
fined position accuracy at a constant level, regardless of different n 
values. Furthermore, seamless positioning systems based on the 
estimation of I( for the channel propagation environment can be 
developed. In this  l ine, Qiu et. al. extended the conventional com­
plex channel model for wireless propagation by including the fre­
quency-dependent feature of the signal path, which can provide 
physical insights into the channel environment. The channel's 
transfer function, including the frequency-dependent feature of 
signal paths, is defined as [86] 

L 
H(w) = LaleN'e-jWTlwVI , (3) 

1=1 

where L is the number of paths, and ai, ¢JI, TI, and vI are, respec­

tively, the distance-dependent path coefficient, phase, delay, and 
frequency-dependent path coefficient of the lth path. In [86], sin­
gular-value decomposition along with the eigen-matrix pencil 
method was proposed to jointly estimate the ai, ¢JI, TI, and vI 

parameters. Furthermore, according to the results reported from 
channel-measurement campaigns, each channel environment has 
different I( values. For example, the channel parameters for the 
IEEE 802. 1 5 .4a channel measurements are tabulated in Table I 
[87] . In these results, it was assumed that all the paths had the 
same frequency-dependent distortion, i .e. ,  vI = -21(. This implies 

that K is one of the characteristic parameters for a channel 
environment. Hence, seamless positioning systems based on I( 
estimation can be developed. 

PSO 

Figure 6. An illustration of dispersed spectrum utilization in 
cognitive-radio systems. 

Table 1 .  The measured I( values of some ultra-wideband 
(UWB) channels 187). 

Channel Models I( 
CM 1 Residential Indoor LOS 1 . 1 2  
CM2 Residential Indoor NLOS 1 .53  
CM3 Office Indoor LOS 0.03 
CM4 Office Indoor NLOS 0.7 1 
CM5 Outdoor LOS 0. 1 2  
CM6 Outdoor NLOS 0. 1 3  
CM7 Industrial LOS -1 . 1 03 
CM8 Industrial NLOS - 1 .427 
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Since estimation of a single channel parameter may not give 
sufficient information regarding the channel's environment, multi­
ple parameters related to the channel's environment can be esti­
mated for seamless positioning. This requires development of rapid 
and low-complexity signal-processing techniques. 

The second approach for seamless positioning is the wave­
form-based method. This method selects the most-appropriate 
waveforms for given accuracy requirements and environment types 
[88]. This requires a cognitive-radio system equipped with multi­
ple waveforms, such as global positioning system (OPS), Oalileo, 
30, ultra-wideband (UWB), wireless local-area-network (WLAN), 
and Bluetooth systems. The readers are referred to [88] for further 
details. 

5. Environmentally Awate Systems 

Environmental awareness is one of the most crucial 
functionalities of a cognitive-radio system, since the channel's 
environment is the bottleneck of wireless-communications sys­
tems. In order for cognitive-radio systems to interact and learn the 
surrounding environment, a conceptual model for an environ­
mental-awareness engine (c.f. Figure 1 )  was proposed in [5]. In 
essence, the subsystem of the model corresponded to the main 
entities of an environment, which are topographical information, 
object recognition and tracking, propagation-channel characteris­
tics, meteorological information, environmental sensing, environ­
mentally aware applications, and an environmental-awareness 
engine core. The environmental-awareness engine core (which acts 
like the radio-environment "mapper" in [41]) collects all the envi­
ronmental information from each aforementioned subsystem to 
form the complete radio-environment map at a given time. 

In this section, the implementation options and challenges for 
environmental sensing and mapping using cognitive-radar func­
tionalities of the environmental-awareness engine are discussed. 

5.1 Cognitive Radar 

In environmentally aware systems, cognitive radars can be 
used to provide information related to the objects in an environ­
ment, which can be considered to be an environmental sensing 
method. The main task of a cognitive radar is to provide object 
detection, identification, and tracking capabilities - based on intel­
ligent signal-processing techniques - and feedback from the 
receiver to the transmitter [39, 89]. Unlike conventional radars, a 
cognitive radar "learns" its environment, and preserves the infor­
mation content of radar returns by applying Bayesian approaches 
[79] . 

A generic block diagram of a cognitive radar is i l lustrated in 
Figure 7. The transmitter illuminates the environment by sending a 
specific signal to the environment, and the signal reflections, called 
radar returns, are collected by the receiver. The radar returns con­
tain information related to the environment, i .e., to the objects in 
the environment. In addition to the radar returns, the receiver can 
collect information-bearing signals that are present in the environ­
ment, such as temperature and rain intensity (i.e., meteorological 
information) [39]. By having current and forecasted meteorological 
information, such as rain intensity and temperature, a cognitive 
radio can accordingly adapt itself [5]. For instance, rain can have 
significant effects on the performance of broadband fixed wireless-
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Figure 7. A block diagram of a cognitive-radar system. 
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Figure 8. A block diagram of a cognitive-radar receiver. 

access links (e.g., fixed WiMAX) [90], especially operating at 
higher carrier frequencies. One of the performance parameters that 
can be affected by rain is the carrier-to-interference ratio (C/I), and 
this performance metric depends on the rain intensity along the 
location of the desired signal path and the interferer signal paths. 
Some of the representative scenarios showing the rain effects on 
C/I performance of broadband fixed wireless-access links are given 
as follows [90]: rain-induced CII degradation, rain-induced C/I 
improvement, and no C/I change. The details of these scenarios 
can be found in [90]. If a cognitive radio or network has a capabil­
ity to acquire the rain intensity of local regions from a central 
meteorological server or the Internet, then C/I adaptation can 
accordingly be performed [5]. Furthermore, according to an NSF­
sponsored study performed by the University of North Texas [91], 
the temperature and humidity affect the received signal strength 
(RSS). It was observed that higher temperature can lead to a slight 
decrease in received signal strength, and there is a 2 to 5 dBm 
received signal strength loss as the temperature goes from 25°C to 
45°C. In addition, as humidity increases, the received signal 
strength becomes stronger. As a result, the cognitive radio can 
adapt the l ink according to the temperature and humidity in the 
operating environment. Note that he main task of the receiver is to 
use all the incoming signals and the prior information about the 
environment in order to perform target detection, identification, 
and tracking. 

An important property of a cognitive-radar system is 
the presence of feedback from the receiver to the transmitter. 
Based on the feedback from the receiver, the transmitter can be 
adapted for improved performance. In other words, intelligent sig­
nal processing is facil itated by the presence of feedback [39]. Note 
that the feedback can be easily provided for monostatic radars, i .e., 
when the transmitter and the receiver are co-located. However, for 
bistatic radars, the design of feedback mechanisms can be chal­
lenging. 

The main blocks of a cognitive-radar receiver are the radar­
scene analyzer and the Bayesian target tracker, as shown in Fig­
ure 8. The radar-scene analyzer is the unit that extracts information 
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Figure 9. Two-dimensional indoor mapping without any infra­
structure (modified from (54]). 
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about the environment based on radar returns and other signals 
obtained from the environment [39] . The Bayesian-target-tracker 
unit uses the radar returns, the available prior information, and the 
statistical information provided by the radar-scene analyzer in 
order to employ Bayesian strategies [79, 92] for object detection 
and tracking. (The information provided to the Bayesian target 
tracker by the radar-scene analyzer is commonly in the form of 
parameters characterizing certain statistical distributions related to 
various radar returns [39] .) In other words, the Bayesian-target­
tracker unit updates the prior information about the objects in the 
environment, based on information provided by the radar-scene 
analyzer and the observed radar returns. Hence, it basically calcu­
lates posterior distributions of certain events (e.g., an object to be 
present at a certain position at a given time) in the environment, 
based on all the available information. 

5.2 Environmental Mapping and 
Topographical Information Estimation 

UWB technology is capable of providing high-data-rate and 
robust communications and high-precision positioning, due its 
numerous attractive features. In addition to the aforementioned 
applications, UWB technology is traditionally used for radar appli­
cations [93 ] .  Furthermore, UWB technology has been considered 
an integral part of new emerging technologies, such as cognitive­
radio systems [52, 60, 94-99] .  In other words, the connection 
between UWB and cognitive-radio systems is in the interest of 
many studies in the literature, and UWB is considered a part of 
cognitive-radio systems in those studies. For instance, UWB was 
considered as a solution for underlay spectrum access [96], control 
channel [95], and active interference cancellation [97] issues in 
cognitive-radio systems.  In addition, numerous UWB-based cog­
nitive-radio test beds, such as [3 1 ,  52, 99] have been developed for 
demonstrating different applications. As a result, UWB can be 
considered to be another waveform type in the waveform library of 
cognitive-radio systems. Apart from the above applications of 
UWB positioning and communications in cognitive-radio systems, 
the UWB radar concept can be applied to cognitive-radio systems 
towards the realization of environmental awareness, which is con­
sidered in this study. 

It is not an easy task to acquire complete knowledge about 
the surrounding environment using a single method or technology 
since the environment consists of different entities: topographical 
information, object recognition and tracking, channel-propagation 
characteristics, and meteorological information. Therefore, it is a 
more-efficient approach to use different methods and technologies 
to acquire the information about each entity of the environment. 
For instance, UWB radar technology can be used to detect, iden­
tify, and track the objects in an environment. Note that UWB can 
provide such capabilities for short ranges, and extending the range 
of UWB technology is an open research topic. On the other hand, 
the topographical information of an environment can be acquired 
by cognitive radio using digital elevation models (DEMs) and geo­
graphical-information-system (GIS) databases. The details of this 
approach can be found in [49] .  

One of the important characteristics of a cognitive-radio sys­
tem is that it can learn/map its physical surroundings and topogra­
phy [5,  4 1 ], even in the absence of any infrastructure. A cognitive­
radio device can achieve this through listening to the returns of its 
own transmitted signals, as well  as the signals transmitted by other 
cognitive-radio devices. Having an accurate map of the environ­
ment may have multiple uses. It can be used for situa­
tion/environment awareness purposes, where, for example, a fire-
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fighter can be guided to find his or her way out of a burning 
building. In fact, the European-Union-funded project EUROPCOM 
[ 1 00, 1 0 1 ]  envisions a scenario where UWB radio is used in emer­
gency situations (particularly within large buildings) where the 
locations of the personnel are monitored in a control vehicle. Since 
the building map may not be available a priori, or it may change 
due to damaged walls, etc., RF signals can be used to obtain an up­
to-date map of the building. 

Having an accurate map of the environment also improves 
the position-estimation accuracy of the cognitive-radio device. 
This issue is commonly referred as the simultaneous localization 
and mapping (SLAM) problem in the literature (particularly, in the 
robotics-research community), where a mobile node jointly and 
incrementally builds a map of the environment while simultane­
ously estimating its own location [53,  54] .  In [53] ,  it was proven 
that the simultaneous localization and mapping problem can be 
solved in such a way that the mapping uncertainty and the position 
uncertainty can be improved up to a fundamental limit determined 
by the initial position uncertainty. If the sensor measurements for a 
cognitive-radio device i at time t are given by range measurements 
dj and angle measurements If/j ' a vector 

vt = {d] , If/] , d2,1f/2, . . . , dM ,If/M } can be defined for M features of 

the environment. The joint state space of the cognitive device and 
the environment is then given by [53]  

(4) 

where the tuple (x, y, n) defines the pose of the cognitive-radio 

device, and (Xj , yd is the position of the ith feature of the environ­

ment. The simultaneous localization and mapping problem is then 
defined as the estimation of following posterior distribution [54] 

(5) 

where ut = (!J.dt ,  !J.(}t )  is the relative transitional and rotational dis­

placement of the cognitive radio device at time t. 
In [55-57],  UWB transceivers were used for simultaneous 

localization and mapping of a mobile node in simple two-wall and 
four-wall scenarios. The advantage of UWB for simultaneous 
localization and mapping is that due to their large bandwidths, 
UWB signals can resolve individual returns from different reflec­
tions with high timing accuracy. Therefore, the information 
embedded within distinct multipath components can be extracted, 
which is not possible with narrowband radios. Moreover, since a 
small number of dominant echoes corresponds to large flat sur­
faces such as walls, these dominant components can be captured 
by an appropriate thresholding method [55] .  (Several other less­
significant multipath components are typically scattered from 
smaller objects.) 

Figure 9 illustrates a simple scenario in which two cognitive­
radio nodes (CNs) can receive line-of-sight or reflected signals 
from each other (or reflections of their own signals) [55] .  By proc­
essing different echoes, the mobiles can obtain the distances to 
each other as well as to the walls. In this scenario, CN- l receives 
three replicas of its own transmitted signal after reflections from 
the walls: one from wall- I ,  another from wall-2, and a third one 
from around the intersection of wall- l and wall-2, which is a dou­
ble reflection (not shown in Figure 9). While CN- I cannot distin­
guish these, it can obtain three distance measurements, d] ,j ' 

j E { 1 , 2, 3} . Similarly, CN-2 receives three different echoes of its 
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own transmitted signal to obtain distance measurements d2,J' j E { 1, 2, 3} . Note that corresponding to each distance measure­

ment, a position circle can be drawn around a CN, and the tangents 
to this circle are possible locations of a wall .  If the distance 
between CN- I and CN-2 is known, the common tangents to the 
two position circles for CN- I and CN-2 yield possible locations for 
a wall .  For example, for measurements d\,2 and d2,2' there are two 

common tangents : one corresponds to wall-2, and the second one 
is the mirror image of wall-2 with respect to the line passing from 
CN- l and CN-2. Since there are three measurements for each CN, 
this corresponds to 3 x 3 x 2 = 1 8  total hypotheses for the two walls, 
including the mirror images [54] . The ambiguity can be resolved 
by checking if any two wall combinations predict the double 
reflections with appropriate delays, and can yield the channel 
impulse response (CIR) from the other CN. As apparent from the 
above discussion, the key parameter for finding the locations of the 
walls is the distance between two CNs. This parameter can be 
estimated by utilizing the channel impulse response between the 
two CNs, which has four echoes: the line-of-sight signal, two sin­
gle reflections, and one double reflection. For further details and a 
discussion for a four-wall scenario, the reader is referred to [55 ] .  

6. Dynamic Operation of 
Cognitive-Radio Systems 

In this section, the dynamic nature of cognitive-radio systems 
is discussed in the context of cognitive positioning systems. More 
specifically, the issues related to the dynamic nature of cognitive 
positioning systems are considered, and performance limits, chal­
lenges, mitigation algorithms, and adaptation techniques are dis­
cussed. 

6.1 Dynamic S pectrum Utilization 

Cognitive-radio systems facilitate opportunistic use of spec­
tral resources. In other words, a cognitive-radio system can employ 
signals with dispersed frequency spectra, as shown in Figure 6. 
Therefore, the ranging accuracy of cognitive positioning systems 
depends also on the number of available frequency bands, and the 
bandwidth and center frequency of each of these bands. 

In order to investigate the performance of cognitive position­
ing systems in dynamic spectrum-access scenarios, consider a cog­
nitive-radio system that allocates K different frequency bands, as in 
Figure 6 [47] . Assume a cognitive positioning receiver with K dif­
ferent branches, each of which processes one of the K frequency 
bands: i .e . ,  each branch filters, amplifies, and down-converts the 
signal according to one of the center frequencies. (Another way to 
uti lize dispersed spectra in cognitive positioning systems is to con­
sider the received signal as an orthogonal frequency-division mul­
tiplexing (OF OM) signal, with zero coefficients at the sub-carriers 
corresponding to the unavai lable bands [ 1 02- 1 04] .  Such an 
approach can require processing of very large bandwidths when 
the available spectrum is quite dispersed [47] .) .  Then, the baseband 
representation of the received signal in the ith branch can be 
expressed as 

(6) 

for i = I, . . .  , K , where s; (t) is the baseband representation of the 
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transmitted signal corresponding to the ith band, a; = a;eJlPi and 

OJ; respectively represent the channel coefficient and the carrier­

frequency offset (CFO) for the signal in the ith branch, r is the 

time of arrival, and n; ( t)  is complex Gaussian noise with 

independent and white components, each having spectral density 2 
(Y; . 

In [47] , the Cramer-Rao lower bounds were derived for the 
signal model in Equation (6) for the cases of known and unknown 
carrier-frequency offsets. As an example, for known carrier-fre­
quency offsets, the lower limit on the variance of unbiased time­
delay estimators was expressed as follows: 

(7) 

where 

(8) 

is the signal energy, and 

(9) 

( 1 0) 

In other words, the Cramer-Rao lower bound depends on the SNRs 
of the available frequency bands, as well  as on the properties of the 
ranging signal . In fact, it can be shown that for linearly modulated 
ranging signals with constant envelopes, the effects of unknown 
carrier-frequency offsets and channel coefficients can be mitigated 
for certain pulse shapes [47] . Therefore, range accuracy can be 
adapted in cognitive positioning systems by selecting the modula­
tion type in addition to adjusting the number of ranging symbols, 
SNR levels, and/or the number of dispersed bands in the spectrum. 

As an example, the Cramer-Rao lower bound in Equation (7) 
was plotted in Figure 1 0  as a function of the number of dispersed 
bands, where each band was assumed to have the same SNR and 
bandwidth [47] .  Specifically, the received signal in each branch 
was modeled as a 1 6-PSK modulated sequence of 1 6  symbols. (For 
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the pulse shape, a Gaussian doublet with a pulse width of 2 .5  ).Is 
was employed, and each bandwidth was considered to be 1 MHz 
[47] .) .  As could be observed from the figure, as more bands 
became available, better time-of-arrival-estimation accuracy could 
be achieved. 

6.2 Dynamic Transmission 

As discussed in the previous subsection, cognitive position­
ing systems that perform dynamic spectrum utilization provide a 
number of ways to perform adaptation of transmission parameters. 
For example, the modulation type, the SNR, the number of dis­
persed bands, and the duration of a ranging signal can be adapted 
to meet certain range-accuracy requirements. 

Although in general positioning accuracy improves as the 
accuracy of range estimation increases, it also depends on other 
factors, such as the geometry/configuration and the number of 
nodes that are involved in position estimation. Since range-accu­
racy adaptation was studied in the previous subsection, position­
ing-accuracy adaptation based on transmission parameters and 
system configuration is investigated here. 

In order to i l lustrate how parameter adaptation can be per­
formed to meet a specific requirement on positioning accuracy, a 
cognitive-radio system that estimates position based on time-of­
arrival measurements is considered. In a single-path additive­
white-Gaussian-noise channel with N reference nodes, the Cramer­
Rao lower bound on the mean square error (MSE) of an unbiased 
estimator for the position of the target node can be expressed as 
[80] 

N 
c2 r., SNRj 

CRLB = ----����j�-I�----------­N i-I 
81(2 p2 r., r., SNRjSNRj sin

2 ('I'j - 'I'j )  
j=1 j=l 

( 1 1 )  

where SNRj represents the SNR of the signal related to the ith 

reference node; p is the effective bandwidth, which depends on 

the spectral contents of the signal used for time-of-arrival estima­
tion [79] ; and 'l'j is the angle between the target node and the ith 

reference node. 

Note from Equation ( 1 1 )  that the Cramer-Rao lower bound 
depends on the system configuration/geometry, the number of ref­
erence nodes, the signal characteristics, and the SNRs [ l 05] .  In 
addition, SNRj is a function of the transmitted signal energy, the 

distance between a target node and the ith reference node, the 
related propagation environment, and the spectral density of the 
noise. For a given system configuration and signal characteristics, 
the main method to maintain a Cramer-Rao lower bound that is 
lower than a specific requirement is to adjust the transmitted-signal 
energy employed in time-of-arrival estimation. The transmitted 
signal energy can be varied by changing the power of the signal 
[ 1 05] ,  or by adjusting the signal duration for a fixed power level 
[ 1 06] .  

Although various techniques can be employed for SNR 
adaptation based on Equation ( 1 1 ), additional factors, such as non­
l ine-of-sight (NLOS) conditions and multipath propagation, should 
be considered in practical scenarios. If the direct l ine of sight 
(LOS) between a reference node and the target node is blocked by 
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an obstacle, the related time-of-arrival measurement can include a 
large bias, called non-Iine-of-sight error. This might degrade the 
positioning accuracy if that measurement is directly employed in a 
position estimator that is optimized for l ine-of-sight scenarios, 
such as in a least-squares (LS) estimator [66] . It can be shown that 
in

-
the absence

-
of any statistical information related to non-line-of­

sight errors, the time-of-arrival measurements corrupted by these 
errors do not contribute to the positioning accuracy [80] . In other 
words, the Cramer-Rao lower bound in Equation ( 1 1 )  is still valid 
in these cases when N is replaced by the number of l ine-of-sight 
reference nodes, and the calculations are performed only for line­
of-sight measurements. 

In the presence of statistical information related to non-line­
of-sight errors, measurements from non-line-of-sight nodes should 
also be taken into account. In such cases, generalized Cramer-Rao 
lower bounds (G-CRLBs) can be employed in order to perform 
positioning-accuracy adaptation [80] . Note that the amount (accu­
racy) of statistical information related to non-l ine-of-sight error 
becomes an additional factor in determining the positioning accu­
racy of the system. Non-line-of-sight identification/mitigation 
issues in a cognitive positioning system will be discussed further in 
Section 6.4. 

The previous discussions related to positioning-accuracy 
adaptation can also be extended to multipath environments. In 
multipath channels, the time-of-arrival estimation problem 
becomes the problem of estimating the delay of the first incoming 
signal path [ 1 07- 1 09] . Since other paths can affect the accuracy of 
this estimation, the time of arrival, and hence the position-estima­
tion accuracy, depends on the correlations between the first and the 
other received signal paths. Theoretical l imits can be obtained in 
the absence and presence of prior statistical information about non­
l ine-of-sight errors, similar to the previous discussions, and the 
corresponding Cramer-Rao lower bound and generalized Cramer­
Rao lower bound can be employed for positioning-accuracy adap­
tation [ 1 1 0] .  (In addition to time-of-arrival-based positioning, one 
can also consider similar adaptation techniques for positioning 
systems that employ other position-related parameters, such as 
received signal strength and angle-of-arrival (AOA) [80, I l l ] .) 

6.3 Dynamic Channel Environment 

In this subsection, a cognitive-radio channel is discussed 
from both information- and communication-theoretic perspectives. 
An information-theoretic view of cognitive-radio channels for 
dynamic spectrum access was introduced in [ 1 1 2, 1 1 3] .  In these 
two studies, a two-transmitter and two-receiver channel was con­
sidered with asymmetric transmitter cooperation (or, cognition), 
where the secondary user transmitter had knowledge of the pri­
mary user's message prior to transmission. It was shown that the 
effects of cognition on the achievable rate of the channel depends 
on the SNR regime. For instance, cognition improves achievable 
rates over the interference channel in the medium-SNR region. On 
the other hand, the cognitive channel is interference limited in the 
high-SNR region. As a result, the cognitive and interference chan­
nels differ only from a transmitter cooperation point of view [ 1 1 2] .  
I n  other words, the transmitters encode their messages independ­
ently in interference channels, whereas a secondary-user transmit­
ter has a priori knowledge of the primary-user transmitter in the 
cognitive-radio channel . Such prior information in the cognitive­
radio channel leads to achieving a degree of freedom close to two, 
which is equivalent to a 2 x 2 MIMO channel . 
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The propagation-channel characterization is very crucial for 
wireless-system designs. The observed channel at the wireless 
receiver mainly depends on the transmission parameters and the 
surrounding environment. Hence, the first task for developing a 
wireless system (i .e. , a transceiver) for a given environment and 
transmission parameters is to statistically model the propagation 
characteristics of the environment. A wireless propagation channel 
is generally described by two main sets of fading statistics: a) 
large-scale fading statistics, and b) small-scale fading statistics. 
The large-scale and small-scale fading statistics of a given chan­
nel 's  propagation environment are conventionally obtained by 
conducting channel-measurement campaigns. However, in cogni­
tive-radio systems, transmission parameters are dynamic due to the 
dynamic available spectrum, and goal-driven and autonomous­
operation features. Since the transmission parameters such as 
bandwidth, carrier frequency, and transmitted power are dynamic 
in cognitive-radio systems, the observed channel and correspond­
ing statistics are also dynamic [5 ] .  Furthermore, the changes in the 
environment, such as movement of the objects, result in an addi­
tional level of dynamism. Hence, it is a challenging task to realize 
and design wireless systems for such dynamic channel environ­
ments. As a result, there is a need to develop rapid and low-com­
plexity channel-statistics acquisition methods. 

Two potential approaches for channel-statistics acquisition in 
cognitive-radio systems are offline and online channel-statistics 
acquisition. In the first approach, the channel statistics are obtained 
from a cognitive base station for the given geographical area [50] . 
In this approach, it is assumed that cognitive-radio systems have 
their position information. A cognitive-radio system provides its 
transmission parameters and position information to the cognitive 
base station in order to obtain the channel-statistics information for 
its position. The cognitive base station then retrieves the channel 
statistics for the given position from a pre-built database by map­
ping the position to the corresponding channel-statistics informa­
tion [50] . The main drawback of this  approach is that it does not 
provide accurate small-scale fading statistics, as the objects in the 
given environment can be dynamic. However, it is possible to 
obtain large-scale fading statistics accurately by this  approach. The 
second approach, which is the online method, is based on the idea 
of acquiring channel-statistics information between two cognitive­
radio systems (i .e . ,  a cognitive base station and a cognitive-radio 
node) in real time, which is a challenging task to achieve. As a 
result, development of rapid and low-complexity channel-statis­
tics-acquisition methods is an active research area. 

By having knowledge of channel statistics such as coherence 
time, coherence bandwidth, and delay spread in cognitive-radio 
systems, the performance can be improved by developing 
advanced algorithms. For instance, a coherence-time- ( Tc ) based 

cognitive-radio adaptation method was proposed in [ 1 1 4] .  In this  
method, the cognitive-radio system adapts every Ta adaptation 

time units. If Ta ::5: Tc ' the cognitive-radio system adapts to small­

scale fading statistics. If Ta > Tc ' then the cognitive-radio system 

can only adapt to large-scale fading statistics. In addition, a modu­
lation-adaptation method based on a coherence-time metric for a 
cognitive-radio system was proposed in [ 1 1 4] .  In this method, the 
cognitive engine measures channel properties at every coherence 
time (i .e . ,  "fade"), and then selects optimal transmission parame­
ters such as modulation type. Note that in conventional radio sys­
tems, the optimal modulation rate is mainly selected based on the 
SNR metric, which provides inferior performance compared to the 
coherence-time metric used in cognitive-radio systems. In this 
context, it was shown that range accuracy in cognitive positioning 
systems can be adapted by using different modulation types [47] .  
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Some further representative behaviors of cognitive-radio 
channels are provided in the context of cognitive positioning sys­
tems, as follows. One of the main parameters that affects the per­
formance of a time-of-arrival-based cognitive positioning system is 
the utilized bandwidth. For instance, the transmission bandwidth 
can affect the path resolution of the channel, which can directly 
affect the positioning accuracy at the receiver side of the cognitive 
positioning system. Specifically, if a narrowband signal is used 
during the transmission, the path resolution decreases. Such effects 
were studied in [ 1 1 5] by derivi�g the Cramer-Rao lower bound for 
closely spaced paths. It was shown that the variance of a path­
delay estimate depends on the relative delays of all other path 
delays, not on their amplitudes .  On the other hand, if the utilized 
transmission bandwidth is increased, the path resolution tends to 
increase. For instance, in the case of util izing very large band­
widths (e.g., UWB signals [67]), the paths can be resolvable [ 1 1 6] .  
Since the util ized bandwidth i n  cognitive positioning systems can 
be dynamic, path resolutions become dynamic as well .  As a result, 
dynamic path resolution is an impairment that can affect the per­
formance of a cognitive positioning system. In summary, statistical 
modeling of cognitive-radio channel propagation considering a 
wide range of spectrum is crucial for the development of practical 
cognitive-radio systems, which is an active research area. 

6.4 Dynamic Reception 

Since transmission parameters and cognitive-radio channels 
are dynamic, receiver algorithms in cognitive positioning systems 
are also dynamic. In order to achieve a specific accuracy require­
ment, the receiver in a cognitive positioning system interacts with 
the transmitter through the location-awareness cycle for the opti­
mization of transceiver parameters. Some examples of the adapta­
tion mechanisms for location and range estimation in cognitive­
radio systems are as fol lows. 

6.4.1 Adaptation Techniques for 
Range Estimation 

In range-based location estimation, a wireless device first has 

to estimate the distances, di (I) , in Equation ( 1 2) from the 

received multipath signals .  This is achieved by estimating the 'arri­
val time of the first mUltipath component. A common way to esti­
mate this is by setting a threshold on the received signal samples. 
However, the threshold (as well as some other ranging parameters, 
such as the first path searching region) should be adaptive, and 
should change based on some characteristics of the transmit­
ted/received signal . In the l iterature, some of the metrics that are 
used to adapt the threshold are noise variance, rms delay spread, 
signal energy, and kurtosis [ 1 07- 1 09] . Moreover, the ranging algo­
rithm in the location-awareness engine at the receiver should also 
adapt to the changes in the transmission bandwidth dictated by the 
spectrum-awareness engine and the arbitrary-waveform-generation 
block in Figure 1 .  While the impact of bandwidth on the accuracy 
of UWB ranging systems was analyzed in [ 1 1 7, 1 1 8] ,  general 
adaptation mechanisms for accurate ranging at a cognitive-radio 
receiver that can cope with dynamic transmission bandwidth are 
stil l an open research area. (Note that the employed band groups 
may be dispersed over the spectrum.) 

53 



6.5.2 Adaptation Techniq ues for 
Location Estimation 

The location of a wireless node can be estimated in various 
ways from a set of distance (range) measurements from a number 
of reference nodes. For example, the non-linear least-squares esti-

mate i (t) for the location of a target node at time t is given by 

[ 1 1 9] 

N 
i (t )  = arg min{L: wi (t ) (Ji (t ) - ll x ( t )  - Xi 1l)2 } , ( 1 2) 

x(t) i=1 

where Ji (t) denotes the measured distance with the ith reference 

node at time t; i = 1, . . .  , N , denotes the location of the ith reference 

node; and the weights, wi (t) , can be chosen to reflect the reliabil­

ity of the signal received anhe ith reference node at time t. 

Note that the measurements Ji (t) are dynamic and can 

change over time, due to factors such as channel variations, 
changes in transmission parameters, and mobility of the cognitive­

radio node. For improved accuracy, the weights Wi (t) in Equa­

tion ( 1 2) can be updated adaptively, based on the reliability of the 
measurements at a certain time instant. For example, they can be 
selected as the inverse of the variance of distance measurements 

i .e . ,  wi (t) = 1/ a} (t) . (Note that for independent distance measure­

ments corrupted by Gaussian noise, this actually yields the maxi­
mum likelihood (ML) estimator [ I l l ] .) Then, in the presence of 
non-line-of-sight bias for certain reference nodes, the variance of 
distance measurements will be larger, and this will automatically 
be taken into account in Equation ( 1 2) by assigning them smaller 
weights. Alternatively, the non-line-of-sight reference nodes can 

be detected and discarded, which yields wi (t) = 0 for non-line-of-

sight reference nodes. The weights w; ( t) can also be obtained by 

uti lizing the information in multipath components of a received 
signal (which is well-suited for UWB signals, due to large numbers 
of multi path components) [ 1 20] . 

As discussed previously, mitigation of non-line-of-sight 
errors is critical for achieving accuracy close to Cramer-Rao lower 
bounds. In Figure I I , a general classification of different non-line­
of-sight mitigation approaches employed by a cognitive engine is 
illustrated. In each approach, some a priori non-Iine-of-sight 
knowledge is required. (Note that there are also other algorithms 
that do not require explicit non-line-of-sight information [67], such 
as robust estimators [ 1 2 1 ] , residual-based techniques [ 1 22],  and 
techniques that use non-line-of-sight measurements to obtain a fea­
sible region for the location estimate [ 1 23 ] .  The reader is referred 
to [ 1 24] for an in-depth study of different non-Iine-of-sight mitiga­
tion techniques.) Probably the simplest way of mitigating the non­
line-of-sight effects in localization is to identify the non-line-of­
sight reference nodes and discard them during location estimation 

[ 1 25 ]  (e.g., Wi (t) = 0 for the non-l inear least-squares estimator if 

node i is in non-line-of-sight). In [80] , it was shown that under 
some assumptions (e.g., perfect knowledge of line-of-sightlnon­
l ine-of-sight reference nodes), such an approach is preferable over 
the approach that uses measurements from non-line-of-sight refer­
ence nodes as well for location estimation. A second strategy to 
obtain accurate position and environmental information is to gen­
erate a database of measurements at various known positions. The 
information contained in the database about the environment can 
be utilized in various ways. One way is to obtain non-line-of-sight 
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error statistics based on the position-measurement pairs in the 
database. From the non-line-of-sight error statistics, various esti­
mation techniques, such as maximum-likelihood and weighted 
least squares (WLS), can be employed to obtain position informa­
tion for new measurements taken by the cognitive-radio system. 
Another way to utilize the database is to perform nonparametric 
estimation techniques, also called mapping techniques, to directly 
perform non-line-of-sight mitigation and position estimation [67] . 
Examples of mapping techniques include k-nearest-neighbor (k­
NN), support vector regression (SVR), and neural networks [ 1 26-
1 3 1 ] .  The main idea behind the mapping techniques is to determine 
a regression scheme based on a set of training data, and to then 
estimate position of a given device according to that regression 
function [ I I I ] .  Thirdly, it may be possible to obtain estimates of 
non-Iine-of-sight bias values and subtract them from distance 
measurements to obtain bias-free measurements. For example, in 
[ 1 32], non-line-of-sight bias values were estimated using an inte­
rior-point optimization technique. A weighted-least-squares tech­
nique was then used to estimate the location of the target node 
through unbiased measurements. 

In order to obtain a closed-form solution from Equation ( 1 2), 
it is possible to use the techniques proposed in [ 1 33]  and obtain a 
linear set of equations. For linearizing the system of equations, a 
reference node has to be selected, which is commonly done ran­
domly in the literature [ 1 23 ] .  Another adaptation mechanism in a 
cognitive positioning system is to adaptively select this reference 
node as the node that has the smallest distance measurement to the 
target node [ 1 34] . This was shown to improve the positioning 
accuracy. The index of the reference node at a particular time 
instant is given by 

i (t) = argm!n {Ji (t)} ,  i = I, 2, . . .  , N . 
I 

( 1 3) 

The covariance matrix of the observations (which also changes 
with time and needs to be updated periodically) may also be util­
ized for further improving the accuracy in a linear-least-squares 
estimator [ 1 34] .  

A cognitive-radio receiver i s  also envisioned to mitigate the 
impacts of interference sources. In the presence of mUltiple-access 
interference (MAl), the range accuracy may degrade considerably. 
In such scenarios, it was shown in [ 1 35 ]  that the ranging accuracy 
of a UWB receiver can be improved by employing nonlinear filters 
(e.g., a median filter or a minimum filter). Such filters are used in 
order to mitigate the effects of the outliers in the received signal 
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Figure 1 1. The classification of the main NLOS mitigation 
techniques that can be employed in a cognitive engine. 
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Table 2. A list of representative references in the prior art related to 
spectrum, location, and environmentally aware systems. 

Catel!Orv Subcatel!;ory References 

Spectrum Aware 
Single-Antenna Spectrum Sensing 1 5-25 

Systems Collaborative Spectrum Sensing 26-33 
Multi-Antenna Spectrum Sensing 34, 35  
General References 5 , 43, 60, 8 1  
Cognitive Positioning Systems 2, 44, 45 
Dynamic Spectrum Utilization 7, 8, 1 0, 47, 1 3 7  

Location Aware Dynamic Transmission 80, 1 05 ,  1 06 
Systems Dynamic Channel Environment 5 , 50, 1 3 8  

Adaptation Techniques for Location Estimation l l l , l l 9, 1 20, 1 26, 1 32, 1 34 
Adaptation Techniques for Range Estimation 1 07- 1 09, 1 1 7- 1 3 6  
Seamless Positioning SYstems 5, 45, 85, 86, 88 

Environmentally 
General References 5 , 50  
Cognitive Radar 39, 89 

Aware Systems 
Environment Mapping and SLAM 4 1 , 53-57, 1 0 1 , 1 3 9  

samples before de-spreading the signal . A similar
-
approach was 

extended to mitigate the effects of narrowband interference on the 
ranging accuracy in [ 1 36] .  However, in the absence of any inter­
ference (or, at very high signal-to-interference ratios), the SNR of 
the received signal is degraded after processing it with a nonlinear 
filter. For the best accuracy, the cognitive engine may first detect 
the presence of an interferer. If an interferer is present, the cogni­
tive engine can employ a nonlinear filter to mitigate the effects of 
the interference prior to range estimation. Otherwise, range is 
estimated without employing any outlier-detection techniques. 
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