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Abstract In this paper, an overview of various algorithms for wireless po-
sition estimation is presented. Although the position of a node in a wireless
network can be estimated directly from the signals traveling between that
node and a number of reference nodes, it is more practical to estimate a set
of signal parameters first, and then to obtain the final position estimation
using those estimated parameters. In the first step of such a two-step posi-
tioning algorithm, various signal parameters such as time of arrival, angle
of arrival or signal strength are estimated. In the second step, mapping,
geometric or statistical approaches are commonly employed. In addition to
various positioning algorithms, theoretical limits on their estimation accu-
racy are also presented in terms of Cramer-Rao lower bounds.

1 Introduction

Recently, the subject of positioning in wireless networks has drawn consider-
able attention. With accurate position estimation, a variety of applications
and services such as enhanced-911, improved fraud detection, location sensi-
tive billing, intelligent transport systems and improved traffic management
can become feasible for cellular networks [1]. For short-range networks, on
the other hand, position estimation facilitates applications such as inventory
tracking, intruder detection, tracking of fire-fighters and miners, home au-
tomation and patient monitoring [2]. These potential applications of wireless
positioning have also been recognized by the IEEE, which set up a stan-
dardization group 802.15.4a for designing a new physical layer for low data
rate communications combined with positioning capabilities [3]. Also, the
Federal Communications Commission (FCC) in the U.S. has required wire-
less providers to locate mobile users within tens of meters for emergency
911 calls [4].
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Fig. 1 (a) Direct positioning, (b) two-step positioning.

In order to realize potential applications of wireless positioning, accurate
estimation of position should be performed even in challenging environments
with multipath and non-line-of-sight (NLOS) propagation [5]. For accurate
position estimation, the details of the position estimation process and its
theoretical limits should be well-understood. Position estimation can be de-
fined as the process of estimating the position of a node1, called the “target”
node, in a wireless network by exchanging signals between the target node
and a number of reference nodes2. The position of the target node can be
estimated by the target node itself, which is called self-positioning, or it can
be estimated by a central unit that obtains information via the reference
nodes, which is called remote-positioning (network-centric positioning) [6].
Also, depending on whether the position is estimated from the signals trav-
eling between the nodes directly or not, two different position estimation
schemes can be considered. Direct positioning refers to the case in which the
position estimation is performed directly from the signals traveling between
the nodes [7]. On the other hand, two-step positioning extracts certain sig-
nal parameters from the signals first, and then estimates the position based
on those signal parameters (Figure 1). Although the two-step positioning
is suboptimal in general, it can have significantly lower complexity than
the direct approach. Also, the performance of the two approaches are usu-
ally very close for sufficiently high signal bandwidths and/or signal-to-noise
ratios (SNRs) [8], [7]. Therefore, the two-step positioning is the common
technique in most positioning systems, which is the main focus of this pa-
per.

In the first step of a two-step positioning algorithm, signal parameters,
such as time-of-arrival (TOA) and received signal strength (RSS), are esti-
mated. Then, in the second step, the position of the target node is estimated
based on the signal parameters obtained in the first step, as shown in Fig-

1 A “node” refers to any device involved in the position estimation process, such
as a cellular phone, a base station or a wireless sensor.

2 In this article, radiolocation is considered, which is the process of position esti-
mation through the use of radio signals. Other techniques for position estimation
include dead-reckoning and proximity systems [1].
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ure 1-b. In the second step of position estimation, mapping (fingerprinting)
approaches, geometric or statistical techniques can be used depending on
the accuracy requirements and system constraints.

The remainder of the paper is organized as follows. In Section 2, esti-
mation of position related signal parameters is studied, and RSS, angle-of-
arrival (AOA), TOA, time-difference-of-arrival (TDOA), and other param-
eter estimation schemes are investigated. Then, in Section 3, position esti-
mation schemes based on mapping, geometric and statistical approaches are
studied, and theoretical limits are presented in terms of Cramer-Rao lower
bounds (CRLBs). Finally, some concluding remarks are made in Section 4.

2 Estimation of Position Related Parameters

In the first step of a two-step positioning algorithm, position related pa-
rameters of the signals traveling between the target node and a number of
reference nodes are estimated. For self-positioning, the signals received by
the target node are used by the target node itself for parameter estimation.
On the other hand, for remote-positioning, each reference node can estimate
the parameter(s) of the signal it receives from the target node, and forward
its estimate to a central unit3. In other words, the parameter estimation
block in Figure 1-b resides in the target node for self-positioning systems
and in the reference nodes, with each node estimating a subset of the total
signal parameters, for remote-positioning systems.

Depending on accuracy requirements and system constraints, various
signal parameters can be estimated in the first-step of a positioning algo-
rithm. Commonly, signal parameters employed in positioning are related to
power, direction and/or timing of a received signal.

2.1 Received Signal Strength (RSS)

The power, or energy, of a signal traveling between two nodes is a signal pa-
rameter that contains information related to the distance (“range”) between
those nodes. This parameter, commonly referred to as RSS, can be used to-
gether with a path-loss and shadowing model to provide a distance estimate.
Therefore, in the error-free case, an RSS estimate at a node determines the
position of the other node on a circle for two-dimensional positioning4, as
shown in Figure 2.

3 It is also possible to forward the received signals directly to the central unit,
and to perform both parameter and position estimation there. However, this ap-
proach has considerably higher complexity and is not commonly preferred for
two-step positioning systems. However, for direct-positioning systems, that is the
only way to perform remote positioning.

4 Two-dimensional positioning is considered in this paper for the convenience
of illustrations.
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Fig. 2 One node measures the RSS and determines the distance d between itself
and the other node, which defines a circle of uncertainty.

A signal traveling from one node to another experiences fast (multipath)
fading, shadowing and path-loss [9]. Ideally, averaging RSS over a sufficiently
long time interval excludes the effects of multipath fading and shadowing,
which results in the following model5:

P̄ (d) = P0 − 10n log10(d/d0), (1)

where n is the path loss exponent, P̄ (d) is the average received power in
dB at a distance d, and P0 is the received power in dB at a short reference
distance d0.

In practice, the observation interval is not long enough to mitigate the
effects of shadowing. Therefore, the received power is commonly modeled
to include both path-loss and shadowing effects, the latter of which are
modeled as a zero mean Gaussian random variable with a variance of σ2

sh

in the logarithmic scale. Therefore, the received power P (d) in dB can be
expressed as

P (d) ∼ N (
P̄ (d) , σ2

sh

)
, (2)

where P̄ (d) is as given in (1). Note that this model can be used in both line-
of-sight (LOS) and NLOS scenarios with an appropriate choice of channel
parameters.

From the received power model in (2), the CRLB for unbiased distance
estimators can be expressed as [10]

√
Var{d̂} ≥ (ln 10) σsh d

10 n
, (3)

where d̂ represents an unbiased estimate for the distance d. From (3), it is
observed that the RSS estimates get more accurate as the standard devia-
tion of the shadowing decreases, since RSS estimates vary less around the
true average power in that case. Also a larger path-loss exponent results in
a smaller lower bound, as the average power becomes more sensitive to dis-
tance for larger n. Finally, the accuracy deteriorates as the distance between
the nodes increases.

5 Note that there is also thermal noise in real systems, which is commonly
position-dependent. It is assumed that the effects of thermal noise are sufficiently
mitigated [10].
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Fig. 3 AOA measurement between two nodes.

2.2 Angle of Arrival (AOA)

The angle between two nodes can be determined by estimating the AOA
parameter of a signal traveling between the nodes (Figure 3). Commonly,
antenna arrays are employed in order to estimate the AOA of a signal6. The
main principle behind the AOA estimation via antenna arrays is that dif-
ferences in arrival times of an incoming signal at different antenna elements
include the angle information if the array geometry is known.

For narrowband signals, time differences can be represented as phase
shifts. Therefore, the combinations of the phase shifted versions of received
signals at different array elements can be tested in order to estimate the
AOA [1]. However, for wideband systems, time delayed versions of received
signals should be considered, since a time delay cannot be represented by a
unique phase value for a wideband signal.

In order to study the effects of system parameters on the achievable
accuracy of an AOA estimator, consider a uniform linear array (ULA) with
Na elements and assume the same fading coefficient α for all signals arriving
at the array elements. Then, the CRLB on the variance of unbiased AOA
estimators can be expressed as [12]

√
Var{ψ̂} ≥

√
3 c√

2 π
√

SNR β ∆
√

Na(N2
a − 1) sin ψ

, (4)

where ψ is the AOA, c is the speed of light, SNR = α2E/N0 is the signal-to-
noise ratio for each element, with E denoting the signal energy andN0 being
the spectral density of background noise7, ∆ is the inter-element spacing,
and β is the effective bandwidth defined by

β =
(

1
E

∫ ∞

−∞
f2|S(f)|2df

)1/2

, (5)

with S(f) representing the Fourier transform of the received signal.
From (4), it is observed that as the SNR, effective bandwidth, inter-

element spacing and/or the number of antenna elements is increased, the
accuracy of AOA estimation also increases. It is also noted that a ULA
cannot detect obtuse angles as accurate as it can detect acute angles.

6 Another technique is to use the ratio of RSS estimates between at least two
directional antennas located on a node [11].

7 The same average noise power is assumed at each element.
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2.3 Time of Arrival (TOA)

Similar to the RSS parameter, estimating the flight time of a signal traveling
from one node to another, called TOA, provides information related to the
distance between those two nodes. Therefore, in the absence of any errors,
a TOA estimate provides an uncertainty region in the shape of a circle as
shown in Figure 2.

In order to calculate the TOA parameter for a signal traveling between
two nodes, the nodes must either have a common clock, or exchange timing
information by certain protocols such as a two-way ranging protocol [13],
[14], [3].

Conventionally, TOA estimation is performed via correlator or matched
filter (MF) receivers [15]. Consider a scenario in which s(t) is transmitted
from a node to another, and the received signal is expressed as

r(t) = s(t− τ) + n(t), (6)

where τ represents the TOA and n(t) is white Gaussian noise with zero
mean and a spectral density of N0/2. Then, the correlator based approach
correlates the received signal with a local template s(t−τ̂) for various delays
τ̂ , and calculates the delay corresponding to the correlation peak. Similarly,
the MF approach employs a filter that is matched to the transmitted sig-
nal and estimates the instant at which the filter output attains its largest
value. Both approaches are optimal in the ML sense for the signal model
in (6). However, in practical systems, the signal arrives at the receiver via
multiple signal paths. In such multipath environments, the conventional
schemes become suboptimal as they use the transmitted signal to set their
template signals or MF impulse responses8. In order to obtain accurate
TOA estimation in multipath environments, high resolution time delay es-
timation techniques, such as that described in [16], have been studied for
narrowband systems, and first path detection algorithms are proposed for
ultra-wideband (UWB) systems [13], [17], [18], [19].

In order to observe the main relations between the signal bandwidth and
the theoretical limits for TOA estimation, consider the CRLB for the signal
model in (6), which is given by [20], [21] 9

√
Var(τ̂) ≥ 1

2
√

2π
√

SNRβ
, (7)

where τ̂ represents an unbiased TOA estimate, SNR = Eα2/N0 is the SNR,
with E denoting the signal energy, and β is the effective signal bandwidth
defined by (5).

8 Since the effects of the propagation environment, such as the multipath, are
not known at the time of TOA estimation, the use of a template signal or a MF
impulse response that includes the overall effects of the channel is not usually
possible.

9 Refer to [22] and [5] for the CRLB for TOA estimation in multipath channels.
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Fig. 4 A TDOA measurement defines a hyperbola passing through the target
node with foci at the reference nodes.

From (7), it is observed that unlike the RSS estimation, the accuracy
of the TOA estimation can be improved by increasing the SNR and/or the
effective signal bandwidth. Therefore, for (ultra) wideband systems, TOA
estimation can provide very accurate distance information.

2.4 Time Difference of Arrival (TDOA)

In the absence of synchronization between the target node and the reference
nodes, the TDOA estimation can be performed if there is synchronization
among the reference nodes [1]. In this case, the difference between the arrival
times of two signals traveling between the target node and the two reference
nodes is estimated, which determines the position of the target node on a
hyperbola, with foci at the two reference nodes, as shown in Figure 4.

One way to estimate TDOA is to first estimate TOA for each signal
traveling between the target node and a reference node, and then to obtain
the difference between the two estimates. Since the target node and the
reference nodes are not synchronized, the TOA estimates include a timing
offset, which is the same in all estimates as the reference nodes are synchro-
nized, in addition to the time of flight. Therefore, the TDOA estimate can
be obtained as

τTDOA = τ̂1 − τ̂2, (8)

where τ̂i, for i = 1, 2, denotes the TOA estimate for the signal traveling
between the target node and the ith reference node.

For the TDOA estimates obtained as in (8), the accuracy limits can be
deduced from the CRLB expression in Section 2.3. Namely, it is concluded
that the accuracy of TDOA estimation increases as effective bandwidth
and/or SNR increases.

Another way to implement TDOA estimation is to perform cross-correlations
of the two signals traveling between the target node and the reference nodes,
and to calculate the delay corresponding to the largest cross-correlation
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value. The cross-correlation function is given by [23]

φ1,2(τ) =
1
T

∫ T

0

r1(t)r2(t + τ)dt, (9)

where ri(t), for i = 1, 2, represents the signal traveling between the target
node and the ith reference node, and T is the observation interval. From
(9), the TDOA estimate is calculated as

τTDOA = arg max
τ
|φ1,2(τ)|. (10)

Although the cross-correlation based TDOA estimation in (10) works
well for single path channels and white noise models, its performance can
degrade considerably over multipath channels and/or colored noise. In or-
der to improve the performance of the cross-correlation scheme in (9) and
(10), generalized cross-correlation (GCC) techniques are proposed [24], [25],
[26]. In GCC based TDOA estimation, filtered versions of the signals are
cross-correlated, which corresponds to shaping the cross-power spectral den-
sity (cross-PSD) of the transmitted signals, in order to provide robustness
against colored noise [27].

2.5 Other Position Related Parameters

In some positioning systems, two or more of the position related parameters,
studied in the previous subsections, can be employed in order to obtain
more information about the position of the target node. Examples of such
hybrid schemes include TOA/AOA [28], TOA/RSS [29] and TDOA/AOA
[30], TOA/TDOA [31] positioning.

In addition to the RSS, AOA and T(D)OA parameters and their combi-
nations, another scheme for position related parameter estimation involves
obtaining multipath power delay profile (PDP) or channel impulse response
(CIR) related to a received signal [32], [33], [34], [35]. In some cases, PDP
or CIR estimation can provide significantly more information about the po-
sition of the target node than the previously studied schemes. However, ex-
tracting the position information from such parameters commonly requires
a database consisting of previous PDP (or CIR) estimates. Therefore, algo-
rithms employing PDP or CIR estimation implement training phases, before
the actual position estimation process begins.

Similar to the PDP approach, multipath angular power profile parameter
can be estimated at nodes with antenna arrays. Note that both the PDP
(CIR) and the angular power profile estimation increase the complexity of
the first step in the two-step positioning algorithm in Figure 1-b compared to
the conventional RSS, AOA and T(D)OA schemes, since a large number of
unknown parameters need to be estimated in the former case. However, such
parameters can also facilitate accurate position estimation in challenging
environments [35].
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3 Position Estimation

As shown in Figure 1-b, the second step of a two-step positioning algorithm
involves estimation of position from the position related parameters esti-
mated in the first step. Depending on the presence of a database (training
data), two types of position estimation techniques can be considered:
– Mapping (fingerprinting) techniques use a database that consists of pre-

viously estimated signal parameters at known positions to estimate the
position of the target node. Commonly, the database is obtained by a
training (off-line) phase before the real-time positioning starts.

– Geometric and statistical techniques do not utilize such a database, and
estimate the position of the target node directly from the signal param-
eters estimated in the first step of the positioning algorithm by using
geometric relationships and statistical approaches, respectively.

3.1 Mapping Techniques

The main idea behind position estimation via mapping techniques is to
determine a regression scheme based on a set of training data, and then to
estimate position of a given node according to that regression function.

Let the training data be expressed as

T = {(m1, l1), (m2, l2), ...(mNT , lNT)} , (11)

where li is the position (location) vector for the ith training data, which
is given by li = [xi yi]T for two-dimensional positioning, mi represents the
vector of estimated parameters for the ith position, and NT is the total
number of elements in the training set (i.e., “size” of the database). De-
pending on signal parameters employed in the positioning algorithm, mi

consists of a number of position related parameters related to the reference
nodes; e.g., each element of mi can be an RSS estimate at a reference node
when the target node is at location li.

Given the training set in (11), a mapping technique first determines a
position estimation rule (pattern matching algorithm/regression function),
and then estimates the position l of a given target node based on a parame-
ter vector m related to that target node. Some common mapping techniques
employed in position estimation include k-nearest-neighbor (k-NN) estima-
tion, support vector regression (SVR) and neural networks [35], [36], [37],
[38], [39].

Due to its simplicity, the k-NN estimation technique is considered in this
section in order to provide intuition on mapping based position estimation.
In its simplest form, the k-NN estimation technique estimates the position of
the target node as the position vector in the training set T corresponding to
the parameter vector that has the shortest distance to the given (estimated)
parameter vector m. That is, the position is estimated as lj , where

j = arg min
i∈{1,...,NT}

‖m−mi‖, (12)
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with ‖m − mi‖ representing the Euclidean distance between m and mi.
This scheme is called the 1-NN, or simply the NN, estimation technique.

In general, the k-NN scheme estimates the position of the target node
according to the k parameter vectors in T that have the smallest distances
to the given parameter vector m. The position estimate l̂ is obtained by
a weighted sum of the positions corresponding to those nearest parameter
vectors; i.e.,

l̂ =
k∑

i=1

wi(m) l(i), (13)

where l(1), . . . , l(k) are the positions corresponding to the k nearest parame-
ter vectors, m(1), . . . ,m(k), to m, and w1(m), . . . , wk(m) are the weighting
factors for each position. In general, the weights are determined according to
the parameter vector m and the training parameter vectors m(1), . . . ,m(k).
Various weighting functions can be employed, as studied in [36]. For exam-
ple, for the uniform weighting scheme, the position estimate is the sample
mean of the positions l(1), . . . , l(k); i.e.,

l̂ =
1
k

k∑

i=1

l(i). (14)

The main advantage of mapping techniques is that they can provide
very accurate position estimation in challenging environments with multi-
path and NLOS propagation. In other words, they have a certain degree
of inherent robustness against undesired propagation conditions. However,
the main disadvantage is the requirement that the training database should
be large enough and representative of the current environment for accu-
rate position estimation. In other words, the database should be updated
frequently enough so that the channel characteristics in the training and
position estimation phases do not differ significantly. Such an update re-
quirement can be very costly for positioning systems operating in dynamic
environments, such as for an outdoor positioning system.

3.2 Geometric and Statistical Techniques

In the absence of a training database, the position is estimated directly
from the position related parameters obtained in the first step of a two-step
positioning algorithm. In this case, one can employ either a deterministic
approach and estimate the position according to certain geometric relation-
ships, or a statistical approach and try to obtain the most likely position
for the target node.
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Fig. 5 Determining the position of the target node (the gray node) via trilater-
ation.

Fig. 6 Determining the position of the target node (the gray node) via triangu-
lation.

3.2.1 Geometric Techniques Geometric techniques solve for the position of
the target node as the intersection of position lines obtained from a set of
position related parameters at a number of reference nodes. As studied in
Section 2, an RSS or a TOA parameter defines a circle for the position of the
target node; hence three parameter estimates can be used to determine the
position via trilateration, as shown in Figure 5. On the other hand, an AOA
parameter defines a straight line passing through the target node and the
reference node, as shown in Figure 3. Therefore, two AOA parameters are
sufficient to locate the target node via triangulation as shown in Figure 6. In
the case of TDOA based positioning, each TDOA parameter determines a
hyperbola for the position of the target node. For three reference nodes, two
range differences (obtained from TDOA parameters) define two hyperbolas,
the intersection of which yields the position of the target node, as shown
in Figure 7, However, the position may not always be determined uniquely
depending on the geometrical conditioning of the nodes [40], [1].

The geometric techniques can also be applied to hybrid systems, in which
multiple types of position related parameters, such as TDOA/AOA [30] or
TOA/TDOA [31], are employed in position determination. For example, for
a hybrid AOA/TOA system as shown in Figure 8, in which the reference
node can estimate both AOA and TOA of the signal from the target node,
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Fig. 7 Positioning via TDOA measurements.

Fig. 8 Hybrid TOA/AOA positioning.

the position can be calculated as

x = x1 + d cosψ, (15)
y = y1 + d sinψ, (16)

where (x1, y1) is the position of the reference node, ψ is the AOA, and d
is the range obtained via TOA estimation. In other words, the minimum
number of nodes that are required to determine the position of the target
node can change depending on the capabilities of the target and/or the
reference nodes.

One of the disadvantages of geometric techniques is that they do not
provide a theoretical framework in the presence of noise in position related
parameters. In other words, when the position lines intersect at multiple
points, instead of a single point, due to random errors in the parameter
estimation step, the geometric approach does not provide any inside as to
which point to choose as the position of the target node. In addition, as the
number of parameters increases, the number of intersections increases even
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Fig. 9 Position ambiguity in the presence of noisy AOA parameters.

further. For example, Figure 9 illustrates three erroneous AOA parameter
estimates related to three reference nodes, which results in multiple inter-
sections of the position lines, without all three lines intersecting at a single
point. As this example illustrates, the geometric approach does not provide
an efficient data fusion mechanism; i.e., cannot utilize multiple parameter
estimates efficiently.

3.2.2 Statistical Techniques Unlike the geometric techniques, the statisti-
cal approach presents a theoretical framework for position estimation in the
presence of multiple position related parameter estimates with or without
noise. In order to formulate this generic framework, consider the following
model for the parameters estimated in the first step of a two-step positioning
algorithm

zi = fi(x, y) + ηi, i = 1, . . . , Nm, (17)

where Nm is the number of parameter estimates, ηi is the noise at the
ith estimation, and fi(x, y) is the true value of the ith signal parameter,
which is a function of the position of the target, (x, y). Note that Nm is
equal to the number of reference nodes for RSS, AOA and TOA based
positioning, whereas it is one less than the number of reference nodes for
TDOA based positioning as each TDOA parameter is estimated with respect
to one reference node.

For various positioning systems, fi(x, y) in (17) can be expressed as10

fi(x, y) =





√
(x− xi)2 + (y − yi)2, TOA/RSS

tan−1
(

y−yi

x−xi

)
, AOA√

(x− xi)2 + (y − yi)2 −
√

(x− x0)2 + (y − y0)2, TDOA

,

(18)

where (xi, yi) is the position of the ith reference node and (x0, y0) is the
reference node, relative to which the TDOA parameters are estimated.

In vector notations, the model in (17) can be expressed as

z = f(x, y) + η, (19)

10 Time parameters are converted to distance values by scaling by the speed of
light.
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where z = [z1 · · · zNm ]T , f(x, y) = [f1(x, y) · · · fNm(x, y)]T and η = [η1 · · · ηNm ]T .
Depending on the available information related to the noise term η in

(19), parametric or nonparametric approaches can be followed. In the case
that the probability density function of the noise η is known except for a
set of parameters, denoted by λ, parametric approaches, such as Bayesian
and maximum likelihood (ML) estimation, can be employed. In the absence
of information about the form of the probability density function of η, non-
parametric techniques need to be used. Note that the k-NN, SVR and neural
networks approaches studied in Section 3.1 are examples of non-parametric
estimators since they do not assume any form for the probability density
function of the noise. However, they utilize a training database. Although
the form of the density function is unknown in the nonparametric case,
there can still be some generic information about some of its parameters
[41], such as its variance and symmetry properties, which can be used to
design non-parametric estimation rules, such as the least median of squares
technique in [42], the residual weighting algorithm in [43] and the variance
weighted least squares technique in [44].

For the remainder of this section, the parametric approaches are stud-
ied in detail. Let the vector of unknown parameters be represented by θ,
which consists of the position of the target node, as well as the unknown pa-

rameters of the noise distribution11; i.e., θ =
[
x y λT

]T

. Depending on the
availability of prior information on θ, Bayesian or ML estimation techniques
can be applied [45].

In the presence of prior information on θ, which is represented as a prior
probability distribution π(θ), the Bayesian approach can be used to obtain
an estimate of θ that minimizes a specific cost function [20]. Two com-
mon Bayesian estimators are the MMSE and the MAP estimators, which
estimate θ as

θ̂MMSE = E {θ| z} , (20)

θ̂MAP = arg max
θ

p(z|θ)π(θ), (21)

where E {θ| z} is the conditional expectation of θ given z, and p(z|θ) rep-
resents the probability density function of z conditioned on θ.

In the absence of prior information on θ, the ML estimation is commonly
employed, which calculates the value of θ that maximizes the likelihood
function; i.e.,

θ̂ML = arg max
θ

p(z|θ). (22)

Note that since f(x, y) is a deterministic function, the likelihood function
can be expressed as

p(z|θ) = pη(z− f(x, y) |θ), (23)

11 In general, the noise components may also depend on the position of the
mobile, in which case θ includes the union of the elements in λ, x and y.
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where pη(· |θ) represents the conditional probability density function of the
noise vector conditioned on θ.

Depending on the properties of the noise vector, various scenarios can
be considered.

Case-1: Independent Noise Components: For independent noise compo-
nents, the likelihood function in (23) can be expressed as

p(z|θ) =
Nm∏

i=1

pηi(zi − fi(x, y) |θ), (24)

where pηi(· |θ) represents the conditional probability density function for
the ith noise component given θ.

The independent noise assumption is usually valid for TOA, RSS and
AOA estimation. However, for TDOA estimation, the noise components are
correlated, as all TDOAs are computed with respect to the same reference
node. Therefore, TDOA based systems can be studied through the generic
expression in (23), or by using a correlated Gaussian model under certain
conditions, as will be investigated later.

For TOA, RSS and AOA based systems in LOS conditions, the parame-
ters of the noise can be assumed to be known, since the noise is mainly due
to thermal (background) noise in an LOS scenario. Then, the unknown pa-
rameter vector reduces to θ = [x y]T . Also, it is possible to (approximately)
model each noise component by a zero mean Gaussian random variable in
the LOS case [10]; that is,

pηi(n) =
1√

2π σi

exp
(
− n2

2σ2
i

)
. (25)

Then, the likelihood function in (24) can be expressed as

p(z|θ) =
1

(2π)Nm/2
∏Nm

i=1 σi

exp

(
−

Nm∑

i=1

(zi − fi(x, y))2

2σ2
i

)
. (26)

From (26), the ML estimator in (22) can be obtained as

θ̂ML = arg min
[x y]T

Nm∑

i=1

(zi − fi(x, y))2

σ2
i

, (27)

which is the well-known non-linear least-squares (NLS) estimator [1]. Note
that the weights are inversely proportional to the noise variances since a
larger variance means a less reliable estimate. Common techniques for solv-
ing (27) include gradient descent algorithms and linearization techniques
via the Taylor series expansion [1], [46].

In the presence of NLOS propagation between the target node and some
reference nodes, the noise model can be significantly different for the pa-
rameter estimates at those reference nodes compared to the ones at the
LOS nodes. If the positions of the reference nodes are sufficiently separated,



16 Sinan Gezici

the conditional independence assumption in (24) can still hold. Therefore,
the ML position estimator can be obtained using (22) and (24) by using
appropriate noise distributions for LOS and NLOS reference nodes12.

The noise distribution in the NLOS case is commonly modeled as the
sum of two noise terms, one related to the background noise, and the other
related to the NLOS error. In this case, the noise distribution is usually
considerably different than the Gaussian model in (25)13. Some common
models for the NLOS error include Gamma distribution [10] and distribu-
tions based on certain scattering models [50]. In many cases, the errors due
to NLOS propagation dominate the estimation errors due to background
noise.

Case-2: Correlated Gaussian Noise Components: For a noise vector mod-
eled as a multivariate Gaussian random variable with mean µ and covariance
matrix Σ, the likelihood function is given by

p(z|θ) =
1

(2π)Nm/2|Σ|1/2
exp

{
−1

2
(z− f(x, y)− µ)T

Σ−1 (z− f(x, y)− µ)
}

.

(28)

Then, the ML position estimation can be calculated as

θ̂ML = arg min
θ

(z− f(x, y)− µ)T
Σ−1 (z− f(x, y)− µ) + log |Σ|, (29)

where θ consists of the position of the target node and the unknown pa-
rameters related to µ and Σ.

For a noise distribution with zero mean and a known covariance matrix,
(29) simplifies to

θ̂ML = arg min
[x y]T

(z− f(x, y))T
Σ−1 (z− f(x, y)) , (30)

which is called the weighted LS (WLS) solution [1].
Although the independent noise model in Case-1 is not well-suited for

TDOA based positioning systems, the correlated Gaussian noise model in
(28) can represent such systems quite accurately for sufficiently large SNRs.
As an example, consider TDOA estimation via difference of TOA estimates.
If the estimates of range differences (equivalently, TDOA estimates) are
modeled as

zi = di − d0 + ni − n0, i = 1, . . . , Nm, (31)

12 It is assumed to be known which nodes are LOS and which are NLOS. Such
an information can be obtained using NLOS detection algorithms [47], [48], [49].
13 The error due to NLOS propagation can also be considered as a fixed unknown
bias term. However, it is shown in [10] that in the absence of statistical information
about NLOS errors, the parameter estimates from NLOS nodes can be discarded
as they do not contribute to the positioning accuracy.
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where dj =
√

(x− xj)2 + (y − yj)2 for j = 0, 1, . . . , Nm, and n0, n1, . . . , nNm

are zero mean independent Gaussian random variables with variances σ2
0 ,

σ2
1 , . . ., σ2

Nm
, respectively, then the estimates can be modeled as

z = f(x, y) + η, (32)

where fi(x, y) = di − d0 for i = 1, . . . , Nm, and η ∼ N (0 , Σ) with

Σ =




σ2
1 + σ2

0 σ2
0 · · · σ2

0

σ2
0 σ2

2 + σ2
0

. . .
...

...
. . . . . . σ2

0

σ2
0 · · · σ2

0 σ2
Nm

+ σ2
0




. (33)

In other words, the noise is Gaussian with correlated components (since the
correlation matrix is not diagonal) in this case.

In the case of NLOS propagation between the target node and a number
of reference nodes, the Gaussian model in (28) may not be very accurate.
Therefore, the generic ML estimation in (22) and (23) should be performed
for TDOA estimation in NLOS scenarios.

3.3 CRLBs for Position Estimation

In this section, CRLBs for various position estimation algorithms are in-
vestigated. The CRLB for an unbiased estimate θ̂ of θ can be expressed
as

E
{

(θ̂ − θ)(θ̂ − θ)T
}
≥ I−1

θ , (34)

where Iθ is the FIM given by

Iθ = E

{
∂ log p(z |θ)

∂θ

(
∂ log p(z |θ)

∂θ

)T
}

, (35)

with p(z |θ) representing the conditional probability density function of the
position related parameter estimate given θ, and I1 ≥ I2 meaning that
I1 − I2 is positive semi-definite.

The CRLB provides also a lower bound on the mean square error (MSE)
of a position estimate as follows:

MSE
4
= E{||θ̂ − θ)||2} = trace

[
E

{
(θ̂ − θ)(θ̂ − θ)T

}]
(36)

≥ trace
[
I−1
θ

] 4
= MMSE, (37)

where MMSE refers to minimum MSE. In the following, the theoretical
limits are investigated in terms of MMSE expressions for TOA, TDOA,
RSS and AOA based positioning systems.
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Consider a system with Nm reference nodes, NL of which are in LOS
with the target node, and the remaining ones are in NLOS. Without loss of
generality, the LOS and the NLOS nodes are indexed by i = 1, . . . , NL and
i = NL + 1, . . . , Nm, respectively. It is assumed that signals propagate via
a single LOS or NLOS path14, and there is no prior statistical information
related to errors due to NLOS propagation. Let ψi = tan−1

(
y−yi

x−xi

)
, for

i = 1, . . . , Nm, denote the angle between the ith reference node and the
target node, where (x, y) and (xi, yi) are the positions of the target node
and the ith reference node, respectively.

It can be shown that the MMSE for TOA based positioning is given by
[8]

MMSETOA =
c2

∑NL
i=1 σ−2

i∑NL
i=1

∑i−1
j=1 σ−2

i σ−2
j sin2(ψi − ψj)

, (38)

where c is the speed of light and σ2
i , for i = 1, . . . , NL, is the variance of

the zero mean Gaussian noise in the LOS case. Note that the theoretical
lower bound in (38) is independent of the parameter estimates related to the
NLOS nodes, which means that the NLOS nodes do not contribute to the
positioning accuracy in the absence of prior statistical information related
to NLOS errors. In addition, the geometric configuration of the LOS nodes
can affect the theoretical limit significantly through the last term in the
denominator.

For sufficiently large SNR and/or effective bandwidth β, σ−2
i is approx-

imately equal to 8π2β2SNRi, where SNRi is the SNR for the ith signal [10].
In that case, (38) can be expressed as

MMSETOA =
c2

8π2β2

∑NL
i=1 SNRi∑NL

i=1

∑i−1
j=1 SNRiSNRj sin2(ψi − ψj)

, (39)

which shows the impact of the effective bandwidth on the MMSE. In [8], it
is shown that an ML estimator based on LOS delay estimates obtained via
matched filtering (or correlation) can attain the MMSE expression in (39)
for sufficiently large SNR and/or effective bandwidth. In other words, the
two-step positioning receiver in Figure 10 is asymptotically optimal.

As an example, consider the positioning scenario in Figure 11, where the
target node is surrounded by 6 reference nodes that are uniformly located on
a circle. Assuming that all the signals have the same SNR, the theoretical
lower bounds can be obtained as in Figure 12, where the square root of
the MMSE expression in (39) is plotted against the effective bandwidth for
various numbers of NLOS nodes. Namely, for NL = 3, nodes 4, 5 and 6;
for NL = 4, nodes 5 and 6; and for NL = 5, node 6 are the NLOS nodes.
From the figure, it is observed that as the number of LOS nodes, the effective
bandwidth and/or the SNR increases, the accuracy of the positioning system
increases.
14 Refer to [51] for theoretical limits of position estimation in multipath channels.
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Fig. 10 An asymptotically optimal positioning receiver in the absence of statis-
tical NLOS information.

Fig. 11 A positioning scenario, in which six reference nodes are estimating the
position of the target node in the middle via TOA estimation.

For TDOA based positioning, the MMSE can be expressed as [8]

MMSETDOA = c2
NL∑

i=1

σ−2
i

×

(∑NL
i=1 σ−2

i

)2

−∑NL
i=1 σ−4

i −∑NL
i=1

∑i−1
j=1 σ−2

i σ−2
j cos(ψi − ψj)

∑NL
i=1

∑i−1
j=1 σ−2

i σ−2
j K2

i,j

, (40)

where Ki,j is given by

Ki,j = sin(ψi − ψj)
NL∑

k=1

σ−2
k +

NL∑

k=1

σ−2
k sin(ψi − ψk) +

NL∑

k=1

σ−2
k sin(ψj − ψk).

(41)

As can be observed from (40), the MMSE is independent of the estimates
related to NLOS nodes as in the TOA case. Also, it can be shown that the
MMSE for TDOA based positioning is always larger than or equal to that
for TOA based positioning [52], which is expected due to the presence of an
extra unknown parameter, timing offset, in TDOA systems.
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Fig. 12 Square root of the MMSE expression in (39), called RMSE, versus the
effective bandwidth for various numbers of NLOS nodes and SNRs. For NL = 3,
nodes 4, 5 and 6; for NL = 4, nodes 5 and 6; and for NL = 5, node 6 are the
NLOS nodes.

For RSS based positioning systems, the MMSE is expressed as [8]

MMSERSS =
(

ln 10
10n

)2
∑Nm

i=1 σ−2
sh,i d−2

i∑Nm
i=1

∑i−1
j=1 σ−2

sh,i σ−2
sh,j d−2

i d−2
j sin2(ψi − ψj)

, (42)

where n is the path loss exponent, σ2
sh,i is the variance of the log-normal

shadowing for the ith signal, and di =
√

(x− xi)2 + (y − yi)2 is the dis-
tance between the target node and the ith reference node. Note that the
accuracy of RSS based positioning depends heavily on the channel parame-
ters, namely the path loss exponent and the shadowing variances. Also, the
accuracy depends on estimates at all nodes, LOS and NLOS, since the ef-
fects of NLOS propagation are implicitly included in the RSS signal model,
as studied in Section 2.1.

For an AOA based positioning system employing ULAs, the MMSE can
be expressed as [8]

MMSEAOA =
3

4π2∆2Na(Na + 1)(2Na + 1)

×
∑NL

i=1
SNRi

d2
i

sin2 ψi

∑NL
i=1

∑i−1
j=1

SNRiSNRj

d2
i d2

j
sin2(ψi − ψj) sin2 ψi sin2 ψj

, (43)

where Na is the number of antenna elements and ∆ is the inter-element
spacing. Similar to the time based systems, the AOA based positioning
utilizes the estimates from LOS nodes only.
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Fig. 13 An asymptotically optimal receiver for TOA based positioning in the
presence of statistical NLOS information.

For hybrid positioning systems, two different categories can be consid-
ered depending on whether estimation errors for various types of position
related parameters are correlated or not. Some lower bound expressions for
such systems can be found in [8], [29].

The analysis in this section assumes that there is no prior statistical in-
formation related to NLOS errors. In the presence of such prior information,
the accuracy can be evaluated by means of generalized CRLB (G-CRLB),
as investigated in [8]. In that case, an asymptotically optimal positioning
receiver can be implemented as shown in Figure 13. Note that estimates
from both LOS and NLOS reference nodes are utilized in the presence of
NLOS error statistics.

4 Concluding Remarks

Various positioning algorithms have been investigated and theoretical limits
for their positioning accuracy have been presented in terms of CRLBs. A
two-step approach to position estimation has been adopted. First, estima-
tion of position related parameters has been studied and accuracy of RSS,
AOA and T(D)OA estimation has been quantified in terms of CRLBs. Then,
for the second step, estimation of position based on position related param-
eters estimated in the first step has been studied, and mapping, geometric
and statistical approaches have been investigated.

Note that the position estimation schemes considered in this paper have
been based on a single observation of signals at a given time instead of
multiple observations over a period of time. For the latter, tracking algo-
rithms, such as Kalman filters, grid-based approaches or particle filters can
be employed [53].
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