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Ranging in a Single-Input Multiple-Output (SIMO) System
Sinan Gezici, Member, IEEE, and Zafer Sahinoglu, Senior Member, IEEE

Abstract— In this letter, optimal ranging in a single-input
multiple-output (SIMO) system is studied. The theoretical limits
on the accuracy of time-of-arrival (TOA) (equivalently, range)
estimation are calculated in terms of the Cramer-Rao lower
bound (CRLB). Unlike the conventional phased array antenna
structure, a more generic fading model is employed, which allows
for the analysis of spatial diversity gains from the viewpoint of
a ranging system. In addition to the optimal solution, a two-step
suboptimal range estimator is proposed, and its performance is
compared with the CRLBs.

I. INTRODUCTION

Use of multiple-input multiple-output (MIMO) architectures
is becoming a common approach for high speed wireless
systems. By means of multiple antennas and multiple pro-
cessing units for different antennas, quality of communications
between wireless devices can be increased via diversity and
multiplexing techniques. Although the advantages of such
MIMO structures have been studied extensively for com-
munications systems [1], they have not been investigated in
detail from the viewpoint of positioning systems. Commonly,
multiple antenna elements are closely spaced together to form
phased array structures in radar and positioning applications
[2]. Recently, the advantages of the MIMO approach for radar
systems were studied in [3]. Since then, MIMO systems have
been considered for radar applications for better detection and
characterization of target objects.

The aim of this paper is to quantify the advantages of MIMO
structures for positioning applications, and to emphasize the
concept of diversity for range (TOA) estimation. Specifically,
a SIMO system is considered as a first step, and the benefits
of diversity for ranging is quantified by means of CRLBs. In
addition, a practical range estimator with low computational
complexity is proposed, and its performance is investigated
via theoretical and numerical calculations. It is shown that the
proposed estimator approximately achieves the CRLB at high
signal-to-noise ratios (SNRs).

II. SIGNAL MODEL AND CRLBS

Consider a SIMO system with N receive antenna elements,
and assume that the maximum distance between the antenna
pairs divided by the speed of light is considerably smaller than
the symbol duration. Then, the baseband received signal at the
ith antenna can be expressed as

ri(t) = αis(t− τ) + ni(t), t ∈ [0, T ], (1)

for i = 1, . . . , N , where s(t) is the baseband representation
of the transmitted signal, αi is the channel coefficient of the
received signal at the ith antenna, τ is the TOA, and ni(t) is a
complex-valued white Gaussian noise process with zero mean
and spectral density σ2

i . It is assumed that noise processes
at different receiver branches are independent, and that there
is sufficient separation (comparable to the signal wavelength)
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between all antenna pairs so that different channel coefficients
can be observed at different antennas. This is unlike a phased
array structure in which αi = α ∀i.

The ranging problem in a SIMO system involves the esti-
mation of the TOA τ from the received signals at N receive
antennas. In addition, the channel coefficients α = [α1 · · ·αN ]
are also unknown, and need to be considered in the estimation
problem in general. If the complex channel coefficients are
represented as αi = aie

jφi for i = 1, . . . , N , the vector of
unknown signal parameters can be expressed as λ = [τ a φ],
where a = [a1 · · · aN ] and φ = [φ1 · · ·φN ].

From (1), the log-likelihood function for λ can be expressed
as [4]

Λ(λ) = k −
N∑

i=1

1
2σ2

i

∫ T

0

|ri(t)− αis(t− τ)|2 dt, (2)

where k represents a term that is independent of λ. Then,
the maximum likelihood (ML) estimate for λ can be obtained
from (2) as

λ̂ML = arg max
λ

N∑

i=1

1
σ2

i

∫ T

0

R{α∗i ri(t)s∗(t− τ)}dt− E|αi|2
2σ2

i

(3)
where E =

∫∞
−∞ |s(t)|2dt is the signal energy1.

From (2), the Fisher information matrix (FIM) [4] can be
obtained, after some manipulation, as

I =




Iττ Iτa Iτφ

IT
τa Iaa Iaφ

IT
τφ IT

aφ Iφφ


 , (4)

with

Iττ = Ẽ

N∑

i=1

|αi|2
σ2

i

, (5)

Iaa = diag
{
E/σ2

1 , . . . , E/σ2
N

}
, (6)

Iφφ = diag
{
E|α1|2/σ2

1 , . . . , E|αN |2/σ2
N

}
, (7)

Iτa = −
[
ÊR|α1|/σ2

1 · · · ÊR|αN |/σ2
N

]
, (8)

Iτφ = −
[
ÊI|α1|2/σ2

1 · · · ÊI|αN |2/σ2
N

]
, (9)

Iaφ = 0, (10)

where diag{x1, . . . , xN} represents an N×N diagonal matrix
with its ith diagonal being equal to xi, Ẽ is the energy of the
first derivative of s(t); i.e., Ẽ =

∫∞
−∞ |s′(t)|

2 dt, and ÊR and
ÊI are given, respectively, by

ÊR =
∫ ∞

−∞
R{s′(t)s∗(t)}dt, ÊI =

∫ ∞

−∞
I {s′(t)s∗(t)}dt.

(11)

From the formula for block matrix inversion, the first
element of the inverse of I, [I−1]11, can be obtained after some

1For a complex number z, R{z} and I{z} represent its real and imaginary
parts, respectively.
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manipulation2. Then, the CRLB for unbiased delay estimates
can be expressed as

Var{τ̂} ≥ [I−1]11 =
1

γ
∑N

i=1
|αi|2
σ2

i

, (12)

where γ
.= Ẽ − Ê2/E, with

Ê =
∣∣∣∣
∫ ∞

−∞
s′(t)s∗(t)dt

∣∣∣∣ . (13)

In the case of known channel coefficients, it can be shown
from (5) that the CRLB for delay estimation is as in (12)
except that γ is replaced by Ẽ. This simple observation
implies that for signals with γ = Ẽ (i.e., Ê = 0), the TOA
estimation accuracy limit is the same for both known and
unknown channel cases. In other words, the same estimation
accuracy can be obtained even in the absence of channel state
information for certain types of signals. For example, if s(t)
is a real and even function of time, Ê can be shown to be
equal to zero, and γ in (12) can be replaced by Ẽ.

In order to compare the previous analysis with a conven-
tional phased array structure, consider closely-spaced antenna
elements that result in the following signal model:

ri(t) = α s(t− τ) + ni(t), t ∈ [0, T ], (14)

for i = 1, . . . , N . The only difference of (14) from (1) is
the constant channel coefficient for all the signals received at
the antennas. In this case, the vector of unknown parameters
reduces to λ = [τ a φ], where α = aejφ. By similar
calculations that lead to (4), the FIM for the phased array
case can be obtained as

I =
N∑

i=1

1
σ2

i




Ẽ|α|2 −ÊR|α| −ÊI|α|2
−ÊR|α| E 0
−ÊI|α|2 0 E|α|2


 . (15)

Then, the CRLB can be expressed as

Var{τ̂} ≥ 1

γ|α|2 ∑N
i=1

1
σ2

i

. (16)

In the case of known channel coefficient α, γ in (16) is
replaced by Ẽ.

Comparison of (12) and (16) reveals that the CRLB is
more robust to channel fading for the SIMO system, since the
channel dependent term in the denominator of (12) is more
robust to channel variations. In the case of a phased array,
a significantly fading signal path can result in a quite large
CRLB as can be observed from (16). In other words, similar
to the diversity gain for communications systems, multiple re-
ceive antennas can also provide diversity for ranging systems.

For the case of known channel coefficients and σi = σ ∀i,
(12) and (16) can be expressed in terms of the effective band-
width β, β2 .= 1

E

∫∞
−∞ f2|S(f)|2df , with S(f) representing

the Fourier transform of s(t), as√
Var{d̂} ≥ c

2πβ
√∑N

i=1 SNRi

, (17)

√
Var{d̂} ≥ c

2π
√

Nβ
√

SNR
, (18)

respectively, where d̂ is an unbiased range estimate obtained
from delay estimation, c is the speed of light, and the signal-
to-noise ratios are defined as SNRi = |αi|2E/σ2 for i =

2For I =

�
A B
BT D

�
, [I−1]M×M =

�
A−BD−1BT

�−1, where A is

an M -by-M matrix.

Fig. 1. An asymptotically optimal algorithm for joint TOA and range
estimation.

1, . . . , N , and SNR = |α|2E/σ2. Note that (18) is the
conventional CRLB expression for ranging systems [5] scaled
by 1/

√
N due to the presence of multiple receive antennas.

Again the diversity provided by the SIMO structure can be
observed from (17).

III. A PRACTICAL RANGING ALGORITHM

A. Algorithm Description
In general, the ML solution in (3) requires optimization over

an (N + 1)-dimensional space, which can have prohibitive
complexity in scenarios with a large number of receive anten-
nas. In this section, a two-step suboptimal estimator, as shown
in Figure 1, is proposed, which performs joint channel and
delay estimation at each output branch in the first step, and
implements a simple delay (range) estimator in the second
step. Note that the algorithm exploits the multiple-output
structure of a SIMO system, which facilitates individual signal
processing, such as correlation or matched filter based channel
coefficient and delay estimation, at each receiver branch.

In the first step of the estimator, each branch processes
its received signal individually, and provides estimates of the
channel coefficient and the delay, based on an ML approach.
For the ith branch, the ML estimates of αi (= aie

jφi) and τ
can be obtained from ri(t) in (1) as follows:

(
τ̂i, φ̂i

)
= arg max

τ,φi

R
{

e−jφi

∫ T

0

ri(t)s∗(t− τ)dt

}
, (19)

âi = |α̂i| = 1
E
R

{
e−jφ̂i

∫ T

0

ri(t)s∗(t− τ̂i)dt

}
, (20)

for i = 1, . . . , N . Note that the ML estimation results in a
correlator, as in (19), which provides the delay and phase
estimates; and the channel amplitude can be directly estimated
from those estimates as in (20).

In the second step, the estimates for the channel amplitudes
and the delays are used to estimate the TOA as follows:

τ̂ =
∑N

i=1 ŜNRiτ̂i∑N
i=1 ŜNRi

, (21)

where ŜNRi = E|α̂i|2/σ2
i . In other words, the TOA is esti-

mated as a weighted average of the delay estimates obtained
at the N receiver branches, where the weights are proportional
to the SNR estimates at the respective branches.

B. Complexity and Performance
The computational complexity of the two-step estimator

in Figure 1 is dominated by the optimization operations in
(19). In other words, the estimator requires the solution of
N optimization problems, each over a 2-dimensional space.
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On the other hand, the optimal ML solution in (3) requires
optimization over an (N + 1)-dimensional space, which is
computationally more complex than the proposed algorithm.
In fact, as N increases, the optimal solution becomes quite
impractical.

The reduction in the computational complexity of the two-
step algorithm results in its suboptimality in general compared
to the ML algorithm in (3). However, under certain circum-
stances, it can be shown that the two-step scheme performs
very closely to the optimal solution; i.e., it approximately
achieves the CRLB of the original problem.

To this end, first consider the following lemma, which
provides an approximate model for the estimates in (19) and
(20) under certain conditions.

Lemma 1: For the signal model in (1) with Ê = 0 (cf.
(13)), the delay estimate in (19) and the channel amplitude
estimate in (20) can be modeled, at high SNR, as

τ̂i = τ + νi, (22)
|α̂i| = |αi|+ ηi, (23)

for i = 1, . . . , N , where νi and ηi are independent zero mean
Gaussian random variables with variances σ2

i /(Ẽ|αi|2) and
σ2

i /E, respectively. In addition, νi and νj (ηi and ηj) are
independent for i 6= j.

Proof: From the signal model in (1), the log-likelihood
function can be expressed as

Λ(θ) = ki − 1
2σ2

i

∫ T

0

|ri(t)− αis(t− τ)|2 dt, (24)

where θ = [τ ai φi], with αi = aie
jφi .

Similar to the proof in [6] for obtaining the statistics
of multipath delay estimates, one can approximate the log-
likelihood function evaluated at the ML estimate θ̂, Λ(θ̂), by
means of its Taylor series expansion around θ as

Λ(θ̂) ≈ Λ(θ) +
1
2
(θ̂ − θ)T

[
∂Λ(θ)

∂θ

(
∂Λ(θ)

∂θ

)T
]

(θ̂ − θ),

(25)
for high SNRs, which implies that the ML estimate θ̂ can be
approximated by a multivariate Gaussian random variable with
mean θ and the covariance matrix given by the inverse of the
matrix in the square brackets in (25).

From (24) and (25), the covariance matrix of the
ML estimate can be obtained after some manipulation as
diag

{
σ2

i /(Ẽ|αi|2) , σ2
i /E , σ2

i /E|αi|2
}

, for Ê = 0.
Since the estimates in (19) and (20) are the ML estimates

according to the signal model in (1), the result of the lemma
follows. Also, since the noise processes are independent at
different receiver branches, the noise components for different
branches are independent as stated in the lemma. ¤

Lemma 1 establishes the approximate unbiasedness and ef-
ficiency of the two-step estimator, as implied by the following
proposition.

Proposition 1: For the delay and channel amplitude esti-
mates as modeled in Lemma 1, the TOA estimator in (21) is
an unbiased estimator of τ with the following variance

Var{τ̂} =
1
Ẽ

E





N∑

i=1

|α̂i|4
σ2

i |αi|2
(

N∑

i=1

|α̂i|2
σ2

i

)−2


 , (26)

where the expectation is over |α̂i|’s modeled by (23).
Proof: Conditioned on the channel estimates, the expected

value of τ̂ in (21) can be shown to be equal to τ under
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Fig. 2. The RMSE of the two-step algorithm and the CRLBs.

the model in (22), which proves the unbiasedness property.
Similarly, the variance can be obtained as in the proposition3.¤

Note that the variance of the two-step estimator in (26) is
always larger than the CRLB in (12). However, as E/σ2

i gets
higher, |α̂i| gets closer to |αi| (Lemma 1), and the variance in
(26) becomes approximately equal to the CRLB for Ê = 0.

IV. RESULTS

In order to compare CRLBs for generic SIMO systems and
phased arrays, and to analyze performance of the proposed
two-step algorithm in Section III, a uniform linear array (ULA)
structure with N = 5 antennas is considered for a narrowband
signal with 1 MHz bandwidth and 3 GHz carrier frequency.
The channel is modeled to be Rician fading with a K-factor
of K, and it is assumed that the average noise power is the
same at all the receiver branches; i.e., σi = σ ∀i.

In Figure 2, the RMSEs of the two-step algorithm (“sub-
optimal”) are plotted for K = 1 and K = 5, together with
the CRLBs for the case of i.i.d. fading channel coefficients
at different receiver branches4. Also shown in the figure are
the CRLBs for the phased array case, in which the antenna
elements are closely spaced together so that the channel
coefficients are identical at all the antennas.

It is observed from the figure that the accuracy is better
for the i.i.d. fading scenarios, especially for the cases without
strong line-of-sight components (i.e., for small Ks). In addi-
tion, the two-step algorithm converges to the CRLB at high
SNRs as expected, although it does not perform that well at
low SNRs. REFERENCES
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