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Abstract— In this letter, joint optimization of signal structures
and detectors is studied for binary communications systems
under average power constraints in the presence of additive
non-Gaussian noise. First, it is observed that the optimal signal
for each symbol can be characterized by a discrete random
variable with at most two mass points. Then, optimization over
all possible two mass point signals and corresponding maximum
a posteriori probability (MAP) decision rules are considered. It
is shown that the optimization problem can be simplified into
an optimization over a number of signal parameters instead of
functions, which can be solved via global optimization techniques,
such as particle swarm optimization. Finally, the improvements
that can be obtained via the joint design of the signaling and the
detector are illustrated via an example.

Index Terms – Stochastic signaling, MAP decision rule.

I. INTRODUCTION AND MOTIVATION

In binary communications systems over additive white Gaus-
sian noise channels and under average power constraints in the
form of E{|si|2} ≤ A for i = 0, 1, the average probability
of error is minimized when deterministic antipodal signals
(s0 = −s1) are used at the power limit (|s0|2 = |s1|2 =
A) and a maximum a posteriori probability (MAP) decision
rule is employed at the receiver [1]. In addition, when the
Gaussian noise is colored, the deterministic antipodal signals
along the eigenvector of the covariance matrix of the Gaussian
noise corresponding to the minimum eigenvalue minimizes the
average probability of error [1]. Although the optimal detector
and signaling techniques are well-known when the noise is
Gaussian, the noise can have significantly different probability
distribution than the Gaussian distribution in some cases due to
effects such as interference and jamming [2]. In the presence
of non-Gaussian noise, stochastic signaling, which models
signals s0 and s1 as random variables, can result in improved
probability of error performance compared to deterministic
signaling. In [3], optimal stochastic signaling is studied under
second and fourth moment constraints for a fixed decision rule
(detector) at the receiver, and sufficient conditions are presented
to determine whether stochastic signaling can provide perfor-
mance improvements compared to deterministic signaling. In
[4], randomization between two deterministic signal pairs and
the corresponding MAP decision rules is studied under the
assumption that the receiver knows which deterministic signal
pair is transmitted. It is shown that power randomization can
result in significant performance improvement.

Although optimal stochastic signaling is studied for a fixed
detector in [3] and the effects of randomization between two
signaling approaches are considered in [4], no studies have
focused on the joint optimization of stochastic signaling and
the decision rule (detector). In this letter, this joint optimization
problem is formulated, which involves optimization over a
function space. Then, theoretical results are provided to show
that the optimal solution can be obtained by searching over a
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number of variables instead of functions, which greatly simpli-
fies the original formulation. In addition, a global optimization
approach, namely particle swarm optimization (PSO) [5], is
employed to obtain the optimal signals and the decision rule.

The main motivation behind this study is to provide theoret-
ical performance limits on the error probability of communica-
tions systems under power constraints. It is assumed that there
is a feedback from the receiver to the transmitter so that the
joint optimization of the signaling structure and the decision
rule can be performed. This scenario is reasonable for cognitive
radio systems [6], and provides a theoretical lower bound on
the error performance of other communications systems.

II. OPTIMAL SIGNALING AND DETECTOR DESIGN

Consider a binary communications system, in which the
receiver obtains K-dimensional observations over an additive
noise channel [7]:

y = si + n , i ∈ {0, 1} , (1)

where y is the noisy observation, s0 and s1 represent the trans-
mitted signal values for symbol 0 and symbol 1, respectively,
and n is the noise component that is independent of si. In
addition, the prior probabilities of the symbols, represented by
π0 and π1, are assumed to be known. The signal model in (1)
can be considered for flat-fading channels assuming perfect
channel estimation; that is, the model in (1) can be obtained
after appropriate equalization [7].

The receiver uses the observation in (1) in order to determine
the information symbol. A generic decision rule (detector) is
considered for that purpose, which estimates the transmitted
symbol based on a given observation y as follows:

φ(y) =

{
0 , y ∈ Γφ0

1 , y ∈ Γφ1

, (2)

where Γφ0 and Γφ1 are the decision regions for symbol 0 and
symbol 1, respectively [1].

The average probability of error for a decision rule φ can
be expressed as Pe = π0Pe,0 + π1Pe,1, where

Pe,i =
∫

Γφ1−i

pi(y) dy , (3)

for i = 0, 1, represents the probability of error, with pi(y)
denoting the conditional probability density function (PDF) of
the observation, when the ith symbol is transmitted.

Unlike the conventional case, a stochastic signaling frame-
work is adopted in this study [3], and s0 and s1 in (1) are
modeled as random variables. Since the signals and the noise
are independent, the conditional PDFs of the observation can
be calculated as pi(y) =

∫
RK p si(x)pn(y−x) dx for i = 0, 1.

Then, after some manipulation, (3) can be expressed as

Pe,i = E

{∫

Γφ1−i

pn(y − si) dy

}
, E {f(φ ; si)} , (4)
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where the expectation is taken over the PDF of si.
In practical systems, there is a constraint on the average

power of the signals, which can be expressed as [1]

E
{|si|2

} ≤ A , for i = 0, 1 , (5)

where A is the average power limit. Then, the optimal signaling
and detector design problem can be stated as

min
p s0 ,p s1 ,φ

π0Pe,0 + π1Pe,1

subject to E
{|si|2

} ≤ A , i = 0, 1 , (6)

where Pe,i is as in (4).
The problem in (6) is difficult to solve in general since the

optimization needs to be performed over a space of PDFs and
decision rules. In the following, a simpler optimization problem
over a set of variables (instead of functions) is formulated in
order to obtain optimal signal PDFs and the decision rule. To
that aim, the following result is obtained first.

Lemma 1: Assume f(φ ; si) in (4) is a continuous function
of si, and each component of si resides in [−γ, γ] for some
finite γ > 0. Then, for a given (fixed) decision rule φ, the
solution of the optimization problem in (6) is in the form of

p si(y) = λiδ(y − si1) + (1− λi)δ(y − si2) , (7)

for i = 0, 1, where λi ∈ [0, 1].
Proof: When the decision rule φ is given, f(φ ; si) =∫

Γφ1−i
pn(y − si) dy in (4) can be considered as a function

of si only. In other words, Pe,i in (4) can be expressed as
Pe,i = E{f(si)} for i = 0, 1. Since the objective function
in (6) is the sum of π0Pe,0 and π1Pe,1, and the average
power constraints are individually imposed on the signals, the
optimization problem in (6) can be decoupled into two separate
optimization problems as follows:

min
p si

E{f(si)} , subject to E
{|si|2

} ≤ A , (8)

for i = 0, 1. Optimization problems in the form of (8) have
been investigated in various studies in the literature [3], [4].
Under the conditions in the lemma, the optimal solution of (8)
can be represented by a randomization of at most two signal
levels as a result of Carathéodory’s theorem [8]. Hence, the
optimal signal PDFs can be expressed as in (7). ¤

Note that the assumption in the lemma about the continuity
of f in (4) is quite realistic for communications systems since
the noise n in (1) has a continuous PDF in practice, as it is
commonly the sum of zero-mean Gaussian thermal noise and
interference terms that are independent of the thermal noise.

Lemma 1 states that, under certain conditions, the optimal
stochastic signaling involves randomization among at most four
different signal levels (two for symbol “0” and two for symbol
“1”). Therefore, the problem in (6) can be solved over the
signal PDFs that are in the form of (7). Hence, the search
space for the optimization problem is reduced significantly. To
achieve further simplification, the following result is obtained.

Proposition 1: Under the conditions in Lemma 1, the
optimization problem in (6) can be expressed as follows:

min
{λi,si1,si2}1i=0

∫

RK

min{π0g0(y) , π1g1(y)} dy

subject to λi|si1|2 + (1− λi)|si2|2 ≤ A

λi ∈ [0, 1] , i = 0, 1 (9)

where gi(y) = λipn(y − si1) + (1− λi)pn(y − si2).
Proof: For a given signal PDF pair p s0 and p s1 , the

conditional probability of observation y in (1) can be expressed
as pi(y) =

∫
RK p si

(x)pn(y − x)dx for i = 0, 1. When
deciding between two symbols based on observation y, the
MAP decision rule, which selects symbol 1 if π1p1(y) ≥
π0p0(y) and selects symbol 0 otherwise, minimizes the average
probability of error [1]. Therefore, when signal PDFs p s0

and p s1 are specified, it is not necessary to search over all
the decision rules; only the MAP decision rule should be
determined and its corresponding average probability of error
should be considered.

From (3), the average probability of error for any decision
rule φ can be expressed as

Pe =
∫

Γφ1

π0p0(y) dy +
∫

Γφ0

π1p1(y) dy . (10)

Since the MAP decision rule decides symbol 1 if π1p1(y) ≥
π0p0(y) and decides symbol 0 otherwise, the average proba-
bility of error expression in (10) can be expressed for a MAP
decision rule, as [9]

Pe =
∫

RK

min {π0p0(y) , π1p1(y)} dy . (11)

Since Lemma 1 states that the optimal signal PDFs are in the
form of (7), the conditional PDFs pi(y) =

∫
RK p si(x)pn(y−

x)dx can be obtained as pi(y) = λipn(y−si1)+(1−λi)pn(y−
si2), and the average power constraints in (6) become λi|si1|2+
(1 − λi)|si2|2 ≤ A, for i = 0, 1. Therefore, (11) implies that
the optimization problem in (6) can be implemented as the
constrained minimization problem in the proposition. ¤

Comparison of the optimization problems in (6) and (9)
reveals that the latter is much simpler than the former since it
is over a set of variables instead of a set of functions. However,
it is still a non-convex optimization problem in general; hence,
global optimization techniques, such as PSO [5], differential
evolution and genetic algorithms [10], should be employed to
obtain the optimal PDF. In this letter, the PSO approach is used
in the next section to obtain the solution of (9).

After obtaining the solution of the optimization problem in
(9), the optimal signals are specified as popt

si
(y) = λopt

i δ(y −
sopt
i1 ) + (1 − λopt

i )δ(y − sopt
i2 ) for i = 0, 1, and the optimal

detector is the MAP decision rule that decides symbol 1 if
π1p1(y) ≥ π0p0(y) and decides symbol 0 otherwise.

Finally, it should be noted for symmetric signaling, that is,
when s01 = −s11, s02 = −s12 and λ0 = λ1, the optimization
in (9) can be performed over s11, s12 and λ1 only.

III. NUMERICAL RESULTS AND CONCLUSIONS

A numerical example is presented to illustrate the improve-
ments that can be obtained via the joint design of the signaling
structure and the decision rule for scalar observations. The
noise in (1) is modeled by a Gaussian mixture as in [2] with its

PDF being given by pn(y) = 1√
2π σL

∑L
i=1 e−

(y−µi)
2

2σ2 , where
L = 6 and µ = [0.27 0.81 1.08 −1.08 −0.81 −0.27] are used.
Note that the average power of the noise can be calculated as
E{n2} = σ2 + 0.6318. In addition, the average power limit in
(5) is set to A = 1 and equally likely symbols are considered
(π0 = π1 = 0.5).

In the following, three different approaches are compared.
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Fig. 1. Average probability of error versus A/σ2 for the three algorithms.

Gaussian Solution: In this case, the transmitter is assumed
to have no information about the noise PDF and selects the
signals as s0 = −√A and s1 =

√
A , which are known to be

optimal in the presence of zero-mean Gaussian noise [1]. On
the other hand, the MAP decision rule is used at the receiver.

Optimal – Stochastic: This approach refers to the solution
of the most generic optimization problem in (6), which can
also be obtained from (9) as studied in the previous section.

Optimal – Deterministic: This is a simplified version of
the optimal solution in (9). It assumes that the signals are
deterministic; i.e., they are not randomization of two different
signal levels. Hence, the optimization problem in (9) becomes

min
s0,s1

∫

RK

min{π0pn(y − s0) , π1pn(y − s1)} dy

subject to |s0|2 ≤ A , |s1|2 ≤ A . (12)

In other words, this approach provides the optimal solution
when the signals are deterministic.

In Fig. 1, the average probabilities of error are plotted versus
A/σ2 for the three algorithms above by considering symmetric
signaling. In obtaining the optimal stochastic solution from (9),
the PSO algorithm is employed with 50 particles and 1000 iter-
ations. Please refer to [5] for the details of the PSO algorithm1.
On the other hand, the optimal deterministic solution in (12)
can be obtained via a one-dimensional search due to symmetric
signaling. From Fig. 1, it is observed that the Gaussian solution
performs significantly worse than the optimal approaches for
small σ values. In addition, the optimal approach based on
stochastic signaling has the best performance. In other words,
the smallest average probability of error is obtained when each
signal is modeled as stochastic signal that is a randomization
of two signal values as in (7).

In order to explain the results in Fig. 1, Table I presents the
solutions of the optimization problems in (6) and (12) for the
optimal stochastic and the optimal deterministic approaches,
respectively. Note that the results for symbol 1 are listed
in Table I, and the results for symbol 0 are the negatives
of the signal values in the table since symmetric signaling
is considered. For small A/σ2 values, such as 15 dB, the
optimal solutions are the same as the Gaussian solution, that
is, s11 = s12 = s1 =

√
A = 1. However, for large A/σ2’s, the

1The other parameters are set to c1 = c2 = 2.05 and χ = 0.72984, and
the inertia weight ω is changed from 1.2 to 0.1 linearly with the iteration
number [5].

TABLE I
OPTIMAL STOCHASTIC AND DETERMINISTIC SIGNALS FOR SYMBOL 1.

Stochastic Deterministic
A/σ2 (dB) λ1 s11 s12 s1

15 N/A 1 1 1
20 0.1836 1.648 0.7846 0.7927
25 0.2104 1.614 0.7576 0.7587
30 0.2260 1.586 0.7475 0.7476
35 0.2347 1.568 0.7441 0.8759

Gaussian solution becomes quite suboptimal and choosing the
largest possible deterministic signal value, 1, results in higher
average probabilities of error, as can be observed from Fig.
1. For example, at A/σ2 = 30 dB, the optimal deterministic
solution sets s1 = −s0 = 0.7476 and achieves an error rate of
7.66 × 10−3, whereas the Gaussian one uses s1 = −s0 = 1,
which yields an error rate of 0.0146. This seemingly coun-
terintuitive result is obtained since the average probability of
error is related to the area under the overlaps of the two shifted
noise PDFs as in (12). Although optimal deterministic signaling
uses less power than permitted, it results in a lower error
probability than Gaussian signaling by avoiding the overlaps
between the components of the Gaussian mixture noise more
effectively. On the other hand, optimal stochastic signaling
further reduces the average probability of error by using all
the available power and assigning some of the power to a large
signal component that results in less overlapping between the
shifted noise PDFs. For example, at A/σ2 = 30 dB, the optimal
stochastic signal is a randomization of s11 = −s01 = 1.586
and s12 = −s02 = 0.7475 with λ0 = λ1 = 0.226 (cf. (7)),
which achieves an error rate of 5.95× 10−3.

The results in this letter can be extended to M -ary com-
munications systems as well by noting that the average
probability of error expression in (11) becomes Pe = 1 −∫

max{π0p0(y), . . . , πM−1pM−1(y)}dy for M -ary systems.
Then, an optimization problem similar to that in Proposition
1 can be obtained, where the optimization is performed over
{λi, si1, si2}M−1

i=0 .

REFERENCES

[1] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.,
New York: Springer-Verlag, 1994.

[2] V. Bhatia and B. Mulgrew, “Non-parametric likelihood based channel
estimator for Gaussian mixture noise,” Signal Processing, vol. 87, pp.
2569–2586, Nov. 2007.

[3] C. Goken, S. Gezici, and O. Arikan, “Stochastic signaling under second
and fourth moment constraints,”, submitted to IEEE Int. Conf. on Com-
mun., Sep. 2009 [Available: www.ee.bilkent.edu.tr/∼gezici/goken.pdf].

[4] A. Patel and B. Kosko, “Optimal noise benefits in Neyman-Pearson and
inequality-constrained signal detection,” IEEE Trans. Sig. Processing,
vol. 57, no. 5, pp. 1655–1669, May 2009.

[5] K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimization
method for constrained optimization problems. IOS Press, 2002, pp. 214–
220, in Intelligent Technologies–Theory and Applications: New Trends
in Intelligent Technologies.

[6] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios
more personal,” IEEE Pers. Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.

[7] A. Goldsmith, Wireless Communications, Cambridge Univ. Press, 2005.
[8] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Berlin:

Springer-Verlag, 2004.
[9] M. Azizoglu, “Convexity properties in binary detection problems,” IEEE

Trans. Inform. Theory, vol. 42, no. 4, pp. 1316–1321, July 1996.
[10] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A

Practical Approach to Global Optimization. New York: Springer, 2005.


