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Abstract

In this paper, probability of error performance of single-threshold detectors is studied for binary communications

systems in the presence of Gaussian mixture noise. First, sufficient conditions are proposed to specify when the sign

detector is (not) an optimal detector among all the single-threshold detectors. Then, a monotonicity property of the

error probability is derived for the optimal single-threshold detector. In addition, a theoretical limit is obtained on

the maximum ratio between the average probabilities of error for the sign detector and the optimal single-threshold

detector. Finally, numerical examples are presented to investigate the theoretical results.

Index Terms— Probability of error, single-threshold detector, sign detector, Gaussian mixture noise.

I. INTRODUCTION

In binary communications systems that operate over additive white Gaussian noise (AWGN) channels

and under average power constraints, the average probability of error is minimized when antipodal signaling

is employed. In that case, the receiver estimates the transmitted bits based on the signs of correlator (or,

matched filter) outputs [1], [2]. In other words, the sign detector is optimal in that scenario. However, in

some cases, the noise has non-Gaussian statistics due to impulsive noise or co-channel interference (CCI)

[3], and it is more accurately modeled as symmetric Gaussian mixture noise [4]. For impulsive noise,

the Gaussian mixture is commonly the mixture of zero-mean Gaussian processes with different variances,

whereas, for CCI, it is the mixture of non-zero-mean processes with the same variance [3].

In order to improve the performance of communication systems in the presence of non-Gaussian noise,

detectors can be designed based on the Lp–norm, Huber’s M -metric, and hard/soft limiters [5]-[8]. The

main idea behind those approaches is to provide robust detection algorithms that can perform well under

various noise distributions. In [5], an adaptive Lp–norm metric is proposed for robust diversity combining

under non-Gaussian noise and interference. In addition, an application of the adaptive Lp–norm metric

to orthogonal frequency division multiplexing (OFDM) is discussed in [9]. Also, [10] studies minimax
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detection of a weak signal and shows that for small and large noise variances, the minimax detector

reduces to L2–norm and L1–norm distance rules, respectively.

In the presence of Gaussian mixture noise, with zero or non-zero mean, the optimal detector that

minimizes the average probability of error can be different from the sign detector in general and it can

result in a decision rule with multiple threshold levels. Specifically, the optimal detector needs to calculate

the likelihood ratio for each bit and compare it to a threshold [1], which can require significantly more

computations than a sign detector. For receivers with limited battery life and/or computational capabilities,

such as those in wireless sensor networks [11], the optimal detector may not be implemented. Therefore, the

focus of this study is on the sign detector and the other single-threshold receivers, which have significantly

lower computational complexity than the optimal detector.

Although the sign detector provides a very simple receiver structure, its performance can be unacceptable

for certain Gaussian mixture noise components, since it can result in high error floors (cf. Fig. 2).

Therefore, the performance of the sign detector needs to be improved in some scenarios without increasing

the computational complexity significantly. Hence, in this study, the aim is to optimize the detector

performance under a constraint on the computational complexity. More specifically, we consider single-

threshold detectors for low computational complexity and try to investigate the performance of optimal

single-threshold detectors that minimize the average probability of error for a binary communications system

under symmetric Gaussian mixture noise.

Although the sign detector and other single-threshold detectors have been studied extensively in the

literature [1], [12], [13], no comparative study has been performed between the sign detector and the other

single-threshold detectors in the presence of Gaussian mixture noise. The main contributions of this paper

can be summarized as follows. First, sufficient conditions are obtained to specify when the sign detector is

the optimal detector among all the single-threshold detectors. Then, it is proven that the average probability

of error for the optimal single-threshold detector is a monotone increasing function of the variance of the

Gaussian components in the mixture noise. It is also shown via numerical examples that the sign detector

does not have this property in general. In addition, a theoretical performance comparison is made between

the sign detector and the optimal single-threshold detector for small variances of the Gaussian components

in the mixture noise, and it is shown that the maximum ratio between the average probabilities of error for

the sign detector and the optimal single-threshold detector is equal to two. As a byproduct of this result,

sufficient conditions are obtained to specify when the performance of the sign detector can or cannot be

improved by replacing it with the optimal single-threshold detector.
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The remainder of the paper is organized as follows. In Section II, the signal model is introduced and

the problem formulation is presented. In Section III, conditions on desired signal amplitude and/or the

parameters of Gaussian mixture noise are derived in order to specify when the sign detector is (not) an

optimal single-threshold detector. After that, the probability of error performance of the optimal single-

threshold detector is investigated, and a monotonicity property of the probability of error and the maximum

improvement with respect to the sign detector are derived in Section IV. Finally, numerical examples are

studied in Section V, and concluding remarks are presented in Section VI.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a binary communications system with antipodal signaling, in which the post-filtered signal at

the receiver is represented by [2]

x = Ab + n , (1)

where b ∈ {−1, +1} represents the equiprobable binary symbol to be detected, A > 0 is the known

amplitude coefficient,1 and n is the noise component, which is modeled as symmetric Gaussian mixture

noise. The probability density function (PDF) of noise n is given by

pN(x) =
M∑
i=1

wi√
2π σi

exp

(−(x− xi)
2

2 σ2
i

)
, (2)

where M is an even number2 representing the number of Gaussian components in the mixture noise, wi ≥ 0

for i = 1, . . . , M , and
∑M

i=1 wi = 1. Due to the symmetry assumption, xi = −xM−i+1, wi = wM−i+1 and

σi = σM−i+1 for i = 1, . . . , M/2. It is assumed that the parameters of the mixture noise in (2) are known.3

The symmetric Gaussian mixture model specified above is observed in many practical scenarios [3],

[14]-[16]. One important scenario is multiuser wireless communications, in which the desired signal is

corrupted by interference from other users as well as zero-mean Gaussian background noise [17].

The problem is to determine the transmitted bit b in (1), which can be stated as the following binary

hypotheses test:

H0 : X ∼ pN(x + A) , H1 : X ∼ pN(x− A) , (3)

where hypotheses H0 and H1 correspond to b = −1 and b = +1 cases, respectively.

1The results in the paper can be extended to A < 0 cases as well, by switching the decision regions of the detector in (4).
2Assuming an even M does not reduce the generality of the results due to the symmetry of the Gaussian mixture noise.
3In practice, a set of previous measurements can be used to estimate/learn the noise parameters.
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As motivated in the introduction, the aim is to investigate the performance of single-threshold detectors.

A single-threshold detector with threshold τ can be expressed as

φτ (x) =





0 , x < τ

1 , x > τ

. (4)

In the case of x = τ , the detector decides H0 or H1 with equal probabilities. It is well-known that the

detector in (4) is not optimal in general in the presence of Gaussian mixture noise [12]. However, its main

advantage is that it has very low computational complexity, which makes it very practical for low cost

applications, such as for wireless sensor networks [11].

The average probability of error for the detector in (4) can be obtained from (3) as

P(τ) =
1

2

∫ ∞

τ

pN(x + A) dx +
1

2

∫ τ

−∞
pN(x− A) dx . (5)

From (2), the expression in (5) becomes

P(τ) =
1

2

M∑
i=1

wi

[
Q

(
τ − xi + A

σi

)
+ Q

(−τ + xi + A

σi

)]
, (6)

where Q(x) = 1√
2π

∫∞
x

e−t2/2dt represents the Q-function. Since the sign detector corresponds to τ = 0,

P(0) represents the average probability of error for the sign detector. On the other hand, the threshold

value corresponding to the optimal single-threshold detector can be obtained from (6) as

τopt = arg min
τ

M∑
i=1

wi

[
Q

(
τ − xi + A

σi

)
+ Q

(−τ + xi + A

σi

)]
. (7)

The average probability of error for threshold τopt, P(τopt), represents the minimum average probability of

that can be achieved by a single-threshold detector.

Note that the optimization in (7) can be performed over τ ≥ 0 only, since it can be shown that the

objective function is an even function of τ for the symmetric Gaussian mixture noise model. The optimal

value in (7) can be obtained via an exhaustive search4, or via an approximate solution as in [18] for small

values of A. The approximate solution for small A can be obtained from (5) by using pN(x ± A) ≈
pN(x) ± Ap

′
N(x), which results in P(τ) ≈ 0.5 − ApN(τ) after some manipulation. Then, the optimal

threshold can be approximated by τ̃opt = arg max
τ

pN(τ). It should be noted that this approximate solution

can be estimated from measurements (data) as the most probable value of noise, in the absence of any

information about the noise PDF [18].

4In practice, the search can be performed over an interval of [0, A+max{xi}], where xi is the mean value for the ith Gaussian component

in the mixture noise, since the threshold values larger than A + max{xi} result in error probabilities that are larger than 0.5.
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Remark 1: Since the optimal single-threshold detector needs to obtain the optimal threshold in (7), it has

higher computational complexity than the sign detector in general. However, the optimal threshold needs

to be re-calculated only when the noise statistics change (e.g., when the interference statistics change).

Therefore, the optimal single-threshold detector can still have significantly lower computational complexity

than the optimal detector based on likelihood ratio calculations.

III. ON THE OPTIMALITY OF THE SIGN DETECTOR

In this section, sufficient conditions are derived in order to determine whether or not the sign detector is

optimal, among all single-threshold detectors, for the binary detection problem under symmetric Gaussian

mixture noise. Those sufficient conditions carry practical importance, since they can specify when it is

necessary solve the optimization problem in (7).

First, a sufficient condition on the signal amplitude and the noise statistics is obtained for the sign

detector not to be optimal.

Proposition 1: The sign detector is not an optimal single-threshold detector, if the signal amplitude A

in (1) and the noise specified by (2) satisfy
M∑
i=1

wi

σ3
i

(A + xi) e
− (A+xi)

2

2σ2
i < 0 . (8)

Proof: From (7), a first-order necessary condition for optimal τ value can be obtained by equating the

first derivative with respect to τ to zero.
M∑
i=1

wi√
2π σi

(
−e

− (τ−xi+A)2

2σ2
i + e

− (−τ+xi+A)2

2σ2
i

)
= 0 . (9)

Note that the condition in (9) is always satisfied by the sign detector, i.e., for τ = 0. In addition, the

second derivative at τ = 0 can be calculated from (9) as
M∑
i=1

wi√
2π σ3

i

(
(A− xi) e

− (A−xi)
2

2σ2
i + (A + xi) e

− (A+xi)
2

2σ2
i

)
. (10)

Due to the symmetry of the Gaussian mixture PDF, (10) is always negative when the condition in the

proposition is satisfied. Since the first derivative is zero and the second derivative is negative at τ = 0,

τ = 0 is a maximum point of the objective function in (7); hence, of the error probability in (6). Therefore,

there exists τ 6= 0 such that P(τ) < P(0), which proves that the sign detector is not optimal. ¤

Proposition 1 provides a simple sufficient condition to determine if performance improvements can be

obtained by using the optimal single-threshold detector instead of the sign detector. When the condition

in (8) is satisfied, the optimal threshold τopt can be calculated from (7) (which is non-zero since the sign
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detector is not optimal), and the single-threshold detector with threshold τopt can be used for improved

error performance. In addition, when the condition in Proposition 1 holds, the probability of error has a

peak at τ = 0; hence, better (not necessarily optimal) thresholds than zero can be obtained simply by

increasing τ from zero until the probability of error stops decreasing (cf. Fig. 3).

In addition to determining when the sign detector is not optimal, it is also important to specify when the

sign detector is the optimal detector among all single-threshold detectors. In such a case, the optimization

problem in (7) yields τopt = 0. In order to determine optimality conditions for the sign detector, it is first

observed that as the variances of the Gaussian components in the mixture noise, specified by (2), go to

infinity, P(τ) in (6) converges to 0.5 for all finite τ values. Therefore, as σ2
i →∞ for i = 1, . . . , M , P(0)

P(τopt)

becomes 1; that is, the sign detector and the optimal single-threshold detector converge to each other.

Hence, for large variances, no significant difference between the error performances of the sign detector

and the optimal single-threshold detector are expected.

Second, the following proposition presents a sufficient condition on the optimality of the sign detector

based on the signal amplitude and the parameters of the Gaussian mixture noise.

Proposition 2: Assume that the signal amplitude A in (1) is larger than or equal to the maximum of the

mean values of the Gaussian components in the mixture noise specified by (2); that is, A ≥ max
i=1,...,M

{xi}.

Then, the sign detector is the optimal single-threshold detector.

Proof: Due to the symmetry of the Gaussian mixture noise, the first-order necessary optimality condition

in (9) can be expressed as
M/2∑
i=1

wi

σi

(
e
− (−τ+A+xi)

2

2σ2
i + e

− (−τ+A−xi)
2

2σ2
i

)
=

M/2∑
i=1

wi

σi

(
e
− (τ+A+xi)

2

2σ2
i + e

− (τ+A−xi)
2

2σ2
i

)
. (11)

Since A ≥ max
i=1,...,M

{xi}, A + xi ≥ 0 and A − xi ≥ 0 for i = 1, . . . , M . Then, for τ < 0, it is observed

that e
− (−τ+A+xi)

2

2σ2
i < e

− (τ+A+xi)
2

2σ2
i and e

− (−τ+A−xi)
2

2σ2
i < e

− (τ+A−xi)
2

2σ2
i for i = 1, . . . , M . Therefore, the term on the

right-hand-side (RHS) of (11) is always larger than that on the left-hand-side (LHS) for τ < 0. Similarly,

it can be shown that the term on the LHS of (11) is always larger than that on the RHS for τ > 0. The

equality is satisfied only when τ = 0. In addition, the second derivative at τ = 0, given in (10), is always

positive since A± xi ≥ 0 for i = 1, . . . , M . Hence, τ = 0 is the unique minimum of (7). ¤

Proposition 2 states that if the signal amplitude A is larger than or equal to all the mean values of the

Gaussian components in the mixture noise, then there is no need to search for the optimal threshold in (7)

since τopt = 0 in that case, which implies that the sign detector is the optimal single-threshold detector.

One practical application of Proposition 2 is related to binary detection in the presence of multiple-access
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interference (MAI) [17]. In that case, (1) is given by x = A1b1 +
∑K

k=2 Akbk + η where bi ∈ {±1}
and η represents zero-mean Gaussian noise. The aim is to detect b1 in the presence of MAI,

∑K
k=2 Akbk,

and background noise, η, which together results in Gaussian mixture noise. Proposition 2 states that if

A1 >
∑K

k=2 |Ak|, then the sign detector is the optimal single-threshold detector for this problem. As another

application of Proposition 2, for impulsive noise, which is commonly modeled as a mixture of zero-mean

Gaussian random variables with different variances, the sign detector is the optimal single-threshold detector

since max
i
{xi} = 0 in that case.

If none of the conditions in Proposition 1 and Proposition 2 hold, then (7) can be solved to determine

whether the sign detector is optimal. As an alternative approach, one can also determine the values of τ

that satisfy (9), and, among those values, choose the one that minimizes the probability of error in (6) in

order to determine τopt.

IV. PERFORMANCE ANALYSIS OF OPTIMAL SINGLE-THRESHOLD DETECTORS

This section focuses on some properties of the optimal single-threshold detector and theoretical limits

on its probability of error performance.

First, the average probability of error for the optimal single-threshold detector is investigated as a function

of the standard deviations of the Gaussian noise components in the Gaussian mixture noise specified by

(2). Let σ = [σ1 · · · σM ] represent the standard deviation terms in (2). Then, the average probability of

error for the optimal single-threshold detector can be expressed, from (6) and (7), as

Popt(σ) = min
τ

1

2

M∑
i=1

wi

[
Q

(
τ − xi + A

σi

)
+ Q

(−τ + xi + A

σi

)]
. (12)

For the sign detector, τ = 0 is used; hence, the average probability of error is given by

Psign(σ) =
1

2

M∑
i=1

wi

[
Q

(−xi + A

σi

)
+ Q

(
xi + A

σi

)]
. (13)

For certain parameters of the Gaussian mixture noise, the average probabilities of error in (12) and (13)

may not be monotonically decreasing as the standard deviations, σ1, . . . , σM , decrease. Although this might

seem counter-intuitive at first, it mainly due to the multi-modal nature of the Gaussian mixture distribution.

In Section V, numerical examples are provided to illustrate that behavior. Although the average probabilities

of error can exhibit non-monotonic behaviors in general, the following proposition states that for equal

standard deviations, a decrease in the standard deviation value can never result in an increase in the average

probability of error for the optimal single-threshold detector.5

5It can be shown that the result in Proposition 3 is valid also for asymmetric Gaussian mixture noise.
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Proposition 3: Assume that σi = σ for i = 1, . . . , M . Then, Popt(σ) in (12) is a monotone increasing

function of σ.

Proof: When σi = σ for i = 1, . . . ,M , Popt(σ) in (12) is expressed as

Popt(σ) =
1

2

M∑
i=1

wi

[
Q

(
τopt(σ)− xi + A

σ

)
+ Q

(−τopt(σ) + xi + A

σ

)]
. (14)

where τopt(σ) represents the minimizer of (7), which satisfies the following first and second derivative

conditions6

M∑
i=1

wi

σ

(
e−

(τopt(σ)−A−xi)
2

2σ2 − e−
(τopt(σ)+A−xi)

2

2σ2

)
= 0 , (15)

M∑
i=1

wi

σ3

[
(−τopt(σ) + A + xi) e−

(−τopt(σ)+A+xi)
2

2σ2 + (τopt(σ) + A− xi) e−
(τopt(σ)+A−xi)

2

2σ2

]
> 0 . (16)

In order to prove the monotonicity of Popt(σ) in (14) with respect to σ, the first derivative of Popt(σ) is

calculated as follows:

dPopt(σ)

dσ
=

1

2

M∑
i=1

wi√
2π σ2

{ [
dτopt(σ)

dσ
σ − τopt(σ) + A + xi

]
e−

(−τopt(σ)+A+xi)
2

2σ2

−
[
dτopt(σ)

dσ
σ − τopt(σ)− A + xi

]
e−

(τopt(σ)+A−xi)
2

2σ2

}
, (17)

which can be manipulated to obtain

dPopt(σ)

dσ
=

1

2
√

2π

dτopt(σ)

dσ

M∑
i=1

wi

σ

[
e−

(τopt(σ)−A−xi)
2

2σ2 − e−
(τopt(σ)+A−xi)

2

2σ2

]

+
1

2
√

2π σ2

M∑
i=1

wi

[
(−τopt(σ) + A + xi) e−

(−τopt(σ)+A+xi)
2

2σ2 + (τopt(σ) + A− xi) e−
(τopt(σ)+A−xi)

2

2σ2

]
. (18)

Since τopt(σ) satisfies (15), the first term in (18) becomes zero. In addition, (16) implies that the second

term in (18) is always positive. Therefore, dPopt(σ)/dσ > 0 is satisfied; hence, Popt(σ) is a monotone

increasing function of σ. ¤

Proposition 3 states that for a single-threshold detector under symmetric Gaussian mixture noise with the

same variance for all Gaussian components in the mixture (which is a well-suited model for communications

systems with co-channel interference [3]), the probability of error decreases monotonically as the variance

decreases if the detector uses the optimal threshold in (7). Therefore, as the signal-to-noise ratio (SNR)

increases, the probability of error also decreases when the single threshold detector employs the optimal

threshold. In other words, the optimization of the threshold for the single-threshold detector provides such

a desirable monotonicity property, which is not present in the sign detector in general (cf. Fig. 2).

6Equations (15) and (16) can be obtained similar to (9) and (10) by taking the derivatives of the summation term in (7) with respect to τ .
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Next, the behavior of the optimal single-threshold detector is investigated for very small variances. As

σi → 0 for i = 1, . . . , M , the probability of error in (13) for the sign detector can be expressed as7

Psign =
1

2

M∑
i=1

wi u(|xi| − A) , (19)

where u(·) is the unit step function defined as u(x) = 1 for x > 0, u(x) = 0.5 for x = 0, and u(x) = 0

for x < 0. Similarly, as σi → 0 for i = 1, . . . , M , the average probability of error in (12) for the optimal

single-threshold detector is given by

Popt = min
τ

1

2

M∑
i=1

wi u(|xi − τ | − A) . (20)

The expressions in (19) and (20) provide a simple interpretation of the average probability of error. For

example, consider the values of x1, . . . , xM and A as in Fig. 1-(a). Since the average probability of error

expression in (19) states that the xi values that are outside the interval (−A, A) contribute to the summation

term, only the weights wi+1, . . . , wM/2 and wM/2+1, . . . , wM−i are employed in the calculation of the error

probability for the settings in Fig. 1-(a). For the optimal single-threshold detector, various values of τ in

(20) correspond to various shifts of the interval in Fig. 1-(a), as shown in Fig. 1-(b). Then, the value of τ

that results in the minimum average probability of error is selected as the optimal threshold, τopt.

The previous interpretation of the single-threshold detection for very small variances facilitates the

calculation of a theoretical limit on performance improvements that can be achieved by using the optimal

single-threshold detector instead of the sign detector.

Proposition 4: Let 0 < x1 < · · · < xM/2 without loss of generality. As σi → 0 for i = 1, . . . , M , the

maximum ratio between the average probabilities of error for the sign detector and the optimal single-

threshold detector, under symmetric Gaussian mixture noise given by (2), is specified as

max
A,x1,...,xM ,w1,...,wM

Psign

Popt
= 2 , (21)

which is achieved when there exists i ∈ {1, . . . , M/2− 1} such that xi+1 > A > (xi + xM/2)/2 .8

Proof: Let xi < A < xi+1 for any i ∈ {1, . . . , M/2 − 1}.9 Then, the average probability of error for

the sign detector can be calculated from (19) as Psign = 1
2

(∑M/2
l=i+1 wl +

∑M−i
l=M/2+1 wl

)
, which is equal to

Psign =
∑M/2

l=i+1 wl due to symmetry property of the Gaussian mixture, i.e., xi = −xM−i+1 and wi = wM−i+1

for i = 1, . . . , M/2. In order to obtain the maximum Psign/Popt ratio, the parameter values that result in

7x1, . . . , xM are assumed to be distinct such that |xj − xk| À σi as σi → 0, ∀j 6= k, ∀i.
8Note that the minimum value of Psign/Popt is equal to one, which is achieved when the sign detector is the optimal single-threshold detector.
9There is no need to consider i = M/2 since the sign detector is already optimal for A > xM/2 = max{xi}, as stated in Proposition 2.
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the minimum Popt in (20) should be determined. The interpretation of the probability of error calculation

related to the weights of xj’s that reside outside the interval (−A + τ, A + τ) (cf. Fig. 1-(b)) implies that

the maximum ratio can be obtained for a value of τ that results in a shift of the interval (−A,A) in such

a way that all the xj values that are on the shift direction are included in the new interval (−A+ τ, A+ τ)

in addition to the xj’s that are already in (−A,A) (cf. Fig. 1). In that case, the average probability of error

is given by Popt = 1
2

∑M−i
l=M/2, which is equal to Popt = 1

2

∑M/2
l=i+1 due to symmetry. Hence, it is obtained

that Popt = Psign/2 , as claimed in the proposition.

Note that the scenario in Fig. 1-(b) can be obtained if −A + τ < xM−i+1 and A + τ > xM/2. Since

xM−i+1 = −xi, these inequalities imply A > (xi +xM/2)/2. As A is assumed to satisfy xi < A < xi+1, the

minimum probability of error can be obtained when xi+1 > A >
xi+xM/2

2
, as stated in the proposition.10

By similar arguments, it can be shown that when A = xi for any i ∈ {1, . . . , M/2}, Popt > Psign/2;

hence, the maximum ratio cannot be obtained in the equality case. ¤

The practical importance of Proposition 4 is that it sets an upper bound on the performance improvement

that can be obtained by using the optimal single-threshold detector instead of the sign detector, when the

variances of the Gaussian components in the mixture noise are significantly smaller than the distances

between consecutive mean values, xj’s in (2). In such a case, Proposition 4 states that the optimal single-

threshold detector cannot have an average probability of error smaller than half of that for the sign detector.11

Proposition 4 also leads to the derivation of sufficient conditions for the sign detector to be optimal or

not as σi → 0 for i = 1, . . . ,M . Two of them are stated below without any proofs.

• The sign detector is not optimal if there exists i ∈ {1, . . . ,M/2− 1} such that A > (xi + xi+1)/2.

• For xi < A < xi+1, the sign detector in (4) is an optimal single-threshold detector if A ≤ (xi+xi+1)/2

and wi ≥
∑M/2

l=i+1 wl.

Remark 2: Although no fading is considered in the signal model in (1), the results in this study can be

extended to slowly varying flat-fading channels under the assumption of perfect channel estimation, since

the optimal threshold parameter can be calculated for each different channel realization in that case. On

the other hand, if the duration between the updates of the threshold parameter is longer than the channel

coherence time, then averages over fading statistics need to be taken in order to determine the optimal

10For a leftwards shift, i.e., for τ < 0, −A + τ < xM/2+1 = −xM/2 and A + τ > xi need to be satisfied for the maximum ratio, which

results in the same expression.
11For asymmetric Gaussian mixture noise, the maximum ratio in Proposition 4 becomes infinity, since there can be cases in which the

interval (−A+ τ, A+ τ) in Fig. 1-(b) includes all the mean values (xj’s) while the interval (−A, A) in Fig. 1-(a) does not, which is possible

due to the asymmetry of the mean values.
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threshold. In that case, further analysis is required to extend the results of this study.

V. NUMERICAL RESULTS

In this section, numerical examples are provided in order to investigate the theoretical results obtained

in the previous sections. For all cases, the variances of the Gaussian components in the mixture noise are

assumed to be the same; i.e., σi = σ for i = 1, . . . , M in (2).

First, symmetric Gaussian mixture noise with M = 10 is considered, where the mean values of

the Gaussian components in the mixture noise in (2) are specified as ±[0.05 0.18 0.30 0.45 1.2] with

corresponding weights of [0.198 0.209 0.081 0.011 0.001]. Fig. 2 illustrates the average probabilities of

error for the sign detector and the optimal single-threshold detector for various values of A2/σ2. The signal

value A in (1) is set to A = 1, and σ is varied in order to obtain various A2/σ2 values. From Fig. 2,

significant performance improvement is observed for large A2/σ2 values when the optimal single-threshold

detector is used. On the other hand, for small A2/σ2 values; that is, for large σ’s, the sign detector becomes

optimal as expected (cf. Section III). In addition, the average probability of error for the optimal single-

threshold detector reduces monotonically with A2/σ2, as predicted by Proposition 3. On the other hand,

the sign detector exhibits a non-monotonic behavior and experiences a higher error floor. Finally, as σ → 0,

the ratio between the probabilities of error becomes 2 (Psign = 0.001 and Popt = 0.0005), which is expected

from Proposition 4, since A satisfies the condition in the proposition, xi+1 > A > (xi + xM/2)/2 for i = 4

(namely, 1.2 > 1 > (0.45 + 1.2)/2 = 0.825). In order to investigate the scenario in Fig. 2 in more detail,

Fig. 3 plots the probability of error in (6) versus τ for various A2/σ2 values. It is again observed that as

σ2 increases, the sign detector becomes optimal.

Next, the effects of channel estimation errors on the performance of optimal single-threshold detection

are investigated. For flat fading channels, the signal model in (1) can be extended as x = Aα b + n, where

α represents the channel coefficient. If the channel is known perfectly, then the effects of α can be removed

via equalization and the model in (1) can still be used. However, the value of α is commonly obtained via

channel estimation and its estimate can include certain errors. A common model for channel estimation

errors is a zero-mean Gaussian random variable with standard deviation ε, and a generic probability

distribution for the amplitude of the channel coefficient is the Nakagami-m distribution [2]. In Fig. 4,

the effects of channel estimation errors are investigated for an average power of unity for the Nakagami-m

channel coefficient, m = 4, A = 1, and the same Gaussian mixture noise parameters as in the previous

scenario. It is observed that as the standard deviation of the channel estimation error, ε, increases, the
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performance difference between the sign detector and the optimal single-threshold detector decreases. This

is expected since the threshold value that is obtained based on the channel estimate can become more

different from the optimal threshold that is based on the true value of the channel coefficient.

Finally, symmetric Gaussian mixture noise with M = 10 is considered with σi = σ ∀i, where the mean

values of the Gaussian components are specified as ±[2 4.8 5.4 7.5 9] with corresponding weights of

[0.35 0.099985 0.05 0.000005 0.00001]. In Fig. 5, the probabilities of error of the sign detector and the

optimal single-threshold detector are plotted versus SNR for σ = 0.1, where SNR is defined as SNR =

A2/
(
σ2 +

∑M
i=1 wix

2
i

)
. It is observed that the sign detector can be optimal or not optimal depending on

the SNR value. For example, to achieve error probabilities of 10−5 and 9× 10−6, the sign detector needs

respective increases of 0.55 dB and 1.5 dB in the SNR compared to the optimal single-threshold detector. A

detailed investigation of the simulation results reveals that the sign detector is not optimal for A ∈ (3.4, 4.9),

A ∈ (5.1, 5.4) or A ∈ (6.5, 9). This is also in compliance with Proposition 2, which states that the sign

detector is optimal when the signal amplitude A is larger than or equal to the maximum mean value of

the Gaussian components in the mixture noise; that is, A ≥ 9 in this case. Fig. 6 illustrates the optimality

function in (8) and τopt in (7) versus SNR for this scenario. It is observed that whenever the optimality

function in (8) is negative, the sign detector is not optimal (i.e., τopt 6= 0) in accordance with Proposition

1. It is also noted that the condition in Proposition 1 is a sufficient but not a necessary condition for the

sign detector not to be optimal, which can be observed, for example, at SNR = 3.6 dB, where the function

value is positive and the sign detector is not optimal.

VI. CONCLUDING REMARKS

In this paper, performance of single-threshold detectors has been investigated for binary communications

systems under Gaussian mixture noise. Sufficient conditions have been obtained for the sign detector to

be optimal or not optimal. Also, a monotonicity property of the error probability for the optimal single-

threshold detector has been derived. In additional, a theoretical limit on the performance improvements

that can be obtained by using the optimal single-threshold detector instead of the sign detector has been

obtained. Finally, numerical examples have been provided to investigate the theoretical results.
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Fig. 1. (a) For the sign detector, the mean values (xj’s) of the Gaussian mixture noise that are outside the interval (−A, A) determine

the average probability of error. (b) For the optimal single-threshold detector, the mean values (xj’s) of the Gaussian mixture noise that are

outside the interval (−A + τ, A + τ) determine the average probability of error.
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Fig. 2. Probability of error versus A2/σ2 for symmetric Gaussian mixture noise with M = 10, where the center values are

±[0.05 0.18 0.30 0.45 1.2] with corresponding weights of [0.198 0.209 0.081 0.011 0.001].
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Fig. 3. Probability of error in (6) versus τ for various A2/σ2 values for the scenario in Fig. 2.
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Fig. 4. Average probability of error versus A2/σ2 for the sign detector and the optimal single-threshold detector in the presence of channel

estimation errors, where ε denotes the standard deviation of the zero-mean Gaussian channel estimation error.
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Fig. 5. Probability of error versus SNR for symmetric Gaussian mixture noise with σi = σ = 0.1 for i = 1, . . . , M and M = 10.
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Fig. 6. The optimality function in (8) and the optimal threshold τopt in (7) versus SNR for the scenario in Fig. 5.


