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Abstract— Optimal stochastic signaling is studied under second
and fourth moment constraints for the detection of scalar-valued
binary signals in additive noise channels. Sufficient conditions
are obtained to specify when the use of stochastic signals
instead of deterministic ones can or cannot improve the error
performance of a given binary communications system. Also,
statistical characterization of optimal signals is presented, and it
is shown that an optimal stochastic signal can be represented by a
randomization of at most three different signal levels. In addition,
the power constraints achieved by optimal stochastic signals are
specified under various conditions. Furthermore, two approaches
for solving the optimal stochastic signaling problem are proposed;
one based on particle swarm optimization (PSO) and the other
based on convex relaxation of the original optimization problem.
Finally, simulations are performed to investigate the theoretical
results, and extensions of the results to M -ary communications
systems and to other criteria than the average probability of
error are discussed.

Index Terms— Detection, binary communications, additive
noise channels, randomization, probability of error, optimization.

I. INTRODUCTION

In this paper, optimal signaling techniques are investigated
for minimizing the average probability of error of a binary
communications system under power constraints. Optimal
signaling in the presence of zero-mean Gaussian noise has
been studied extensively in the literature [1], [2]. It is shown
that deterministic antipodal signals, i.e., S1 = −S0, minimize
the average probability of error of a binary communications
system in additive Gaussian noise channels when the average
power of each signal is constrained by the same limit. In
addition, for vector observations, selecting the deterministic
signals along the eigenvector of the covariance matrix of
the Gaussian noise corresponding to the minimum eigen-
value minimizes the average probability of error under power
constraints in the form of ‖S0‖2 ≤ A and ‖S1‖2 ≤ A
[2, pp. 61–63]. In [3], optimal binary communications over
additive white Gaussian noise (AWGN) channels are studied
for nonequal prior probabilities under an average energy per
bit constraint. It is shown that the optimal signaling scheme is
on-off keying (OOK) for coherent detection when the signals
have nonnegative correlation, and that the optimal signaling
is OOK also for envelope detection for any signal correlation.
In [4], a source-controlled turbo coding algorithm is proposed
for nonuniform binary memoryless sources over AWGN chan-
nels by utilizing asymmetric nonbinary signal constellations.
Although the average probability of error expressions and

The authors are with the Department of Electrical and Electronics
Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey,
Tel: +90 (312) 290-3139, Fax: +90 (312) 266-4192, e-mails:
{goken,gezici,oarikan}@ee.bilkent.edu.tr. Part of this research was presented
at the IEEE International Workshop on Signal Processing Advances for
Wireless Communications (SPAWC), Marrakech, Morocco, June 2010.

optimal signaling techniques are well-known when the noise is
Gaussian, the noise can have significantly different probability
distribution than the Gaussian distribution in some cases due
to effects such as multiuser interference and jamming [5]-[7].
In [8], additive noise channels with binary inputs and scalar
outputs are studied, and the worst-case noise distribution is
characterized. Specifically, it is shown that the least-favorable
noise distribution that maximizes the average probability of
error and minimizes the channel capacity is a mixture of
discrete lattices [8]. A similar problem is considered in [9]
for a binary communications system in the presence of an
additive jammer, and properties of optimal jammer distribution
and signal distribution are obtained.

In [6], the convexity properties of the average probabil-
ity of error are investigated for binary-valued scalar signals
over additive noise channels under an average power con-
straint. It is shown that the average probability of error is
a convex nonincreasing function for unimodal differentiable
noise probability density functions (PDFs) when the receiver
employs maximum likelihood (ML) detection. Based on this
result, it is concluded that randomization of signal values (or,
stochastic signal design) cannot improve error performance for
the considered communications system. Then, the problem of
maximizing the average probability of error is studied for an
average power-constrained jammer, and it is shown that the
optimal solution can be obtained when the jammer randomizes
its power between at most two power levels. Finally, the results
are applied to multiple additive noise channels, and optimum
channel switching strategy is obtained as time-sharing between
at most two channels and power levels [6].

Optimal randomization between two deterministic signal
pairs and the corresponding ML decision rules is studied in
[10] for an average power-constrained antipodal binary com-
munications system, and it is shown that power randomization
can result in significant performance improvement. In [11], the
problem of pricing and transmission scheduling is investigated
for an access point in a wireless network, and it is proven that
the randomization between two business decision and price
pairs maximizes the time-average profit of the access point.
Although the problem studied in [11] is in a different context,
its theoretical approach is similar to those in [6] and [10] for
obtaining optimal signal distributions.

Although the average probability of error of a binary com-
munications system is minimized by deterministic antipodal
signals in additive Gaussian noise channels [2], the studies
in [6], [9], [10], [11] imply that stochastic signaling can
sometimes achieve lower average probability of error when the
noise is non-Gaussian. Therefore, a more generic formulation
of the optimal signaling problem for binary communications
systems can be stated as obtaining the optimal probability
distributions of signals S0 and S1 such that the average



probability of error of the system is minimized under certain
constraints on the moments of S0 and S1. It should be noted
that the main difference of this optimal stochastic signaling
approach from the conventional (deterministic) approach [1],
[2] is that signals S0 and S1 are considered as random vari-
ables in the former whereas they are regarded as deterministic
quantities in the latter.

Although randomization between deterministic signal con-
stellations and corresponding optimal detectors is studied in
an additive Gaussian mixture noise channel under an av-
erage power constraint in [10], no studies have considered
the optimal stochastic signaling problem based on a generic
formulation (i.e., for arbitrary receivers and noise probabil-
ity distributions) under both average power and peakedness
constraints on individual signals. In this paper, such a generic
formulation of the stochastic signaling problem is considered,
and sufficient conditions for improvability and nonimprov-
ability of error performance via stochastic signal design are
derived. In addition, the statistical characterization of optimal
signals is provided and two optimization theoretic approaches
are proposed for obtaining the optimal signals. The main
contributions of the paper can be summarized as follows:
• Formulation of the optimal stochastic signaling problem

under both average power and peakedness constraints.
• Derivation of sufficient conditions to determine whether

stochastic signaling can provide error performance im-
provement compared to the conventional (deterministic)
signaling.

• Statistical characterization of optimal signals, which re-
veals that an optimal stochastic signal can be expressed as
a randomization of at most three different signals levels.

• Study of two optimization techniques, namely particle
swarm optimization (PSO) [12] and convex relaxation
[13], in order to obtain optimal and close-to-optimal
solutions to the stochastic signaling problem.

In addition to the results listed above, the power constraints
achieved by optimal signals are specified under various con-
ditions. Also, simulation results are presented to investigate
the theoretical results. Finally, it is explained that the results
obtained for minimizing the average probability of error for
a binary communications system can be extended to M -ary
systems, as well as to other performance criteria than the
average probability of error, such as the Bayes risk [2], [14].

II. SYSTEM MODEL AND MOTIVATION

Consider a scalar binary communications system, as in [6],
[8] and [15], in which the received signal is expressed as

Y = Si + N , i ∈ {0, 1} , (1)

where S0 and S1 represent the transmitted signal values for
symbol 0 and symbol 1, respectively, and N is the noise
component that is independent of Si. In addition, the prior
probabilities of the symbols, which are represented by π0 and
π1, are assumed to be known.

As stated in [6], the scalar channel model in (1) provides
an abstraction for a continuous-time system that processes
the received signal by a linear filter and samples it once per
symbol interval. In addition, although the signal model in (1)
is in the form of a simple additive noise channel, it also holds
for flat-fading channels assuming perfect channel estimation.

In that case, the signal model in (1) can be obtained after
appropriate equalization [1].

It should be noted that the probability distribution of the
noise component in (1) is not necessarily Gaussian. Due to
interference, such as multiple-access interference, the noise
component can have a significantly different probability dis-
tribution from the Gaussian distribution [5], [6], [16].

A generic decision rule is considered at the receiver to
determine the symbol in (1). That is, for a given observation
Y = y, the decision rule φ(y) is specified as

φ(y) =

{
0 , y ∈ Γ0

1 , y ∈ Γ1
, (2)

where Γ0 and Γ1 are the decision regions for symbol 0 and
symbol 1, respectively [2].

The aim is to design signals S0 and S1 in (1) in order to
minimize the average probability of error for a given decision
rule, which is expressed as

Pavg = π0P0(Γ1) + π1P1(Γ0) , (3)

where Pi(Γj) is the probability of selecting symbol j when
symbol i is transmitted. In practical systems, there are con-
straints on the average power and the peakedness of signals,
which can be expressed as [17]

E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 , (4)

for i = 0, 1, where A is the average power limit and the
second constraint imposes a limit on the peakedness of the
signal depending on the κ ∈ (1,∞) parameter.1 Therefore,
the average probability of error in (3) needs to be minimized
under the second and fourth moment constraints in (4).

The main motivation for the optimal stochastic signaling
problem is to improve the error performance of the commu-
nications system by considering the signals at the transmit-
ter as random variables and finding the optimal probability
distributions for those signals [6]. Therefore, the generic
problem can be formulated as obtaining the optimal probability
distributions of the signals S0 and S1 for a given decision
rule at the receiver under the average power and peakedness
constraints in (4).

Since the optimal signal design is performed at the trans-
mitter, the transmitter is assumed to have the knowledge of
the statistics of the noise at the receiver and the channel
state information. Although this assumption may not hold in
some cases, there are certain scenarios in which it can be
realized.2 Consider, for example, the downlink of a multiple-
access communications system, in which the received signal
can be modeled as Y = S(1) +

∑K
k=2 ξkS(k) + η , where S(k)

is the signal of the kth user, ξk is the correlation coefficient
between user 1 and user k, and η is a zero-mean Gaussian
noise component. For the desired signal component S(1),
N =

∑K
k=2 ξkS(k) + η forms the total noise, which has

Gaussian mixture distribution. When the receiver sends via
feedback the variance of noise η and the signal-to-noise ratio
(SNR) to the transmitter, the transmitter can fully characterize

1Note that for E{|Si|2} = A, the second constraint becomes
E{|Si|4}/(E{|Si|2})2 ≤ κ, which limits the kurtosis of the signal [17].

2As discussed in Section VI, the problem studied in this paper can be
considered for other systems than communications; hence, the practicality of
the assumption depends on the specific application domain.



the PDF of the total noise N , as it knows the transmitted signal
levels of all the users and the correlation coefficients.

In the conventional signal design, S0 and S1 are considered
as deterministic signals, and they are set to S0 = −√A and
S1 =

√
A [1], [2]. In that case, the average probability of

error expression in (3) becomes

Pconv
avg = π0

∫

Γ1

pN

(
y +

√
A

)
dy + π1

∫

Γ0

pN

(
y −

√
A

)
dy ,

(5)

where pN (·) is the PDF of the noise in (1). As investigated
in Section III-A, the conventional signal design is optimal for
certain classes of noise PDFs and decision rules. However, in
some cases, use of stochastic signals instead of deterministic
ones can improve the system performance. In the following
section, conditions for optimality and suboptimality of the
conventional signal design are derived, and properties of
optimal signals are investigated.

III. OPTIMAL STOCHASTIC SIGNALING

Instead of employing constant levels for S0 and S1 as in
the conventional case, consider a more generic scenario in
which the signal components can be stochastic. The aim is to
obtain the optimal PDFs for S0 and S1 in (1) that minimize
the average probability of error under the constraints in (4).

Let pS0(·) and pS1(·) represent the PDFs for S0 and S1,
respectively. Then, the average probability of error for the
decision rule in (2) can be expressed from (3) as

Pstoc
avg = π0

∫ ∞

−∞
pS0(t)

∫

Γ1

pN (y − t) dy dt

+ π1

∫ ∞

−∞
pS1(t)

∫

Γ0

pN (y − t) dy dt . (6)

Therefore, the optimal stochastic signal design problem can
be stated as

min
pS0 ,pS1

Pstoc
avg

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 , i = 0, 1 . (7)

Note that there are also implicit constraints in the optimiza-
tion problem in (7), since pSi(t) represents a PDF. Namely,
pSi(t) ≥ 0 ∀t and

∫∞
−∞ pSi(t)dt = 1 should also be satisfied

by the optimal solution.
Since the aim is to obtain optimal stochastic signals for a

given receiver, the decision rule in (2) is fixed (i.e., predefined
Γ0 and Γ1). Therefore, the structure of the objective function
Pstoc

avg in (6) and the individual constraints on each signal imply
that the optimization problem in (7) can be expressed as
two decoupled optimization problems (see Appendix A). For
example, the optimal signal for symbol 1 can be obtained from
the solution of the following optimization problem:

min
pS1

∫ ∞

−∞
pS1(t)

∫

Γ0

pN (y − t) dy dt

subject to E{|S1|2} ≤ A , E{|S1|4} ≤ κA2 . (8)

A similar problem can be formulated for S0 as well. Since the
signals can be designed separately, the remainder of the paper
focuses on the design of optimal S1 according to (8).

The objective function in (8) can be expressed as the
expectation of

G(S1) ,
∫

Γ0

pN (y − S1) dy (9)

over the PDF of S1. Then, the optimization problem in (8)
becomes

min
pS1

E{G(S1)}
subject to E{|S1|2} ≤ A , E{|S1|4} ≤ κA2 . (10)

It is noted that (10) provides a generic formulation that is valid
for any noise PDF and detector structure. In the following
sections, the signal subscripts are dropped for notational
simplicity. Note that G(x) in (9) represents the probability
of deciding symbol 0 instead of symbol 1 when signal S1

takes a constant value of x; that is, S1 = x .

A. On the Optimality of the Conventional Signaling
Under certain circumstances, using the conventional signal-

ing approach, i.e., setting S =
√

A (or, pS(x) = δ(x−√A) ),
solves the optimization problem in (10). For example, if G(x)
achieves its minimum at x =

√
A ; that is, arg minx G(x) =√

A , then pS(x) = δ(x−√A) becomes the optimal solution
since it yields the minimum value for E{G(S1)} and also sat-
isfies the constraints. However, this case is not very common as
G(x), which is the probability of deciding symbol 0 instead
of symbol 1 when S = x, is usually a decreasing function
of x; that is, when a larger signal value x is used, smaller
error probability can be obtained. Therefore, the following
more generic condition is derived for the optimality of the
conventional algorithm.

Proposition 1: If G(x) is a strictly convex and monotone
decreasing function, then pS(x) = δ(x − √

A) solves the
optimization problem in (10).

Proof: The proof is obtained via contradiction. First, it is
assumed that there exists a PDF pS2(x) for signal S that makes
the conventional solution suboptimal; that is, E{G(S)} <
G(
√

A) under the constraints in (10).
Since G(x) is a strictly convex function, Jensen’s inequality

implies that E{G(S)} > G (E{S}). Therefore, as G(x) is a
monotone decreasing function, E{S} >

√
A must be satisfied

in order for E{G(S)} < G(
√

A) to hold true.
On the other hand, Jensen’s inequality also states that

E{S} >
√

A implies E{S2} > (E{S})2 > A; that is,
the constraint on the average power is violated (see (10)).
Therefore, it is proven that no PDF can provide E{G(S)} <
G(
√

A) and satisfy the constraints under the assumptions in
the proposition. ¤

As an example application of Proposition 1, consider
a zero-mean Gaussian noise N in (1) with pN (x) =
exp

(−x2/(2σ2)
)
/
√

2πσ, and a decision rule of the form
Γ0 = (−∞, 0] and Γ1 = [0,∞); i.e., the sign detector. Then,
G(x) in (9) can be obtained as

G(x) =
∫ 0

−∞

1√
2π σ

exp
(
− (y − x)2

2σ2

)
dy = Q

(x

σ

)
,

(11)

where Q(x) = (1/
√

2π)
∫∞

x
exp(−t2/2) dt defines the Q-

function. It is observed that G(x) in (11) is a monotone



decreasing and strictly convex function for x > 0.3 Therefore,
the optimal signal is specified by pS(x) = δ(x − √A) from
Proposition 1. Similarly, the optimal signal for symbol 0 can
be obtained as pS(x) = δ(x +

√
A). Hence, the conventional

signaling is optimal in this scenario.

B. Sufficient Conditions for Improvability

In this section, the aim is to determine when it is possible
to improve the performance of the conventional signaling
approach via stochastic signaling. A simple observation of (10)
reveals that if the minimum of G(x) =

∫
Γ0

pN (y − x)dy is
achieved at xmin with x2

min < A, then pS(x) = δ(x − xmin)
becomes a better solution than the conventional one. In other
words, if the noise PDF is such that the probability of selecting
symbol 0 instead of symbol 1 is minimized for a signal
value of S1 = xmin with x2

min < A, then the conventional
solution can be improved. Another sufficient condition for
the conventional algorithm to be suboptimal is to have a
positive first-order derivative of G(x) at x =

√
A , which can

also be expressed from (9) as − ∫
Γ0

p
′

N (y − √
A ) dy > 0,

where p
′

N (·) denotes the derivative of pN (·). In this case,
pS2(x) = δ(x−√A + ε) yields a smaller average probability
of error than the conventional solution for infinitesimally small
ε > 0 values.

Although both of the conditions above are sufficient for
improvability of the conventional algorithm, they are rarely
met in practice since G(x) is commonly a decreasing function
of x as discussed before. Therefore, in the following, a
sufficient condition is derived for more generic and practical
conditions.

Proposition 2: Assume that G(x) is twice continuously
differentiable around x =

√
A . Then, if

∫
Γ0

(
p
′′

N (y −√A ) +
p
′

N (y −√A )/
√

A
)
dy < 0 is satisfied, pS(x) = δ(x−√A)

is not an optimal solution to (10).
Proof: It is first observed from (9) that the condition in

the proposition is equivalent to G
′′
(
√

A) < G
′
(
√

A)/
√

A .
Therefore, in order to prove the suboptimality of the conven-
tional solution pS(x) = δ(x − √

A), it is shown that when
G
′′
(
√

A) < G
′
(
√

A)/
√

A, there exists λ ∈ (0, 1), ε > 0
and ∆ > 0 such that pS2(x) = λ δ(x − √

A + ε) + (1 −
λ) δ(x − √A − ∆) has a lower error probability than pS(x)
while satisfying all the constraints in (10). More specifically,
the existence of λ ∈ (0, 1), ε > 0 and ∆ > 0 that satisfy

λG(
√

A− ε) + (1− λ) G(
√

A + ∆) < G(
√

A) (12)

λ(
√

A− ε)2 + (1− λ)(
√

A + ∆)2 = A (13)

λ(
√

A− ε)4 + (1− λ)(
√

A + ∆)4 ≤ κA2 (14)

is sufficient to prove the suboptimality of the conventional
signal design.

From (13), the following equation is obtained.

λ ε2 + (1− λ)∆2 = −2
√

A [(1− λ)∆− λ ε] . (15)

3It is sufficient to consider the positive signal values only since G(x) is
monotone decreasing and the constraints x2 and x4 are even functions. In
other words, no negative signal value can be optimal since its absolute value
has the same constraint value but smaller G(x).

If infinitesimally small ε and ∆ values are selected, (12) can
be approximated as

λ

[
G(
√

A)− εG
′
(
√

A) +
ε2

2
G
′′
(
√

A)
]

+ (1− λ)
[
G(
√

A)

+ ∆ G
′
(
√

A) +
∆2

2
G
′′
(
√

A)
]

< G(
√

A)

G
′
(
√

A)[(1− λ)∆− λ ε] +
G
′′
(
√

A)
2

[λ ε2 + (1− λ)∆2] < 0
(16)

When the condition in (15) is employed, (16) becomes

[(1− λ)∆− λ ε]
(
G
′
(
√

A)−
√

AG
′′
(
√

A)
)

< 0 . (17)

Since (1−λ)∆−λ ε is always negative as can be noted from
(15), the G

′
(
√

A)−√AG
′′
(
√

A) term in (17) must be positive
to satisfy the condition. In other words, when G

′′
(
√

A) <
G
′
(
√

A)/
√

A , pS2(x) can have a smaller error value than that
of the conventional algorithm for infinitesimally small ε and ∆
values that satisfy (15). To complete the proof, the condition
in (14) needs to be verified for the specified ε and ∆ values.
From (15), (14) can be expressed, after some manipulation, as

A2 + 16A
√

A [(1− λ)∆− λ ε]− 4
√

A
[
λ ε3 − (1− λ)∆3

]

+
[
λ ε4 − (1− λ)∆4

] ≤ κA2 . (18)

Since (1−λ)∆−λ ε is negative, the inequality can be satisfied
for infinitesimally small ε and ∆, for which the third and the
fourth terms on the left-hand-side become negligible compared
to the first two. ¤

The condition in Proposition 2 can be expressed more
explicitly in practice. For example, if Γ0 is the form of an
interval, say [τ1, τ2], then the condition in the proposition
becomes p

′
N (τ2 −

√
A )− p

′
N (τ1 −

√
A ) +

(
pN (τ2 −

√
A )−

pN (τ1 −
√

A )
)
/
√

A < 0. This inequality can be generalized
in a straightforward manner when Γ0 is the union of multiple
intervals.

Since the condition in Proposition 2 is equivalent to
G
′′
(
√

A) < G
′
(
√

A)/
√

A (see (9)), the intuition behind the
proposition can be explained as follows. As the optimization
problem in (10) aims to minimize E{G(S)} while keeping
E{S2} and E{S4} below thresholds A and κA2, respectively,
a better solution than pS(x) = δ(x−√A) can be obtained with
multiple mass points if G(x) is decreasing at an increasing rate
(i.e., with a negative second derivative) such that an increase
from x =

√
A causes a fast decrease in G(x) but relatively

slow increase in x2 and x4, and a decrease from x =
√

A
causes a fast decrease in x2 and x4 but relatively slow increase
in G(x). In that case, it becomes possible to use a PDF with
multiple mass points and to obtain a smaller E{G(S)} while
satisfying E{S2} ≤ A and E{S4} ≤ κA2.

Proposition 2 provides a simple sufficient condition to deter-
mine if there is any possibility for performance improvement
over the conventional signal design. For a given noise PDF and
a decision rule, the condition in Proposition 2 can be evaluated
in a straightforward manner. In order to provide an illustrative
example, consider the noise PDF

pN (y) =

{
y2 , |y| ≤ 1.1447
0 , |y| > 1.1447

, (19)



and a sign detector at the receiver; that is, Γ0 = (−∞, 0].
Then, the condition in Proposition 2 can be evaluated as

p
′

N (−
√

A ) + pN (−
√

A )/
√

A < 0 . (20)

Assuming that the average power is constrained to A = 0.64,
the inequality in (20) becomes 2(−0.8) + (−0.8)2/0.8 < 0.
Hence, Proposition 2 implies that the conventional solution
is not optimal for this problem. For example, pS(x) =
0.391 δ(x−0.988)+0.333 δ(x−0.00652)+0.276 δ(x−0.9676)
yields an average error probability of 0.2909 compared to
0.3293 corresponding to the conventional solution pS(x) =
δ(x− 0.8) , as studied in Section IV.

Although the noise PDF in (19) is not common in practice,
improvements over the conventional algorithm are possible
and Proposition 2 can be applied also for certain types of
Gaussian mixture noise (see Section IV), which is observed
more frequently in practical scenarios [16]-[19]. For example,
in multiuser wireless communications, the desired signal is
corrupted by interfering signals from other users as well as
zero-mean Gaussian noise, which altogether result in Gaussian
mixture noise [16].

C. Statistical Characteristics of Optimal Signals
In this section, PDFs of optimal signals are characterized

and it is shown that an optimal signal can be represented by
a randomization of at most three different signal levels. In
addition, it is proven that the optimal signal achieves at least
one of the second and fourth moment constraints in (10) for
most practical cases.

In the following proposition, it is stated that, in most practi-
cal scenarios, an optimal stochastic signal can be represented
by a discrete random variable with no more than three mass
points.

Proposition 3: Assume that the possible signal values are
specified by |S| ≤ γ for a finite γ > 0, and G(·) in (9) is
continuous. Then, an optimal solution to (10) can be expressed
in the form of pS(x) =

∑3
i=1 λi δ(x−xi), where

∑3
i=1 λi = 1

and λi ≥ 0 for i = 1, 2, 3 .
Proof: Please see Appendix B.
The assumption in the proposition, which states that the

possible signal values belong to set [−γ, γ], is realistic for
practical communications systems since arbitrarily large pos-
itive and negative signal values cannot be generated at the
transmitter. In addition, for most practical scenarios, G(·) in
(9) is continuous since the noise at the receiver, which is
commonly the sum of zero-mean Gaussian thermal noise and
interference terms that are independent from the thermal noise,
has a continuous PDF.

The result in Proposition 3 can be extended to the prob-
lems with more constraints. Let E{G(S)} be the objective
function to minimize over possible PDFs pS(x), subject to
E{Hi(S)} ≤ Ai for i = 1, . . . , Nc. Then, under the conditions
in the proposition, the proof in Appendix B implies that there
exists an optimal PDF with at most Nc + 1 mass points.4

The significance of Proposition 3 lies in the fact that it
reduces the optimization problem in (10) from the space of all
PDFs that satisfy the second and fourth moment constraints
to the space of discrete PDFs with at most 3 mass points that

4It is assumed that H1(x), . . . , HNc (x) are bounded functions for the
possible values of the signal.

satisfy the second and fourth moment constraints. In other
words, instead of optimization over functions, an optimization
over a vector of 6 elements (namely, 3 mass point locations
and their weights) can be considered for the optimal signaling
problem as a result of Proposition 3. In addition, this result
facilitates a convex relaxation of the optimization problem in
(10) for any noise PDF and decision rule as studied in Section
III-D.

Next, the second and the fourth moments of the optimal
signals are investigated. Let xmin represent the signal level
that yields the minimum value of G(x) in (9); that is, xmin =
arg min

x
G(x). If xmin <

√
A, the optimal signal has the

constant value of xmin and the second and fourth moments are
given by x2

min < A and x4
min < κA2, respectively. However,

it is more common to have xmin >
√

A since larger signal
values are expected to reduce G(x) as discussed before. In
that case, the following proposition states that at least one of
the constraints in (10) is satisfied.

Proposition 4: Let xmin = arg min
x

G(x) be the unique
minimum of G(x) .

a) If A2 < x4
min < κA2, then the optimal signal satisfies

E{S2} = A.
b) If x4

min > κA2, then the optimal signal satisfies at least
one of E{S2} = A and E{S4} = κA2.

Proof: Please see Appendix C.
An important implication of Proposition 4 is that when

xmin >
√

A, any solution that results in second and fourth
moments that are smaller than A and κA2, respectively, cannot
be optimal. In other words, it is possible to improve that
solution by increasing the second and/or the fourth moment of
the signal until at least one of the constraints become active.

After characterizing the structure and the properties of
optimal signals, two approaches are proposed in the next
section to obtain optimal and close-to-optimal signal PDFs.

D. Calculation of the Optimal Signal
In order to obtain the PDF of an optimal signal, the

constrained optimization problem in (10) should be solved.
In this section, two approaches are studied in order to obtain
optimal and close-to-optimal solutions to that optimization
problem.

1) Global Optimization Approach: Since Proposition 3
states that the optimal signaling problem in (10) can be solved
over PDFs in the form of pS(x) =

∑3
j=1 λj δ(x − xj) , (10)

can be expressed as

min
λ,x

3∑

j=1

λj G(xj) (21)

subject to
3∑

j=1

λj x2
j ≤ A ,

3∑

j=1

λj x4
j ≤ κA2 ,

3∑

j=1

λj = 1 , λj ≥ 0 ∀j ,

where x = [x1 x2 x3]T and λ = [λ1 λ2 λ3]T .
Note that the optimization problem in (21) is a not con-

vex problem in general due to both the objective function
and the first two constraints. Therefore, global optimization
techniques, such as PSO, differential evolution and genetic



algorithms [20] should be employed to obtain the optimal
PDF. In this paper, the PSO approach [12], [21]-[23] is used
since it is based on simple iterations with low computational
complexity and has been successfully applied to numerous
problems in various fields [24]-[28].

In order to describe the PSO algorithm, consider the mini-
mization of an objective function over parameter θ. In PSO,
first a number of parameter values {θi}M

i=1, called particles,
are generated, where M is called the population size (i.e., the
number of particles). Then, iterations are performed, where at
each iteration new particles are generated as the summation
of the previous particles and velocity vectors υi according to
the following equations [12]:

υk+1
i =χ

(
ωυk

i + c1ρ
k
i1

(
pk

i − θk
i

)
+ c2ρ

k
i2

(
pk

g − θk
i

))
(22)

θk+1
i =θk

i + υk+1
i (23)

for i = 1, . . . , M , where k is the iteration index, χ is the
constriction factor, ω is the inertia weight, which controls the
effects of the previous history of velocities on the current
velocity, c1 and c2 are the cognitive and social parameters,
respectively, and ρk

i1 and ρk
i2 are independent uniformly dis-

tributed random variables on [0, 1] [21]. In (22), pk
i represents

the position corresponding to the smallest objective function
value until the kth iteration of the ith particle, and pk

g denotes
the position corresponding to the global minimum among
all the particles until the kth iteration. After a number of
iterations, the position with the lowest objective function value,
pk

g , is selected as the optimizer of the optimization problem.
In order to extend PSO to constrained optimization prob-

lems, various approaches, such as penalty functions and keep-
ing feasibility of particles, can be taken [22], [23]. In the
penalty function approach, a particle that becomes infeasible is
assigned a large value (considering a minimization problem),
which forces migration of particles to the feasible region. In
the constrained optimization approach that preserves the fea-
sibility of the particles, no penalty is applied to any particles;
but for the positions pk

i and pk
g in (22) corresponding to the

lowest objective function values, only the feasible particles are
considered [23].

In order to employ PSO for the optimal stochastic signaling
problem in (21), the optimization variable is defined as θ ,
[x1 x2 x3 λ1 λ2 λ3]T , and the iterations in (22) and (23) are
used while using a penalty function approach to impose the
constraints. The results are presented in Section IV.

2) Convex Optimization Approach: In order to provide
an alternative approximate solution with lower complexity,
consider a scenario in which the PDF of the signal is modeled
as

pS(x) =
K∑

j=1

λ̃j δ(x− x̃j) , (24)

where x̃j’s are the known mass points of the PDFs, and λ̃j’s
are the weights to be estimated. This scenario corresponds to
the cases with a finite number of possible signal values. For
example, in a digital communications system, if the transmitter
can only send one of K pre-determined x̃j values for a specific
symbol, then the problem becomes calculating the optimal
probability assignments, λ̃j’s, for the possible signal values
for each symbol. Note that since the optimization is performed

over PDFs as in (24), the optimal solution can include more
than three mass points in general. In other words, the solution
in this case is expected to approximate the optimal PDF, which
includes at most three mass points, with a PDF with multiple
mass points.

The solution to the optimal signal design problem in (10)
over the set of signals with their PDFs as in (24) can be ob-
tained from the solution of the following convex optimization
problem:5

min
λ̃

gT λ̃ (25)

subject to Bλ̃ ¹ C ,

1T λ̃ = 1 , λ̃ º 0 ,

where g , [G(x̃1) · · ·G(x̃K)]T , with G(x) as in (9),

B ,
[
x̃2

1 · · · x̃2
K

x̃4
1 · · · x̃4

K

]
, C ,

[
A

κA2

]
, (26)

and 1 and 0 represent vectors of all ones and all zeros,
respectively.

It is observed from (25) that the optimal weight assignments
can be obtained as the solution of a convex optimization prob-
lem, specifically, a linearly constrained linear programming
problem. Therefore, the solution can be obtained in polynomial
time [13].

Note that if the set of possible signal values x̃j’s include
the deterministic signal value for the conventional algorithm,
i.e.,

√
A , then the performance of the convex algorithm in

(25) can never be worse than that of the conventional one. In
addition, as the number of possible signal values, K in (24),
increases, the convex algorithm can approximate the exact
optimal solution more closely.

IV. SIMULATION RESULTS

In this section, numerical examples are presented for a
binary communications system with equal priors (π0 = π1 =
0.5) in order to investigate the theoretical results in the
previous section. In the implementation of the PSO algorithm
specified by (22) and (23), M = 50 particles are employed and
10000 iterations are performed. In addition, the parameters are
set to c1 = c2 = 2.05 and χ = 0.72984, and the inertia weight
ω is changed from 1.2 to 0.1 linearly with the iteration number
[12]. Also, a penalty function approach is implemented to
impose the constraints in (21); namely, the objective function
is set to 1 whenever a particle becomes infeasible [24].

First, the noise in (1) is modeled by the PDF in (19),
A = 0.64 and κ = 1.5 are employed for the constraints
in (10), and the decision rule at the receiver is specified by
Γ0 = (−∞, 0] and Γ1 = [0,∞) (that is, a sign detector). As
stated after (20), the conventional signaling is suboptimal in
this case based on Proposition 2. In order to calculate optimal
signals via the PSO and the convex optimization algorithms
in Section III-D, the optimization problems in (21) and (25)
are solved, respectively. For the convex algorithm, the mass
points x̃j in (24) are selected uniformly over the interval
[0, 2] with a step size of ∆, and the results for ∆ = 0.01
and ∆ = 0.1 are considered. Fig. 1 illustrates the optimal
probability distributions obtained from the PSO and the convex

5For K-dimensional vectors x and y, x ¹ y means that the ith element
of x is smaller than or equal to the ith element of y for i = 1, . . . , K.
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Fig. 1. Probability mass functions (PMFs) of the PSO and the convex
optimization algorithms for the noise PDF in (19).

optimization algorithms.6 It is calculated that the conventional
algorithm, which uses a deterministic signal value of 0.8,
has an average error probability of 0.3293, whereas the PSO
and the convex optimization algorithms with ∆ = 0.01 and
∆ = 0.1 have average error probabilities of 0.2909, 0.2911
and 0.2912, respectively. It is noted that the PSO algorithm
achieves the lowest error probability with three mass points
and the convex algorithms approximate the PSO solution with
multiple mass points around those of the PSO solution. In
addition, the calculations indicate that the optimal solutions
achieve both the second and the fourth moment constraints in
accordance with Proposition 4-b .

Next, the optimal signaling problem is studied in the pres-
ence of Gaussian mixture. The Gaussian mixture noise can be
used to model the effects of co-channel interference, impulsive
noise and multiuser interference in communications systems
[5], [7]. In the simulations, the Gaussian mixture noise is
specified by pN (y) =

∑L
l=1 vl ψl(y − yl), where ψl(y) =

e−y2/(2σ2
l )/(

√
2π σl) . In this case, G(x) can be obtained from

(9) as G(x) =
∑L

l=1 vl Q ((x + yl)/σl). In all the scenarios,
the variance parameter for each mass point of the Gaussian
mixture is set to σ2 (i.e., σ2

l = σ2 ∀l), and the average power
constraint A is set to 1. Note that the average power of the
noise can be calculated as E{N2} = σ2 +

∑L
l=1 vl y

2
l . First,

we consider a symmetric Gaussian mixture noise which has its
mass points at ±[0.3 0.455 1.011] with corresponding weights
[0.1 0.317 0.083] in order to illustrate the improvements that
can be obtained via stochastic signaling. In Fig. 2, the average
error probabilities of various algorithms are plotted against
A/σ2 when κ = 1.1 for both the sign detector and the
ML detector. For the sign detector, the decision rule at the
receiver is specified by Γ0 = (−∞, 0] and Γ1 = [0,∞).
In this case, it is observed from Fig. 2 that the conventional
algorithm, which uses a constant signal value of 1, has a large
error floor compared to the PSO and convex optimization

6For the probability distributions obtained from the convex optimization
algorithms, the signal values that have zero probability are not marked in the
figures to clarify the illustrations.
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Fig. 2. Error probability versus A/σ2 for κ = 1.1. A symmetric Gaussian
mixture noise, which has its mass points at ±[0.3 0.455 1.011] with
corresponding weights [0.1 0.317 0.083], is considered.

algorithms at high A/σ2. Also, the average probability of
error of the conventional signaling increases as A/σ2 increases
after a certain value. This seemingly counterintuitive result is
observed because the average probability of error is related to
the area under the two shifted noise PDFs as in (5). Since the
noise has a multi-modal PDF, that area is a non-monotonic
function of A/σ2 and can increase in some cases as A/σ2

increases. It is also observed that the convex optimization
algorithm performs very closely to the PSO algorithm for
densely spaced possible signal values, i.e., for ∆ = 0.01.
For the ML detector, the receiver compares pN (y−√A) and
pN (y +

√
A), and decides symbol 0 if the latter is larger,

and decides 1 otherwise. It is observed for small σ2 values
that the ML receiver performs significantly better than the
other receivers that are based on the sign detector. However,
stochastic signaling causes the sign detector to perform better
than the conventional ML receiver, which uses deterministic
signaling, for medium A/σ2 values. For example, the PSO
and convex optimization algorithms for ∆ = 0.01 have better
performance than the ML receiver for A/σ2 values from 20 dB
to 40 dB. This is mainly due to the fact that the conventional
ML detector uses deterministic signaling whereas the others
employ stochastic signaling. However, when the stochastic
signaling is applied to the ML detector as well, it achieves the
lowest probabilities of error for all A/σ2 values as observed
in Fig. 2 (labeled as “ML (Stochastic)”).

Another observation from Fig. 2 is that improvements over
the conventional algorithm disappear as σ2 increases (i.e.,
for small A/σ2 values). This result can be explained from
Propositions 1 and 2, based on the plots of G(x) at various
A/σ2 values. For example, Fig. 3 illustrates the plots of G(x)
at A/σ2 of 0, 20 and 40 dB for the sign detector. The function
is decreasing and convex for 0 dB for the positive signal
values, which are practically the domain of optimization since
G(x) is a decreasing function and the constraint functions x2
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Fig. 3. G(x) in (9) for the sign detector in Fig. 2 at A/σ2 values of 0, 20
and 40 dB.

and x4 are even functions.7 Therefore, Proposition 1 implies
that the conventional algorithm that uses a constant signal
value of 1 is optimal in this case, as observed in Fig. 2. On the
other hand, at 20 dB and 40 dB, the calculations show that the
condition in Proposition 2 is satisfied; hence, the conventional
algorithm cannot be optimal in that case, and improvements
are observed in Fig. 2 at A/σ2 = 20 dB and A/σ2 = 40 dB.
Another result obtained from the numerical studies for Fig.
2 is that all the solutions achieve at least one of the second
moment or the fourth moment constraints with equality as a
result of Proposition 4.

For the scenario in Fig. 2, the probability distributions of the
optimal signals for the sign detector are shown in Fig. 4 and
Fig. 5 for A/σ2 = 20 dB and A/σ2 = 40 dB, respectively,
where both the PSO and the convex optimization algorithms
are considered. In the first case, the convex optimization
algorithm with ∆ = 0.1 approximates the probability mass
function (PMF) obtained from the PSO algorithm with two
mass points (with nonzero probabilities), whereas the convex
optimization algorithm with ∆ = 0.01 results in 8 mass points.
In the second case, the convex optimization algorithms with
∆ = 0.1 and ∆ = 0.01 result in PMFs with two and three
mass points, respectively, as shown in Fig. 5. Since the convex
optimization algorithm with ∆ = 0.1 does not provide a PMF
that is very close to those of the other algorithms in this case,
the resulting error probability becomes significantly higher for
that algorithm, as observed from Fig. 2 at A/σ2 = 40 dB.

Finally, a symmetric Gaussian mixture noise which has its
mass points at ±[0.19 0.39 0.83 1.03] each with a weight of
1/8 is considered. Such a noise PDF can be considered to
model the effects of co-channel interference [7], or a system
that operates under the effect of multiuser interference [5].
For example, in the presence of multiple users, the noise can
be modeled as N =

∑K
k=2 Akbk + η, where bk ∈ {−1, 1}

with equal probabilities and η is a zero-mean Gaussian thermal
noise component with variance σ2. Then, for K = 4, A2 =

7In other words, negative signal values are never selected for symbol 1
since selecting the absolute value of a negative signal value always gives a
smaller average probability of error without changing the signal moments.
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Fig. 4. PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2 at A/σ2 = 20 dB.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal Value

P
ro

ba
bi

lit
y

 

 
Convex, ∆=0.01
Convex, ∆=0.1
PSO

Fig. 5. PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 2 at A/σ2 = 40 dB.

0.1, A3 = 0.61 and A2 = 0.32, the noise becomes Gaussian
mixture noise with 8 mass points as specified at the beginning
of the paragraph. In Fig. 6, the average error probabilities of
various algorithms are plotted against the A/σ2 for κ = 1.5 .
Also the plots of G(x) at A/σ2 = 0, 25, 40 dB are presented in
Fig. 7, and the probability distributions at A/σ2 = 25 dB and
A/σ2 = 40 dB are illustrated in Fig. 8 and Fig. 9, respectively,
for the sign detector. Although similar observations as in the
previous scenario can be made, a number of differences are
also noticed. The improvements achieved via the stochastic
signaling over the conventional (deterministic) signaling are
less than those observed in Fig. 2. In addition, since κ = 1.5
in this scenario, only the second moment constraint is achieved
with equality in all the solutions.

In order to investigate the optimal stochastic signaling for
the ML detectors studied in Fig. 2 and Fig. 6, Table I presents
the PDFs of the optimal stochastic signals in those scenarios,
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Fig. 7. G(x) in (9) for the sign detector in Fig. 6 at A/σ2 values of 0, 25
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TABLE I
OPTIMAL STOCHASTIC SIGNALS FOR THE ML DETECTORS IN FIG. 2 (TOP

BLOCK) AND FIG. 6 (BOTTOM BLOCK).

A/σ2 (dB) λ1 λ2 λ3 x1 x2 x3

10 1 0 0 1 N/A N/A
15 1 0 0 1 N/A N/A
20 0.1181 0.8819 0 1.4211 0.9151 N/A
25 0.1264 0.8736 0 1.4494 0.8876 N/A

27.5 0.1317 0.8683 0 1.4465 0.8811 N/A
10 1 0 0 1 N/A N/A
15 1 0 0 1 N/A N/A
20 0.1272 0.8728 0 0.5073 1.0527 N/A
25 0.9791 0.0209 0 0.9950 1.2116 N/A
30 0.9415 0.0585 0 0.9859 1.2047 N/A
35 0.9236 0.0764 0 0.9823 1.1936 N/A
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Fig. 8. PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 6 at A/σ2 = 25 dB.
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Fig. 9. PMFs of the PSO and the convex optimization algorithms for the
sign detector in Fig. 6 at A/σ2 = 40 dB.

where the optimal PDFs are expressed in the form of pS(x) =
λ1 δ(x − x1) + λ2 δ(x − x2) + λ3 δ(x − x3). It is observed
from the table that the conventional deterministic signaling
is optimal at low A/σ2 values, which can also be verified
from Fig. 2 and Fig. 6 since there is no improvement via the
stochastic signaling over the conventional one for those A/σ2

values. However, as A/σ2 increases, the optimal signaling
is achieved via randomization between two signal values. In
those cases, significant improvements over the conventional
signaling can be achieved as observed from Fig. 2 and Fig. 6.
Finally, it is noted from the table that the optimal solutions
result in randomization between at most two different signal
levels in this example. This is in compliance with Proposition 3
since the proposition does not guarantee the existence of three
different signal levels in general but states that an optimal
signal can be represented by a randomization of at most three
different signal levels.



V. EXTENSIONS TO M -ARY PULSE AMPLITUDE
MODULATION (PAM)

The results in the study can be extended to M -ary PAM
communications systems for M > 2 as well. To that aim,
consider a generic detector which chooses the ith symbol if
the observation is in decision region Γi for i = 0, 1, . . . , M−1.
In other words, the decision rule is defined as

φ(y) = i , if y ∈ Γi , i = 0, 1, . . . , M − 1 . (27)

Then, the average probability of error for an M -ary system
can be expressed as

Pavg =
M−1∑

i=0

πi (1− Pi(Γi)) , (28)

where πi denotes the prior probability of the ith symbol.
If signals S0, S1, . . . , SM−1 are modeled as stochastic sig-

nals with PDFs pS0 , pS1 , . . . , pSM−1 , respectively, the average
probability of error in (28) can be expressed, similarly to (6),
as

Pstoc
avg =

M−1∑

i=0

πi

(
1−

∫ ∞

−∞
pSi(t)

∫

Γi

pN (y − t) dy dt

)
.

(29)

Then, the optimal stochastic signaling problem can be stated
as

min
pS0 ,...,pSM−1

M−1∑

i=0

πi

(
1−

∫ ∞

−∞
pSi(t)

∫

Γi

pN (y − t) dy dt

)

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 ,

i = 0, 1, . . . ,M − 1 . (30)

Due to the structure of the objective function in (30) and the
individual constraints on each signal, M separate optimization
problems, similar to (8), can be obtained. Namely, for i =
0, 1, . . . , M − 1,

min
pSi

1−
∫ ∞

−∞
pSi(t)

∫

Γi

pN (y − t) dy dt

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 . (31)

In addition, if auxiliary functions Gi(x) are defined as
Gi(x) , 1 − ∫

Γi
pN (y − x) dy for i = 0, 1, . . . , M − 1, the

optimization problem in (31) can be expressed as

min
pSi

E{Gi(Si)}

subject to E{|Si|2} ≤ A , E{|Si|4} ≤ κA2 (32)

for i = 0, 1, . . . , M − 1. Since (32) is in the same form as
(10), the results in Section III can be extended to M -ary PAM
systems, as well.

VI. CONCLUDING REMARKS AND EXTENSIONS

In this paper, the stochastic signaling problem under second
and fourth moment constraints has been studied for binary
communications systems. It has been shown that, under cer-
tain monotonicity and convexity conditions, the conventional
signaling, which employs deterministic signals at the average
power limit, is optimal. On the other hand, in some cases, a
smaller average probability of error can achieved by using a

signal that is obtained by a randomization of multiple signal
values. In addition, it has been shown that an optimal signal
can be represented by a discrete random variable with at most
three mass points, which simplifies the optimization problem
for the optimal signal design considerably. Furthermore, it has
been observed that the optimal signals achieve at least one of
the second and fourth moment constraints in most practical
scenarios. Finally, two techniques based on PSO and convex
relaxation have been proposed to obtain the optimal signals,
and simulation results have been presented.

In addition, the results in this paper can be extended to
a generic binary hypothesis-testing problem in the Bayesian
framework [2], [14].8 In that case, the average probability of
error expression in (3) is generalized to the Bayes risk, defined
as π0[C00P0(Γ0)+C10P0(Γ1)]+π1[C01P1(Γ0)+C11P1(Γ1)],
where Cij ≥ 0 represents the cost of deciding the ith
hypothesis when the jth one is true. Then, all the results in
the paper are still valid when function G in (9) is replaced
by G(x) = C01

∫
Γ0

pN (y − x)dy + C11

∫
Γ1

pN (y − x)dy .
Moreover, it can be shown that the results in this paper are
valid in the minimax and Neyman-Pearson frameworks [2] due
to the decoupling of the optimization problem discussed in
Section III.

APPENDIX

A. Derivation of (8)
The optimal stochastic signaling problem in (7) can be

expressed from (6) as

min
pS0 ,pS1

π0

∫ ∞

−∞
pS0(t)

∫

Γ1

pN (y − t) dy dt

+ π1

∫ ∞

−∞
pS1(t)

∫

Γ0

pN (y − t) dy dt (33)

subject to E{|S0|2} ≤ A , E{|S0|4} ≤ κA2 (34)
E{|S1|2} ≤ A , E{|S1|4} ≤ κA2 (35)

For a given decision rule (detector) and a noise PDF, changing
pS0 has no effect on the second term in (33) and the constraints
in (35). Similarly, changing pS1 has no effect on the first term
in (33) and the constraints in (34). Therefore, the problem
of minimizing the expression in (33) over pS0 and pS1 under
the constraints in (34) and (35) is equivalent to minimizing
the first term in (33) over pS0 under the constraints in (34)
and minimizing the second term in (33) over pS1 under the
constraints in (35). Therefore, the signal design problems for
S0 and S1 can be separated as in (8). ¤

B. Proof of Proposition 3
In order to prove Proposition 3, we take an approach similar

to those in [11] and [29]. First, the following set is defined:

U =
{
(u1, u2, u3) : u1 = G(x), u2 = x2, u3 = x4,

for |x| ≤ γ
}

. (36)

Since G(x) is continuous, the mapping from [−γ, γ] to R3

defined by F (x) = (G(x), x2, x4) is continuous. Since the
continuous image of a compact set is compact, U is a compact
set [30].

8Hence, the results in the paper can be applied to other systems than
communications, as well.



Let V represent the convex hull of U . Since U is compact,
the convex hull V of U is closed [30]. Also, the dimension
of V should be smaller than or equal to 3, since V ⊆ R3.
In addition, let W be the set of all possible conditional
error probability P1(Γ0), second moment, and fourth moment
triples; i.e.,

W =

{
(w1, w2, w3) : w1 =

∫ ∞

−∞
pS(x)G(x)dx,

w2 =
∫ ∞

−∞
pS(x)x2dx, w3 =

∫ ∞

−∞
pS(x)x4dx,

∀ pS(x), |x| ≤ γ

}
, (37)

where pS(x) is the signal PDF.
Similar to [29], V ⊆ W can be proven as follows. Since V

is the convex hull of U , each element of V can be expressed
as v =

∑L
i=1 λi

(
G(xi), x2

i , x
4
i

)
, where

∑L
i=1 λi = 1, and

λi ≥ 0 ∀i. Considering set W , it has an element that is equal
to v for pS(x) =

∑L
i=1 λi δ(x− xi). Hence, each element of

V also exists in W . On the other hand, since for any vector
random variable Θ that takes values in set Ω, its expected
value E{Θ} is in the convex hull of Ω [11], it is concluded
from (36) and (37) that W is in the convex hull V of U ; that
is, V ⊇ W [31].

Since W ⊇ V and V ⊇ W , it is concluded that W = V .
Therefore, Carathéodory’s theorem [32], [33] implies that any
point in V (hence, in W ) can be expressed as the convex
combination of at most 4 points in U . Since an optimal
PDF should minimize the average probability of error, it
corresponds to the boundary of V . Since V is a closed set
as discussed at the beginning of the proof, it contains its
own boundary. Since any point at the boundary of V can be
expressed as the convex combination of at most 3 elements
in U [32], an optimal PDF can be represented by a discrete
random variable with 3 mass points.

C. Proof of Proposition 4

a) Let A2 < x4
min < κA2 and pS1(x) represent an optimal

signal PDF with w1 , E{G(S)}, w2 , E{S2} and w3 ,
E{S4}, where w2 < A and w3 ≤ κA2. In the following,
it is shown that such a signal cannot be optimal (hence, a
contradiction), and an optimal signal needs to satisfy E{S2} =
A. To that aim, define another signal PDF as follows:

pS2(x) =
A− w2

x2
min − w2

δ(x− xmin) +
x2

min −A

x2
min − w2

pS1(x) .

(38)

It can be shown for pS2(x) that

E{G(S)} =
A− w2

x2
min − w2

G(xmin) +
x2

min −A

x2
min − w2

w1 < w1 ,

(39)

E{S2} =
A− w2

x2
min − w2

x2
min +

x2
min −A

x2
min − w2

w2 = A , (40)

E{S4} =
A− w2

x2
min − w2

x4
min +

x2
min −A

x2
min − w2

w3 < κA2 .

(41)

The inequality in (39) is obtained by observing that G(xmin)
is the unique minimum value of G(x) and that no signals
can achieve E{G(S)} = G(xmin) since xmin >

√
A. The

inequality in (41) is achieved since x4
min < κA2 and w3 ≤

κA2. From (39)-(41), it is concluded that pS2(x) defines a
better signal than pS1(x) does. In other words, the optimal
signal cannot have a smaller average power than A; that is,
E{S2} = A must be satisfied by the optimal signal.

b) Now assume x4
min > κA2 and pS1(x) represents an

optimal signal PDF with w1 , E{G(S)}, w2 , E{S2} and
w3 , E{S4}, where w2 < A and w3 < κA2. In the following,
it is proven that w2 < A and w3 < κA2 cannot be satisfied at
the same time for an optimal signal.

Consider pS2(x) in (38) and pS3(x) below:

pS3(x) =
κA2 − w3

x4
min − w3

δ(x− xmin) +
x4

min − κA2

x4
min − w3

pS1(x).

(42)

For both pS2(x) and pS3(x), it can be shown that E{G(S)} <
w1 since G(xmin) < w1. For pS2(x), the second and fourth
moment constraints can be expressed as

E{S2} =
A− w2

x2
min − w2

x2
min +

x2
min −A

x2
min − w2

w2 = A , (43)

E{S4} =
A− w2

x2
min − w2

x4
min +

x2
min −A

x2
min − w2

w3 , β1 . (44)

On the other hand, for pS3(x), the constraints are given by

E{S2} =
κA2 − w3

x4
min − w3

x2
min +

x4
min − κA2

x4
min − w3

w2 , β2 , (45)

E{S4} =
κA2 − w3

x4
min − w3

x4
min +

x4
min − κA2

x4
min − w3

w3 = κA2 . (46)

Now it is claimed that at least one of the conditions β1 ≤
κA2 or β2 ≤ A must be true. In other words, it is not possible
to have β1 > κA2 and β2 > A at the same time. To prove
this, the condition for β1 > κA2 is considered first. Since
x4

min > κA2 and w3 < κA2, β1 > κA2 can be expressed
from (44) as

x4
min − κA2

κA2 − w3
>

x2
min −A

A− w2
. (47)

Next, the β2 > A condition is considered. Since x2
min > A

and w2 < A, that condition can be expressed, from (45), as

x4
min − κA2

κA2 − w3
<

x2
min −A

A− w2
. (48)

Since (47) and (48) cannot be true at the same time, at least
one of the conditions β1 ≤ κA2 or β2 ≤ A is true. This
implies that at least one of pS2(x) or pS3(x) provides a signal
that has a smaller average probability of error than that for
pS1(x). In addition, such a signal satisfies at least one of the
constraints with equality as can be observed from (43) and
(46). Therefore, an optimal signal cannot be in the form of
pS1(x), which satisfies both inequalities as E{S2} < A and
E{S4} < κA2.
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