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Abstract— We study the problem of determining the optimum
power allocation policy for an average power constrained jammer
operating over an arbitrary additive noise channel, where the aim
is to minimize the detection probability of an instantaneously
and fully adaptive receiver employing the Neyman-Pearson (NP)
criterion. We show that the optimum jamming performance
can be achieved via power randomization between at most two
different power levels. We also provide sufficient conditions
for the improvability and nonimprovability of the jamming
performance via power randomization in comparison to a fixed
power jamming scheme. Numerical examples are presented to
illustrate theoretical results.

Index Terms– Jammer, randomization, detection, false-alarm,
Neyman-Pearson, radar.

I. INTRODUCTION

Recently, signal and power randomization approaches have
received considerable interest in the literature [1]-[5]. Several
papers have addressed different aspects of the jammer power
randomization/allocation problem. The convexity properties
of the error probability with respect to jammer power is
investigated in [4] under the antipodal signaling scheme by
restricting the analysis to the class of symmetric unimodal
jammer noise probability density functions (PDFs) and to
maximum likelihood (ML) receivers. It is shown that, when
the error probability as a function of the jammer power has
a single point of inflection, there exists a critical value γc for
the average jammer power below which the optimum strategy
reduces to on-off time-sharing with γc as its on-power. On
the other hand, jamming at the maximum available power
limit is shown to be more advantageous beyond that critical
value. This discussion is extended from binary modulations
to arbitrary signal constellations in [5] by concentrating on
the ML detection case in an additive white Gaussian noise
(AWGN) channel. It is stated that the symbol error rate
(SER) performance of the target receiver can be degraded via
appropriate power/time sharing under a fixed average jammer
noise power. Also, the authors show that two power levels
are sufficient to achieve optimum performance under moderate
and high signal-to-noise ratio (SNR) conditions while jamming
at the average power limit is the best strategy at low SNRs
due to plenty of jamming power.

In [6], the problem of optimal noise jamming of radar
signals is addressed by devising a game between a smart
jammer operating under a power constraint and a decision
maker (DM) that is fully aware of jammer’s actions. It is
shown that the optimal PDF for the additive narrowband jam-
ming waveform approaches Gaussian as the sample number
increases when the DM employs the Neyman-Pearson (NP)
criterion to detect the slowly fading narrowband target echo.
A similar game is formulated in [7] where one party tries to
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minimize the SNR at the output of the radar receiver through
the appropriate design of the spectral density of the jamming
noise while the other aims to maximize it by selecting a filter
function. In [8], the intentional use of jamming transmission
is discussed as a remedy to ensure the physical layer security
against eavesdropper nodes in wireless networks with power
constraints. Communications in the presence of jamming is
considered in [9] from an information theoretic point of view.
It is shown that optimum minimax strategies result in Gaussian
input and Gaussian jamming when both coder and jammer are
subject to average power constraints. In [10], a game-theoretic
framework is established to discuss the effects of jamming on
the channel capacity by modeling the communicator and the
jammer as the players of a two-person zero-sum game subject
to certain constraints.

Although various aspects of the jamming problem have
been investigated in [6]-[10] and the optimum jammer power
allocation problem has been studied for Gaussian PDFs and
ML receivers in [4], [5], no studies have considered the case
of arbitrary jammer and background noise PDFs and generic
decision rules at the receivers. In this letter, we study the
problem of determining the optimum power allocation policy
for an average power constrained jammer operating over an
arbitrary additive noise channel, where the aim is to mini-
mize the detection probability of an instantaneously and fully
adaptive receiver employing generic decision rules in the NP
framework. In addition, both the jammer and the receiver are
assumed to operate ideally in the sense that the receiver is able
to update its decision rule instantaneously for any observed
jammer and background noise statistics, and likewise the
jammer is fully informed of the signal and noise distributions
at the receiver. Therefore, the proposed study can also be
considered to provide theoretical limits on the performance of
a jammer against a smart receiver. Under the stated conditions,
we show that the optimum power allocation policy for an
average power constrained jammer involves randomization
between at most two different power levels. We also provide
conditions for the improvability and nonimprovability of the
jamming performance via power randomization with respect
to a fixed power jamming scheme.

II. ANALYSIS OF OPTIMUM POWER ALLOCATION FOR
AVERAGE POWER CONSTRAINED JAMMERS

Consider a receiver that aims to detect a target signal in the
presence of jamming. In other words, the receiver performs a
decision between two hypotheses corresponding to the absence
and presence of the target signal. The observation vector at the
receiver is expressed as

H0 : y = γ n+ ϵ , H1 : y = s+ γ n+ ϵ , (1)

where H0 and H1 denote the null and alternative hypotheses,
respectively, y ∈ RK is the observation vector, target signal
s is modeled as a random vector with PDF ps(·), ϵ is
the background noise with PDF pϵ(·), and n denotes the
normalized noise of the jammer with PDF pn(·), which is



known by the receiver. The power of the jammer is allocated
over time through the scalar variable γ with the PDF pγ(·).
Considering a smart receiver, it is assumed that the value of
γ is learned instantly by the receiver [6]. For convenience,
we assume that trace{Cov(n)} = 1, and the average power
constraint on the jammer is represented by

Eγ{γ2} ≤ β , (2)

where β denotes the average power limit. In other words, the
jammer can time/power share subject to the constraint in (2).

The receiver operates in the NP framework and achieves a
certain detection probability under the false alarm constraint α.
The decision rule at the receiver is modeled as a generic one,
denoted by ϕγ(y), which corresponds to the probability of se-
lecting H1. The aim of the jammer is to minimize the average
detection probability of the receiver under the average power
constraint on the jammer noise by a suitable allocation of the
jammer power as determined by the probability distribution
of γ. Since the receiver is modeled as a smart one, it knows
the instantaneous value of γ and adapts itself according to the
allocation policy of the jammer immediately. This is the main
reason why the decision rule is modeled as a function of γ, that
is, ϕγ(·). In other words, for each value of γ, the receiver can
design a corresponding decision rule. The formulation is kept
quite generic by assuming that the designed decision rules can
be optimal or suboptimal as long as the false alarm constraint
is satisfied at the receiver, that is, each decision rule sets the
probability of false alarm at the receiver to α.

The proposed formulation in this study provides guide-
lines for system design by presenting theoretical limits on
the performance of jamming. Specifically, the best jamming
performance is calculated against a smart receiver considering
generic decision rules and noise PDFs. On the one hand, the
smart receiver assumption results in the worst-case scenario
for the jammer since the receiver knows the PDF of jammer
noise n, can instantly learn the policy of the jammer, and
adapt itself accordingly. In the absence of this assumption,
more efficient jamming can be performed. On the other hand,
if the jammer does not employ the optimal jamming strategy
developed in this study due to some practical considerations,
then inferior jamming performance will be observed. All in
all, the proposed study provides both lower and upper bounds
on the jamming performance.

In order to provide a mathematical formulation of the
problem, the probability of detection is determined first:

PD(γ) =

∫
RK

ϕγ(y)p1(y) dy , (3)

where p1(y) is the PDF of the observation under the alternative
hypothesis. Assuming that n, ϵ and s are independent, p1(y)
can be expressed as

p1(y) =

∫
RK

∫
RK

1

|γ|
pn

(
y − s− e

γ

)
pϵ(e)ps(s) de ds .

(4)

Thus, PD(γ) in (3) becomes

PD(γ) =

∫
RK

ϕγ(y)

∫
RK

∫
RK

1

|γ|

· pn
(
y − s− e

γ

)
pϵ(e)ps(s) de ds dy . (5)

The average probability of detection can be calculated from
the expectation of PD(γ) as follows:

Pavg
D =

∫ ∞

−∞
pγ(γ)PD(γ) dγ = Eγ{PD(γ)} , (6)

where PD(γ) is as in (5).
The aim is to find the optimum power allocation policy, i.e.,

pγ(·), for the jammer which minimizes the average detection
probability of the receiver under the average power constraint
on the jammer. Based on (2) and (6), the problem can be
formulated as follows:

minimize
pγ(·)

Eγ{PD(γ)} subject to Eγ{γ2} ≤ β (7)

In the literature, optimization problems that are in similar
forms have been investigated in various studies such as [1]-[3].
A similar approach is used to obtain the following proposition:

Proposition 1: Assume that γ belongs to a finite closed set
and PD(γ) in (5) is a continuous function. Then, the PDF for
an optimum power allocation policy can be expressed as

pγ(γ) = λ δ(γ − γ1) + (1− λ) δ(γ − γ2) , λ ∈ [0, 1] (8)

Proof: A similar approach to those in [1], [2] can be em-
ployed in this proof. Define sets U and W as U = {(u1, u2) :
u1 = γ2 , u2 = PD(γ) ,∀ γ ∈ [γmin, γmax]} and W =
{(w1, w2) : w1 = Eγ{γ2} , w2 = Eγ{PD(γ)} ,∀ pγ(·)},
where γmin and γmax denote the minimum and maximum
possible values of γ, respectively. As in [1], [2], it can be
shown that the convex hull of U is equal to W . Then, from
Carathéodory’s theorem [11], it is deduced that any point in
W can be expressed as a convex combination of at most three
points in U . In addition, since an optimal PDF should achieve
the minimum value, the solution should stay on the boundary
of W , resulting in a convex combination of at most two points
in U . (Due to the assumptions in the proposition, W is a closed
set; hence, it contains its boundary [1].) Therefore, an optimal
solution can be expressed as given in (8). �

Based on Proposition 1, the optimal jamming policy can be
obtained from a simplified version of (7) as follows:

minimize
λ,γ1,γ2

λPD(γ1) + (1− λ)PD(γ2)

subject to λ γ21 + (1− λ)γ22 ≤ β , λ ∈ [0, 1] . (9)

In this case, instead of searching over all possible PDFs, a
search over only three variables is sufficient to obtain the
optimal solution.

In order to evaluate the jamming performance of the opti-
mum power allocation algorithm specified by (9), comparisons
can be performed against the deterministic jamming approach
in which the jammer transmits at the maximum power limit
all the time; that is, pγ(γ) = δ(γ−

√
β ). Then it becomes im-

portant to specify, without solving the optimization problem in
(9), whether power randomization can provide improvements
over deterministic jamming. For that purpose, a sufficient
condition for improvability, similar to those in [1], [2], is
presented first.

Proposition 2: Assume γ is a nonnegative variable1 and
define function F(a) as F(a) , PD(

√
a ) . If F(a) is strictly

concave at a = β, meaning that F
′′
(β) < 0 when F(a) is

second-order continuously differentiable around β, then power

1Similar arguments can also be provided for negative values of γ.



randomization improves the jamming performance over the
deterministic approach.

Proof: Under the conditions in the proposition, the con-
cavity of F implies that there exists infinitesimally small ν
such that 0.5F(β + ν) + 0.5F(β − ν) < F(β). Consider a
power randomization approach specified by pγ(γ) = 0.5 δ(γ−√
β + ν ) + 0.5 δ(γ −

√
β − ν ). Then, the average detec-

tion probability becomes Eγ{PD(γ)} = 0.5PD(
√
β + ν ) +

0.5PD(
√
β − ν ) = 0.5F(β + ν ) + 0.5F(β − ν ) < F(β) =

PD(
√
β). In other words, via power randomization, a lower

average detection probability than that of the deterministic
approach, PD(

√
β), is achieved. In addition, the power ran-

domization approach satisfies the average power constraint
since Eγ{γ2} = 0.5

(√
β + ν

)2
+ 0.5

(√
β − ν

)2
= β.

Hence, a lower detection probability (i.e., improved jamming
performance) is achieved via power randomization under the
average power constraint. Therefore, the conditions in the
proposition are sufficient conditions under which the jamming
performance of the deterministic approach can be improved.
�

Next, a necessary and sufficient condition for nonimprov-
ability is obtained.

Proposition 3: Let γ take values in [0, γmax], where γmax

denotes the maximum possible value of γ. Then power ran-
domization cannot improve jamming performance over the
deterministic approach if and only if there exist θ ≤ 0 such
that

PD(
√
a) ≥ (a− β) θ + PD(

√
β) , ∀a ∈ [0, γ2max] (10)

Proof: In order to prove the sufficiency of the condition
in the proposition for nonimprovability, consider a generic
power randomization policy specified by pγ(γ) = λ δ(γ −
γ1) + (1− λ) δ(γ − γ2). Then, the aim is to prove that, under
the conditions in the proposition, the detection probability
in the deterministic case, PD(

√
β), cannot be reduced via

power randomization; that is, defining a1 , γ21 and a2 , γ22 ,
λPD(

√
a1) + (1 − λ)PD(

√
a2) ≥ PD(

√
β) for all a1, a2 ∈

[0, γ2max] that satisfy λa1 + (1 − λ)a2 ≤ β. From (10), the
following inequality can be obtained:

λPD(
√
a1) + (1− λ)PD(

√
a2) ≥

PD(
√
β)− θ

(
β − (λa1 + (1− λ)a2)

)
(11)

for all a1, a2 ∈ [0, γ2max]. Since θ ≤ 0 and λa1 +(1−λ)a2 ≤
β due to the average power constraint, the expression in the
second line of (11) is always larger than or equal to PD(

√
β).

Hence, λPD(
√
a1) + (1− λ)PD(

√
a2) ≥ PD(

√
β).

The necessity part of the proof is not presented due to the
space limitation. �

Remark 1: If PD(
√
a) is first-order continuously differ-

entiable, the only possibility for θ in Proposition 3 is the
slope of the tangent line to PD(

√
a) at a = β, that is, θ =

P
′

D(
√
β)/(2

√
β). It is also noted that P

′

D(
√
β) ≤ 0 is a neces-

sary condition for nonimprovability because if P
′

D(
√
β) > 0,

the jamming performance of the deterministic approach can
simply be improved by employing pγ(γ) = δ(γ −

√
β + ζ)

where ζ is an infinitesimally small positive number.

III. NUMERICAL RESULTS AND CONCLUSIONS

In this section, a numerical example is presented for scalar
observations modeled as in (1). In the example, s is assumed

to be a positive constant, and jammer’s standard noise n and
the background noise ϵ are modeled as symmetric Gaussian
mixture noise.2 Specifically, the PDFs of n and ϵ are given by

pϵ(ϵ) =
M∑
i=1

ωi ψi(ϵ− µi), pn(n) =
M̃∑
i=1

ω̃i ψ̃i(n− µ̃i), (12)

where M and M̃ denote the number of Gaussian components
in the mixture noise PDFs, µi and µ̃i are the mean values of
the Gaussian components,

∑M
i=1 ωi =

∑M
i=1 ω̃i = 1, ωi ≥

0, ω̃i ≥ 0, ψi(y) = (1/
√
2π σi) exp{−y2/(2σ2

i )} for i =
1, . . . ,M , and ψ̃i(y) = (1/

√
2π σ̃i) exp{−y2/(2σ̃2

i )} for i =
1, . . . , M̃ , with σi and σ̃i denoting the standard deviations of
the Gaussian components in the mixture noise. The parameters
are assumed to satisfy the necessary constraints so that the
PDFs are symmetric around the origin.

A single threshold decision rule is employed at the receiver
which sets its threshold value accordingly to maintain a
constant false alarm rate of α as γ varies. Specifically, the
decision rule at the receiver is given by

ϕγ(y) =

{
1 , y > ηγ
0 , y ≤ ηγ

, (13)

where ηγ is the threshold value that is selected to equate the
probability of false alarm to α. Based on (1), (12), and (13),
the probability of false alarm expression can be obtained and
threshold ηγ can be calculated as follows:

PF(γ) =

M∑
i=1

M̃∑
j=1

ωi ω̃j Q

ηγ − µi − γ µ̃j√
σ2
i + γ2σ̃2

j

 = α , (14)

where Q(x) = (1/
√
2π )

∫∞
x

e−t2/2dt denotes the Q-function.
Similarly, the resulting probability of detection is expressed as

PD(γ) =
M∑
i=1

M̃∑
j=1

ωi ω̃j Q

ηγ − s− µi − γ µ̃j√
σ2
i + γ2σ̃2

j

 , (15)

where ηγ is substituted from (14).
In the simulations, the PDF of the background noise ϵ in

(12) is specified by M = 2, ω1 = ω2 = 0.5, µ1 = 2,
µ2 = −2, and σ1 = σ2 = 0.28. For the PDF of jammer’s
standard noise n, two different scenarios are considered: The
first scenario is the Gaussian jammer case in which n is
modeled as a zero mean Gaussian random variable with unit
variance (i.e., M̃ = 1, ω̃1 = 1, µ̃1 = 0, and σ̃1 = 1 in
(12)). The second scenario is the non-Gaussian jammer case
in which the PDF of n is modeled as in (12) with M̃ = 2,
ω̃1 = 0.1, ω̃2 = 0.9, µ̃1 = µ̃2 = 0, σ̃1 = 3, and σ̃2 = 1/3. In
this scenario, jammer’s standard noise is again a zero mean
and unit variance random variable, but it has heavier tails
than a Gaussian random variable [12]. In addition, s = 5 and
α = 0.001 are used.

In Fig. 1, the detection probabilities are plotted versus
the average power constraint level β for both the Gaussian
and non-Gaussian jammer scenarios. The proposed optimum
power allocation strategy obtained from (9) (“Optimal Ran-
domization”), the deterministic strategy that sets γ =

√
β (“No

2Due to symmetry, only nonnegative values of γ are considered in the
simulations.



0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

D
et

ec
tio

n 
P

ro
ba

bi
lit

y

 

 
No Randomization
On−Off Jammer
Optimal Randomization

Gaussian Jammer

Non−Gaussian Jammer

Fig. 1. Detection probability vs. average power constraint level β for optimal
power randomization, on-off jammer, and no randomization approaches.

Randomization”), and the on-off jamming strategy (“On-Off
Jammer”) are considered. For the on-off jamming strategy, the
jammer is on with probability λon transmitting at a power
level of γon, and it is off with probability (1 − λon) [4].
In addition, λon = β/γ2on so that the power constraint is
satisfied with equality. The optimal values of λon and γon
that minimize the detection probability are calculated based
on a one-dimensional search due to the relation between
λon and γon. From Fig. 1, it is observed that the proposed
optimum power allocation strategy results in the most effec-
tive jamming, leading to lower detection probabilities at the
receiver, for intermediate values of β. However, for large and
small values of β, the optimum power allocation does not
provide (significant) improvements over the other approaches.
In addition, the on-off jamming strategy can provide improve-
ments over the no randomization case in the non-Gaussian
jammer scenario. However, it is not optimal in general since
it cannot always achieve the detection probabilities of the
optimum power allocation strategy. It is also observed that
more efficient jamming is performed when the normalized
noise of the jammer is non-Gaussian.

To investigate the optimum power allocation and the on-off
jamming strategies for the scenario in Fig. 1, Table I presents
the PDFs of the power allocation parameter γ for various β
values in the non-Gaussian jammer scenario. It is observed that
the optimum power allocation can result in a randomization
between two nonzero power levels, which is different from the
on-off jamming approach [4].

Finally, the improvability and the nonimprovability condi-
tions in Proposition 2 and 3 are investigated for the non-
Gaussian jammer scenario in Fig. 1. Fig. 2 illustrates F

′′
(β),

which is defined as the second derivative of PD(
√
a) at

a = β. As stated in Proposition 2, jamming performance
is improved via the optimum power allocation approach
whenever F

′′
(β) is negative. It is observed from Fig. 1 and

Fig. 2 that Proposition 2 presents sufficient but not necessary
conditions for improvability since F

′′
(β) in Fig. 2 is negative

for β ∈ [0.133, 0.268] and β ∈ [0.346, 0.633] whereas the
improvements are actually achieved for β < 0.03 and β ∈
[0.06, 0.8], as can be deduced from a detailed analysis of
Fig. 1. When the nonimprovability condition in Proposition
3 is evaluated for various β values, it is calculated that

TABLE I
FOR THE NON-GAUSSIAN JAMMER SCENARIO IN FIG. 1, PDFS FOR

OPTIMAL RANDOMIZATION AND ON-OFF JAMMER SPECIFIED BY

pγ(γ) = λ δ(γ − γ1) + (1− λ) δ(γ − γ2) AND

pγ(γ) = λon δ(γ − γon) + (1− λon) δ(γ), RESPECTIVELY.

β λ γ1 γ2 λon γon
0.25 0.748 0.255 0.894 1 0.5
0.5 0.407 0.255 0.894 0.665 0.867
0.75 0.067 0.255 0.894 1 0.866
1 1 1 N/A 1 1
1.5 1 1.225 N/A 1 1.225
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Fig. 2. F
′′
(β) for the non-Gaussian jammer scenario in Fig. 1 (see

Proposition 2).

the inequality in (10) is satisfied for β ∈ [0.03, 0.06) and
β > 0.8 ( θ = P

′

D(
√
β)/(2

√
β) is used as stated in Remark 1).

Therefore, in those cases, power randomization cannot provide
improvements in jamming performance compared to the no
randomization case, which can also be verified from Fig. 1.
It is also observed that Proposition 3 provides necessary and
sufficient conditions for (non)improvability.
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