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Abstract

In this study, the aim is to perform optimal stochastic parameter design in order to minimize the cost of a

given estimator. Optimal probability distributions of signals corresponding to different parameters are obtained in

the presence and absence of an average power constraint. It is shown that the optimal parameter design results in

either a deterministic signal or a randomization between two different signal levels. In addition, sufficient conditions

are obtained to specify the cases in which improvements over the deterministic parameter design can or cannot be

achieved via the stochastic parameter design. Numerical examples are presented in order to provide illustrations of

theoretical results.

Index Terms– SSP-PARE: Parameter estimation, Bayes risk, stochastic parameter design, randomization.

I. INTRODUCTION

In parametric estimation problems, an unknown parameter is estimated based on observations, the probability

distribution of which is known as a function of the unknown parameter [1], [2]. In the presence of prior information

about the parameter, Bayesian estimators, such as the minimum mean-squared error (MMSE) estimator and the

minimum mean-absolute error (MMAE) estimator, are commonly employed [1]. On the other hand, in the absence

of prior information about the parameter, the minimum variance unbiased estimator (MVUE), if it exists, or

the maximum likelihood estimator (MLE) can be used [2]. In these conventional formulations of the parameter

estimation problem, the aim is to obtain an optimal estimator that minimizes a certain cost function, such as the

mean-squared error. In this study, we consider a different formulation in which the aim is to minimize the cost of a

given estimator by performing stochastic parameter design under certain constraints. Motivations for this seemingly

counterintuitive formulation will be provided in the next section.

Recently, various studies have employed signal randomization in order to improve the performance of detection

and estimation systems (e.g., [3]-[7]). For example, an additive noise component that is randomized between two
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signal values can increase the detection probability of certain detectors under a false alarm constraint [3], [4]. Also,

for power constrained communications systems, transmitting stochastic signals that are randomized among at most

three different signal values can provide reductions in the average probability of error compared to the conventional

case in which deterministic signal values are transmitted for each symbol [5]. In [6], it is shown that performance

of some suboptimal estimators can be enhanced via additive “noise” that is injected into the observations before the

estimation process. It is observed that this noise component can be a constant signal or a randomization between

two signal values.

Motivated by the investigation of signal randomization in recent works [3]-[7], we consider the concept of

stochastic parameter design for estimation problems in this study. Specifically, we try to answer the following

question: If a fixed estimator is used at the receiver, what should be the optimal distribution of the signal sent

from the transmitter for each possible parameter value? Referring to Fig. 1, the aim is to design the optimal

stochastic signal sθ for each θ in order to minimize the cost (specifically, the Bayes risk) of a given estimator,

which performs estimation based on the noise corrupted version of sθ, that is, sθ +n. Since there can exist power

limits for transmitted signals in practice, this design problem needs to be solved under certain constraints.

As a specific example, consider a scenario in which the receiver employs the sample mean estimator to estimate

a parameter θ based on a number of independent and identically distributed (i.i.d.) observations. The aim is to find

the optimal random variable for each parameter value at the transmitter in order to minimize the Bayes risk of

the sample mean estimator at the receiver. For instance, we would like to determine if sending i.i.d. Gaussian or

Laplacian random variables with mean θ and variance 1 results in a lower Bayes risk. Or, more generally, among

all continuous and discrete random variables, we would like to determine the one that minimizes the Bayes risk of

the sample mean estimator.

In this study, after providing some motivations (Section II), we formulate this optimal stochastic parameter design

problem, and prove that the optimal sθ can be represented by either a deterministic signal value or a randomization

between two different signal values (Section III). In addition, a convex relaxation of the optimal parameter design

problem (resulting in linearly constrained linear programming) is presented (Section III), and sufficient conditions

under which stochastic parameter design can or cannot provide improvements over the deterministic parameter

design are obtained (Section IV). Also, numerical examples are presented to investigate the theoretical results

(Section V).

II. MOTIVATION

In conventional estimation problems, the aim is to design an optimal estimator for a given distribution of the

observations. However, motivations can also be provided for the stochastic parameter design problem investigated

in this study. For example, consider the design of a generic device (Device A in Fig. 1) which needs to output

a certain parameter. This output is to be measured by a measurement device (the dashed box in Fig. 1) which

employs a certain estimation algorithm for determining the parameter (e.g., averages various measurements). Then,



Fig. 1. System model. Device A transmits a stochastic signal sθ for each value of parameter θ, and Device B estimates θ based on

the noise corrupted version of sθ . One interpretation is to consider the dashed box as a measurement device, in which case n denotes the

measurement noise.

the aim is to design a stochastic signal sθ for each θ so that the accuracy (i.e., estimation performance) of the given

measurement device is optimized. In other words, considering a certain type of a measurement device, the estimation

performance of the overall system is to be optimized by designing stochastic signals for different parameters. Such

a system model, in which estimation is performed based on measurements obtained by a number of measurement

devices, is considered also in [8]. However, a different problem is considered in that study, and the optimal linear

estimator is obtained in the presence of cost-constrained measurements. It should also be mentioned that most

measurement devices are designed under a certain measurement noise assumption, such as Gaussian. They are

typically non-adaptive devices, hence, in the presence of noise that deviates from the assumed noise distribution,

their performance may degrade significantly. To improve the performance, the measurement device can be replaced

with a more capable one; however, such a replacement may be very costly in some cases. To avoid the replacement

cost and associated complications, the proposed stochastic parameter design approach can be used, which designs

optimal signals for each parameter so that the performance of the suboptimal measurement device can be improved.

As another motivation of the setup in Fig. 1, a wireless sensor network [9], in which a parameter value (such

as temperature or pressure) is sent from one device to another, can be considered. When the transmitter (Device

A) knows the probability distribution of the channel noise, n (which can be obtained via feedback), it can perform

stochastic parameter design in order to optimize the performance of the estimator at the receiver (Device B). If the

probability distribution of n is unknown, then the results can be considered to provide a theoretical upper bound on

the estimation performance. It is important to note that the additive noise is used to model all the operations/effects

between Device A and Device B in Fig. 1. For example, signal values can be quantized, and encoded symbols

can be sent via a specific digital communications method in some cases. Then, the additive noise model in Fig. 1

can be considered to provide an abstraction for all the blocks between Device A and Device B, such as quantizer,

encoder/decoder, modulator/demodulator, and additive noise channel, as discussed in [11]. It should also be noted

that noise n in Fig. 1 is modeled to have generic PDFs, not necessarily Gaussian, in the theoretical investigations

in this study.

III. STOCHASTIC PARAMETER DESIGN

Consider a parameter estimation scenario as in Fig. 1, where the aim is to send the information about parameter

θ from Device A to Device B over an additive noise channel. For that purpose, Device A can transmit a (random)



function of θ, say sθ, to Device B. Then, the received signal (observation) at Device B is expressed as

y = sθ + n (1)

where n denotes the channel noise, which has a probability density function (PDF) represented by pn(·). It is

assumed that Device B employs a fixed estimator specified by θ̂(y) in order to estimate θ. In addition, the prior

distribution of θ is denoted by w(θ), and the parameter space in which θ resides is represented by Λ.

In this study, the problem is to find the optimal probability distribution of sθ for each θ ∈ Λ in order to minimize

the Bayes risk of a given estimator. It should be noted that, in conventional estimation problems, the aim is to

design the optimal estimator for a given probability distribution of the observation [2]. However, we consider a

different problem in which the aim is to optimize the information carrying parameters in order to optimize the

performance of a given estimator. Another important point is that unlike conventional estimation problems, sθ in (1)

is modeled as a random variable for each value of θ; that is, a stochastic parameter design approach is considered

in this study.

A. Unconstrained Optimization

First, no constraints are considered in the selection of sθ. Then, the optimal stochastic parameter design problem

can be formulated as

{poptsθ , θ ∈ Λ} = arg min
{psθ

,θ∈Λ}
r(θ̂) (2)

where {psθ , θ ∈ Λ} denotes the set of PDFs for sθ for all possible values of parameter θ, and r(θ̂) is the Bayes

risk of the estimator. In order to obtain a more explicit formulation of the problem, the Bayes risk can be expressed

as

r(θ̂) =

∫
Λ
w(θ)

∫
C[θ̂(y),θ] pθ(y) dy dθ (3)

where pθ(y) denotes the PDF of y, which is indexed by θ, and C[θ̂(y),θ] represents a cost function [2]. For

example, C[θ̂(y),θ] = (θ̂(y) − θ)2 corresponds to the squared-error cost function, for which r(θ̂) becomes the

mean-squared error (MSE). In this study, a generic cost function C[θ̂(y),θ] is considered in all the derivations.

If sθ were modeled as a deterministic quantity for each value of θ, pθ(y) in (3) could be expressed in terms of

the PDF of n as pn(y − sθ) (see (1)). However, we consider a stochastic parameter design framework and model

sθ as a stochastic variable for each θ. Then, assuming that the noise and sθ are independent, pθ(y) is calculated

as
∫
psθ(x)pn(y − x) dx . Therefore, (3) becomes

r(θ̂) =

∫
Λ
w(θ)

∫
psθ(x)

∫
C[θ̂(y),θ] pn(y − x) dy dx dθ . (4)

Defining an auxiliary function gθ(x) as

gθ(x) ,
∫

C[θ̂(y),θ] pn(y − x) dy , (5)



the relation in (4) can be stated as

r(θ̂) =

∫
Λ
w(θ) E{gθ(sθ)} dθ (6)

where each expectation operation is over the PDF of sθ for a given value of θ. From (6), it is observed that r(θ̂)

can be minimized if, for each θ, the PDF of sθ assigns all the probability to the minimizer of gθ.1 Namely, the

solution of the optimization problem in (2) can be expressed as

poptsθ (x) = δ(x− suncθ ) , suncθ = arg min
x

gθ(x) (7)

for all θ ∈ Λ . Therefore, it is concluded that the optimal stochastic parameter design results in optimal PDFs that

have single point masses. Hence, deterministic parameter design is optimal and no stochastic modeling is needed

when there are no constraints in the design problem. However, in practice, the values of sθ cannot be chosen

without any constraints (such as an average power constraint), and it will be shown in the next section that the

stochastic parameter design can result in performance improvements in the presence of constraints on the moments

of sθ. Another important observation from (7) is that the solution does not require the knowledge of the prior

distribution w(θ), since the optimal solution is obtained for each θ separately.

B. Constrained Optimization

In practical scenarios, the parameter design cannot be performed without any limitations. For example, in the

absence of a power constraint, it would be possible to reduce the Bayes risk arbitrarily by transmitting signals with

very high powers compared to the noise power.

In this section, a common design constraint in the form of an average power constraint is considered in the

stochastic parameter design problem. Although a specific constraint type is used in the following, it will be discussed

that other types of constraints can also be incorporated into the theoretical analysis.

Consider an average power constraint in the form of

E{∥sθ∥2} ≤ Aθ (8)

for θ ∈ Λ, where ∥sθ∥ is the Euclidean norm of vector sθ, and Aθ denotes the average power constraint for θ. It

is noted from (8) that a generic model is considered for the constraint Aθ, which can depend on the value of θ

in general. For the special case in which the average power constraint is the same for all parameters, Aθ = A for

θ ∈ Λ can be employed.

From (6) and (8), the optimal stochastic parameter design problem can be stated as

min
{psθ

,θ∈Λ}

∫
Λ
w(θ) E{gθ(sθ)} dθ

subject to E{∥sθ∥2} ≤ Aθ , ∀θ ∈ Λ (9)

1If there are multiple minimizers, any (combination) of them can be chosen for the optimal solution.



where gθ(·) is as defined in (5). The investigation of the constrained optimization problem in (9) reveals that the

problem can be solved separately for each θ as follows:

min
psθ

E{gθ(sθ)} subject to E{∥sθ∥2} ≤ Aθ (10)

for θ ∈ Λ. In other words, the optimal PDF of sθ can be obtained separately for each θ. Therefore, the result does

not depend on the prior distribution w(θ), and the solution can be obtained in the absence of prior information.

Optimization problems in the form of (10) have been investigated in different studies in the literature [3], [5], [10].

Specifically, [3] and [10] aim to obtain the optimal additive “noise” PDF that maximizes the detection probability

under a constraint on the false-alarm probability, and [5] investigates optimal signal PDFs in a power constrained

binary communications systems. Based on similar arguments to those in [3], [5], [10], the following result can be

obtained.

Proposition 1: Suppose gθ is a continuous function and each component of sθ resides in a finite closed interval.

Then, an optimal solution to (10) can be expressed in the following form:

poptsθ (x) = λθ δ(x− sθ,1) + (1− λθ) δ(x− sθ,2) (11)

for λθ ∈ [0, 1] .

Proof: Consider the set of all (gθ(sθ), ∥sθ∥2) pairs and the set of all (E{gθ(sθ)},E{∥sθ∥2}) pairs, and denote

them as U and W , respectively. Namely, U = {(u1, u2) : u1 = gθ(sθ) , u2 = ∥sθ∥2 ,∀ sθ} and W = {(w1, w2) :

w1 = E{gθ(sθ)} , w2 = E{∥sθ∥2} , ∀ psθ}. As discussed in [3] and [5], the convex hull of U can be shown to be

equal to W . Then, based on Carathéodory’s theorem [12], it is concluded that any point in W can be obtained as a

convex combination of at most three points in U . Also, since an optimal PDF should achieve the minimum value,

it must correspond to the boundary of W , which results in a convex combination of at most two points in U . (The

assumptions in the proposition imply that W is a closed set; therefore, it contains its boundary [5].) Hence, an

optimal solution can be expressed as in (11) [13]. �
Proposition 1 states that the optimal solution can be achieved by randomization between at most two different

values for each θ. Based on this result, the optimal stochastic parameter design problem in (10) is expressed as

min
λθ,sθ,1,sθ,2

λθ gθ(sθ,1) + (1− λθ) gθ(sθ,2)

subject to λθ∥sθ,1∥2 + (1− λθ)∥sθ,2∥2 ≤ Aθ , λθ ∈ [0, 1] (12)

for θ ∈ Λ. Compared to (10), the formulation in (12) provides a significant simplification as it requires optimization

over a finite number of variables instead of over all possible PDFs. Since generic cost functions and noise

distributions are considered in the theoretical analysis, gθ in (5) is quite generic and the optimization problem

in (12) can be nonconvex in general. Therefore, global optimization techniques such as particle swarm optimization

(PSO) and differential evolution (DE) can be employed to obtain the solution [14], [15].

Remark 1: Although the average power constraint in (8) is considered in obtaining the preceding results, the

other types of constraints in the form of E{hi(sθ)} ≤ Aθ,i for i = 1, . . . , Nc can also be incorporated. Specifically,



assuming continuous hi, the form of the optimal PDF in Proposition 1 becomes poptsθ (x) =
∑Nc

i=1 λθ,i δ(x− sθ,i),

with λθ,i ≥ 0 for i = 1, . . . , Nc and
∑Nc

i=1 λθ,i = 1, which can be proven by updating the definitions of sets U and

W accordingly in the proof of Proposition 1.

As an alternative approach, a convex relaxation technique can be employed to obtain an approximate solution of

(10) in polynomial time [5], [16]. To that aim, it is assumed that psθ can be expressed as psθ(x) =
∑Nm

l=1 βl δ(x−s̃θ,l),

where βl ≥ 0 for l = 1, . . . , Nm,
∑Nm

l=1 βl = 1, and s̃θ,1, . . . , s̃θ,Nm
are known possible values for sθ. Then, by

defining β = [β1 · · ·βNm
]T , g̃θ = [gθ(s̃θ,1) · · · gθ(s̃θ,Nm

)]T and c = [∥s̃θ,1∥2 · · · ∥s̃θ,Nm
∥2]T , the convex version of

(10) can be obtained as

min
β

βT g̃θ subject to βTc ≤ Aθ , βT1 = 1 , β ≽ 0 (13)

where 1 and 0 denote the vectors of ones and zeros, respectively, and β ≽ 0 means that each element of β is greater

than or equal to zero. It is noted that (13) presents a linearly constrained linear optimization problem; hence, it can

be solved efficiently in polynomial time [16]. In general, the solution of (13) provides an approximate solution,

and the approximation accuracy can be improved by using a large value of Nm.

IV. OPTIMALITY CONDITIONS

The deterministic parameter design can be considered as a special case of the stochastic parameter design when

sθ in (10) is modeled as a deterministic quantity for each θ. Namely, the deterministic parameter design problem

can be formulated as

min
sθ

gθ(sθ) subject to ∥sθ∥2 ≤ Aθ (14)

for θ ∈ Λ (c.f. (10)). Let soptθ denote the minimizer of the optimization problem in (14). Then, the minimum

Bayes risk achieved by the optimal deterministic parameter design is given by rdet(θ̂) =
∫
Λw(θ)gθ(s

opt
θ )dθ

(see (6)). Similarly, let rsto(θ̂) =
∫
Λw(θ)

∫
gθ(x)p

opt
sθ (x)dx dθ represent the minimum Bayes risk achieved by

the optimal stochastic parameter design, where poptsθ denotes the optimal solution for θ. In order for the stochastic

parameter design to improve over the deterministic parameter design, rsto(θ̂) should be strictly smaller than rdet(θ̂).

Otherwise, it is concluded that the deterministic parameter design cannot be improved via the stochastic approach;

that is, rsto(θ̂) = rdet(θ̂). In the following proposition, sufficient conditions presented for the latter.

Proposition 2: The deterministic parameter design cannot be improved via the stochastic approach if at least

one of the following is satisfied for each θ :

• gθ is a convex function.

• The solution of the unconstrained problem (see (7)) satisfies the constraint; i.e., ∥suncθ ∥2 ≤ Aθ .

Proof: If the second condition is satisfied, that is, if ∥suncθ ∥2 ≤ Aθ , then the solution of (14) coincides with

that of the unconstrained problem in Section III-A; namely, soptθ = suncθ . Therefore, the solution of the optimal

stochastic parameter design problem in (10) becomes poptsθ (x) = δ(x − soptθ ). Hence, the deterministic design is

optimal in such a scenario, and the stochastic approach is not needed.



In order to investigate the first condition, it is observed that, for any sθ, E{∥sθ∥2} ≥ ∥E{sθ}∥2 is satisfied due

to Jensen’s inequality since norm is a convex function. Therefore, due to the constraint E{∥sθ∥2} ≤ Aθ in (10),

∥E{sθ}∥2 ≤ Aθ must hold for any feasible PDF of sθ. Let E{sθ} be defined as šθ , E{sθ}. As the minimizer of

(14), soptθ , achieves the minimum gθ(sθ) among all sθ that satisfy ∥sθ∥2 ≤ Aθ, ∥E{sθ}∥2 = ∥šθ∥2 ≤ Aθ implies

that gθ(E{sθ}) = gθ(šθ) ≥ gθ(s
opt
θ ) is satisfied. When gθ is a convex function as specified in the proposition,

E{gθ(sθ)} ≥ gθ(E{sθ}) ≥ gθ(s
opt
θ ) is obtained from Jensen’s inequality and from the previous relation. Therefore,

for convex gθ, E{gθ(sθ)} can never be smaller than the minimum value of (14), gθ(s
opt
θ ), for any PDF of sθ that

satisfies the average power constraint. Hence, the minimum value of (10) cannot be smaller than gθ(s
opt
θ ), meaning

that it is always equal to gθ(s
opt
θ ) (since (10) covers (14) as a special case).

All in all, when at least one of the conditions in the proposition are satisfied for all θ, the deterministic and the

stochastic approaches achieve the same minimum values for all parameters; that is, gθ(s
opt
θ ) =

∫
gθ(x)p

opt
sθ (x)dx,

∀θ. Therefore, rdet(θ̂) =
∫
Λw(θ)gθ(s

opt
θ ) dθ and rsto(θ̂) =

∫
Λw(θ)

∫
gθ(x)p

opt
sθ (x)dx dθ become equal. �

In order to present an example application of Proposition 2, consider a scenario in which a scalar parameter θ is

to be estimated in the presence of zero-mean additive noise n. The average power constraint is in the generic form

of E{|sθ|2} ≤ Aθ for all θ, and the estimator is specified by θ̂(y) = y. In addition, the cost function is modeled as

C[θ̂(y), θ] = (θ̂(y)− θ)2. In this scenario, gθ in (5) can be calculated as

gθ(x) =

∫ ∞

−∞
(y − θ)2pn(y − x) dy =

∫ ∞

−∞
(y + x− θ)2pn(y) dy = (x− θ)2 +Var{n} (15)

where Var{n} denotes the variance of the noise. From (15), it is noted that gθ is a convex function for any value

of θ. Therefore, the first condition in Proposition 2 is satisfied for all θ, meaning that the performance of the

deterministic parameter design cannot be improved via the stochastic approach.2 Hence, the optimal solution can

be obtained from (14), which yields

soptθ = arg min
|sθ|2≤Aθ

(sθ − θ)2.

For example, if Aθ = θ2, then soptθ = θ for all θ.

In the following proposition, sufficient conditions are presented to specify cases in which the stochastic parameter

design provides improvements over the deterministic one.

Proposition 3: The stochastic parameter design achieves a smaller Bayes risk than the deterministic one if there

exists θ ∈ Λ for which gθ(x) is second-order continuously differentiable around soptθ and a real vector z can be

found such that (
zT soptθ

)(
zT∇gθ(x)|x=soptθ

)
< 0 and (16)

∥z∥2 <
(
zT soptθ

)(
zTHθz

)
/
(
zT∇gθ(x)|x=soptθ

)
(17)

where soptθ is the solution of (14), ∇gθ(x)|x=soptθ
denotes the gradient of gθ(x) at x = soptθ , and Hθ is the Hessian

of gθ(x) at x = soptθ .

2It can be shown that gθ is convex for all θ also for the absolute error cost function; i.e., C[θ̂(y), θ] = |θ̂(y)− θ|.



Proof: In order to prove that a reduced Bayes risk can be achieved via the stochastic parameter design, consider

a specific value of θ for which the conditions in the proposition are satisfied. Also consider two values sθ,1 and

sθ,2 around soptθ , which can be expressed as sθ,i = soptθ + ϵi for i = 1, 2. Then, gθ(sθ,i) can be approximated as

gθ(sθ,i) ≈ gθ(s
opt
θ ) + ϵTi g̃θ + 0.5 ϵTi Hθϵi for i = 1, 2, where g̃θ = ∇gθ(x)|x=soptθ

is the gradient and Hθ is the

Hessian of gθ(x) at x = soptθ [17]. Similarly, ∥sθ,i∥2 can be expressed as ∥sθ,i∥2 ≈ ∥soptθ ∥2 +2 ϵTi s
opt
θ + ∥ϵi∥2 for

i = 1, 2. In order to prove that employing psθ(x) = λ δ(x− sθ,1) + (1− λ) δ(x− sθ,1) results in a lower risk than

gθ(s
opt
θ ), which is the one achieved by the deterministic parameter design (see (14)), it is sufficient to show that

λ gθ(sθ,1) + (1− λ) gθ(sθ,2) < gθ(s
opt
θ )

λ ∥sθ,1∥2 + (1− λ) ∥sθ,2∥2 < ∥soptθ ∥2 ≤ Aθ (18)

are satisfied for certain choice of parameters (see (10)). After inserting the expressions for gθ(sθ,i) and ∥sθ,i∥2

around soptθ into (18), it can be obtained that

λ ϵT1 Hθϵ1 + (1− λ) ϵT2 Hθϵ2 + 2
(
λ ϵ1 + (1− λ) ϵ2

)T
g̃θ < 0

λ ∥ϵ1∥2 + (1− λ) ∥ϵ2∥2 + 2
(
λ ϵ1 + (1− λ) ϵ2

)T
soptθ < 0 (19)

Let ϵ1 = η z and ϵ2 = ν z. Then, (19) can be manipulated to obtain

zTHθz+ k
(
zT g̃θ

)
< 0 and ∥z∥2 + k

(
zT soptθ

)
< 0 (20)

with k , 2(λ η + (1 − λ)ν)/(λ ν2 + (1 − λ)η2). If the first inequality in (20) is multiplied by
(
zT soptθ

)
/
(
zT g̃θ

)
,

which is always negative due to the condition (16) in the proposition, (20) becomes

(zTHθz)
(
zT soptθ

)
/
(
zT g̃θ

)
+ k

(
zT soptθ

)
> 0 and ∥z∥2 + k

(
zT soptθ

)
< 0 . (21)

Since k can take any real value by adjusting λ ∈ [0, 1] and infinitesimally small η and ν values, it is guaranteed

that both inequalities in (21) can be satisfied if (zTHθz)
(
zT soptθ

)
/
(
zT g̃θ

)
is larger than ∥z∥2, which corresponds

to (17). �
Remark 2: For the conditions in (16) and (17) to be satisfied, gθ(x) must be concave at x = soptθ (i.e., Hθ must

be negative-definite) since ∥z∥2 is always nonnegative and
(
zT soptθ

)
/
(
zT∇gθ(x)|x=soptθ

)
is negative due to (16).

Proposition 3 provides a simple approach, based on the first and second order derivatives of gθ, to determine if

the stochastic parameter design can provide improvements over the deterministic one. If the conditions are satisfied,

the improvements are guaranteed and the optimization problem in (12) or (13) can be solved to obtain the optimal

solution. However, since the conditions are sufficient but not necessary, there can also exist certain scenarios in

which improvements are observed although the conditions are not satisfied. Examples for various scenarios are

provided in the next section.



V. NUMERICAL RESULTS AND CONCLUSIONS

In order to present examples of the theoretical results in the previous sections, consider an estimation problem in

which a scalar parameter θ is estimated based on observation y that is modeled as y = sθ +n, with n denoting the

additive noise component. (Although a scalar problem is considered for convenience, vector parameter estimation

problems can be treated in a similar fashion (per component) when the noise components are independent and the

cost function is additive [2].) The noise n is modeled by a Gaussian mixture distribution, specified as pn(n) =∑L
l=1 γl exp{−(n−µl)

2/(2σ2
l )}/(

√
2π σl), where the parameters are chosen in such a way to generate a zero-mean

noise component. In addition, the estimator is given by θ̂(y) = y, and the cost function is selected as the uniform

cost function, which is expressed as C[θ̂(y), θ] = 1 if |θ̂(y)− θ| > ∆ and C[θ̂(y), θ] = 0 otherwise. Based on this

model, gθ in (5) can be obtained as

gθ(x) =

L∑
l=1

γl

(
Q

(
x− θ + µl +∆

σl

)
+Q

(
−x + θ − µl +∆

σl

))
(22)

where Q(x) = (1/
√
2π)

∫∞
x exp{−t2/2}dt denotes the Q-function. Regarding the constraint in (8), E{|sθ|2} ≤ θ2

is considered for each θ.

For the numerical examples, parameter θ is modeled to lie between −10 and 10; that is, the parameter space is

specified as Λ = [−10, 10]. Also, sθ can take values in the interval [−10, 10] under the average power constraint,

E{|sθ|2} ≤ θ2. In addition, the parameters of the Gaussian mixture noise n are selected as γ1 = 0.33, γ2 = 0.13,

γ3 = 0.08, γ4 = 0.07, γ5 = 0.11, γ6 = 0.28, µ1 = −3.8, µ2 = −1.6, µ3 = −0.51, µ4 = 0.4657, µ5 = 2.42,

µ6 = 4.3, and σl = 0.5, ∀l. With this selection of the parameters, the noise becomes a zero-mean random variable

so that θ̂(y) = y can be regarded as a practical estimator.3 Finally, ∆ = 1 is considered for the uniform cost

function described in the previous paragraph.

In Fig. 2, the conditional risks (i.e., E{gθ(sθ)} in (6)) are plotted versus θ for various parameter design approaches.

For the optimal stochastic parameter design, both the exact solution obtained from (12) and the convex relaxation

solutions obtained from (13) are plotted. In the convex relaxation approach, the set of possible values for sθ are

selected between −10 and 10 with an increment of D (in short, −10 : D : 10), and the results for D = 0.25

and D = 0.5 are illustrated in the figure. The results for the optimal deterministic parameter design are calculated

from (14). In addition, the results obtained from the unconstrained problem (see (7)) and those obtained by using

psθ(x) = δ(x − θ) (labeled as “Conventional”) are shown in the figure to provide performance benchmarks. It

is observed that the optimal stochastic parameter design achieves the minimum conditional risks for all θ values

in the presence of the average power constraint. It provides performance improvements over the deterministic

parameter design for certain range of parameter values, e.g., for θ > 2.1. In addition, both the stochastic and the

deterministic design approaches achieve the same conditional risks as the unconstrained solution for some θ values,

which is due to the fact that the unconstrained solutions satisfy the average power constraint for those values of θ.

3Although this is not an optimal estimator, it can be used in practice due to its simplicity compared to the optimal estimator, which would

have high complexity due to the multimodal noise structure.
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Fig. 3. gθ(x) in (22) for various values of θ.

Furthermore, the convex relaxation approaches (which provide low complexity solutions) perform very closely to

the exact solutions of the optimal stochastic parameter design problem for small values of D.

In order to provide further explanations of the results in Fig. 2, Fig. 3 illustrates gθ(x) in (22) for θ = −5,

θ = 0, and θ = 5. As expected from the expression in (22), each function in the figure is a shifted version of

the others. Also, this figure can be used to determine when the unconstrained solution coincides with the solutions

of the optimal stochastic and the optimal deterministic parameter designs. For example, for θ = −5, the global

minimum of gθ(x) is achieved at −1.223, which already satisfies the constraint. Therefore, all the three approaches



yield the same conditional risk for that parameter (see Fig. 2). On the other hand, for θ = 5, the global minimum

is at 8.777; hence, the conditional risk obtained from the unconstrained problem in (7) cannot be achieved by

the constrained approaches. Specifically, the optimal deterministic approach in (14) chooses the minimum value

in the interval [−5, 5], which results in the optimal signal value of soptθ = 0.81. On the other hand, the solution

of the optimal stochastic parameter design problem in (12) results in a randomization between 8.741 and 0.809

with probabilities of 0.321 and 0.679, respectively, and achieves a lower conditional risk than the deterministic

approach (see Fig. 2). In Table I, the optimal solutions for the optimal stochastic, the optimal deterministic and

TABLE I

OPTIMAL STOCHASTIC SOLUTION poptsθ (x) = λθ δ(x− sθ,1) + (1− λθ) δ(x− sθ,2), OPTIMAL DETERMINISTIC SOLUTION soptθ , AND

UNCONSTRAINED SOLUTION suncθ .

θ λθ sθ,1 sθ,2 soptθ suncθ

-5 1 -1.223 - -1.223 -1.223

-3 1 0.777 - 0.777 0.777

-1.5 0.295 -0.331 1.774 1.5 2.277

0 1 0 - 0 3.777

1.5 0.42 -0.294 -1.954 -1.5 5.277

3 0.826 -1.177 6.719 -1.19 6.777

5 0.679 0.809 8.741 0.81 8.777

the unconstrained parameter design approaches are presented for various values of θ. Fig. 3 can also be used to

explain the oscillatory behavior of the convex relaxation solutions in Fig. 2. Since the convex relaxation approach

considers possible sθ values as −10 : D : 10 and since gθ(x) shifts with θ, the signal values obtained from the

convex optimization problem in (13) move around the optimal values of the exact solution periodically. Finally, the

conditions in Proposition 3 are evaluated for different θ values, and it is observed that they provide sufficient but

not necessary conditions for specifying improvements via the stochastic parameter design over the deterministic

one. For example, the calculations show that the conditions in Proposition 3 are satisfied for θ ∈ [−1.381,−1.31]

and θ ∈ [1.397, 1.536], and improvements are observed in Fig. 2 for those values of θ.

Future work involves the investigation of the stochastic parameter design problem in the presence of partial

knowledge of the noise distribution. The robustness of the stochastic parameter design will be analyzed, and

various design approaches will be considered.

Acknowledgments: The authors would like to thank the editor, Dr. Ta-Hsin Li, for suggesting the example in
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