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ABSTRACT

In this paper, theoretical lower bounds on performance of linear least-squares (LLS) position estimators are obtained, and
performance differences between LLS and nonlinear least-squares (NLS) position estimators are quantified. In addition,
two techniques are proposed in order to improve the performance of the LLS approach. First, a reference selection algorithm
is proposed to optimally select the measurement that is used for linearizing the other measurements in an LLS estimator.
Then, a maximum likelihood approach is proposed, which takes correlations between different measurements into account
in order to reduce average position estimation errors. Simulations are performed to evaluate the theoretical limits and to
compare performance of various LLS estimators. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In wireless networks, position information not only facil-
itates various applications and services [1--4] but also
improves performance of communications systems by
means of location-aware algorithms [5--7]. For a scenario in
which a number of fixed terminals (FTs) with known posi-
tions are trying to estimate the position of a mobile terminal
(MT), wireless position estimation is commonly performed
in two steps [2]. In the first step, various measurements
are first performed between the MT and the FTs, which
carry information about the MT position. Those measure-
ments can be based, for example, on time-of-arrival (TOA),
received-signal-strength (RSS), and angle-of-arrival (AOA)
estimation [1]. Then, in the second step, the MT posi-
tion is estimated based on the measurements (estimates)
obtained in the first step. In this step, mapping (fingerprint-
ing), geometric, or statistical approaches can be followed.
Since the mapping approach is based on a training data,
which may not always be available, and the geometric tech-
niques are not robust against noise, the statistical approach

is commonly employed in position estimation [2]. Among
the statistical techniques, the nonlinear least-squares (NLS)
estimator can be applied in various scenarios [1,8]. The
main justification for the use of the NLS estimator is that it
provides the maximum likelihood (ML) solution, and can
perform closely to theoretical limits, namely, Cramer–Rao
lower bounds (CRLBs), for independent zero-mean Gaus-
sian noise components at various measurements, which is
commonly valid for line-of-sight (LOS) scenarios [1,3,9].
In addition, with various modifications, the NLS estimator
can also have reasonable performance in certain non-line-
of-sight (NLOS) scenarios [8,10--12].

The NLS estimation requires the minimization of a cost
function that requires numerical search methods such as
the Gauss-Newton and the steepest descent techniques,
which can have high computational complexity and typi-
cally require sufficiently good initialization in order to avoid
converging to local minima of the cost function [8]. In order
to avoid the computational complexity of the NLS approach,
various modifications to the NLS estimator are considered
[13--16]. In Reference [13], the set of expressions corre-
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sponding to the position related parameter estimates are
linearized using the Taylor series expansion. However, this
technique still requires an intermediate position estimate
to obtain the Jacobian matrix, which should be sufficiently
close to the true MT position for the linearity assumption to
hold. Another approach is to obtain linearized expressions,
by using one measurement as a reference for the other ones,
and to obtain the position estimate via a linear least-squares
(LLS) approach [14]. Various versions of the LLS approach
are studied in References [15] and [16], which determine
reference measurements in different manners (cf. Section
3).

The main advantage of the LLS approach is that it pro-
vides a simple closed-form and low-complexity solution
for the MT position. However, it is not an optimal esti-
mator, and has lower accuracy than the NLS approach
in general. Therefore, it is well suited for applications
that require low cost/complexity implementation with rea-
sonable positioning accuracy. As will be demonstrated
in Section 5 through computer simulations, accuracy of
the LLS approach becomes even closer to the fundamen-
tal lower bounds with the proposed improvements, which
may be sufficient for many applications. In addition, for
applications that require accurate position estimation, the
LLS approach can be used to obtain an initial position
estimate for initializing high-accuracy position estimation
algorithms, such as the NLS approach and linearization
based on the Taylor series [17]. A good initialization can
reduce computational complexity and position estimation
errors of such high-accuracy techniques.

The aim of this paper is to quantify, via CRLB deriva-
tions, the amount of optimality loss induced by the
linearization operations in LLS estimators, and propose new
LLS algorithms in order to improve the performance of the
LLS approach. Although theoretical mean-squared errors
(MSEs) of the LLS estimator in Reference [14] are derived
for various scenarios in References [18,19], no studies have
considered generic theoretical lower bounds for LLS esti-
mators that utilize linearized measurements. In this paper,
first, the CRLB for the LLS estimator in Reference [14]
is derived. Then, it is shown that this CRLB expression is
also valid for various LLS estimators proposed in the liter-
ature [15,16]. After quantifying the optimality loss of the
prior-art LLS estimators, two techniques are proposed in
order to improve the performance of the LLS approach.
First, reference selection is proposed for the LLS estimator
in Reference [14], and then an ML approach is applied to the
linearized measurements in order to take the correlations of
various measurements into account. Simulation results are
provided to evaluate the theoretical limits and to analyze
performance of the proposed algorithms.

The remainder of the paper is organized as follows. In
Section 2, the system model is defined, and the NLS estima-
tion and the related CRLB are briefly reviewed. In Section
3, the conventional LLS estimators [14--16] are studied and
the CRLB on their performance is derived. Then, improve-
ments over the conventional LLS estimators are proposed
via reference selection and ML estimation techniques in

Section 4. Finally, the simulation results are presented in
Section 5, followed by the concluding remarks in Section 6.

2. SYSTEM MODEL AND
NONLINEAR LS ESTIMATION

A wireless system with N FTs are considered, where the
location of the ith FT is denoted by li = [xi yi]T, for i =
1, 2, . . . , N, in a two-dimensional positioning scenario‡.
A conventional two-step position estimation approach is
adopted, where the first step obtains estimates of position
related parameters at each FT, and then the second step
calculates the estimate of the MT position based on the
parameter estimates obtained in the first step [2]. In this
paper, positioning systems that provide distance (‘range’)
estimates in the first step are considered. Note that the range
estimates may be obtained, for example, based on the TOA
or the RSS metrics estimated at each FT [3].

The distance measurement (estimate) at the ith FT can
be modeled as

zi = fi(x, y) + ni, i = 1, . . . , N (1)

where ni is the noise in the ith measurement, and fi(x, y) is
the true distance between the MT and the ith FT, given by

fi(x, y) =
√

(x − xi)2 + (y − yi)2, (2)

with l = [x y]T denoting the unknown position of the MT.
Depending on the amount of information on the noise

statistics and the availability of prior statistical informa-
tion about the position of the MT, various estimators can
be derived for estimating the MT position. When the prob-
ability density function (PDF) of the noise and the prior
distribution of the MT position are known, Bayesian esti-
mators, such as minimum mean-squared error (MMSE)
estimator, can be obtained [2]. However, in many situations,
no prior information on the MT position is available. In such
cases, ML estimators can be employed, which estimate the
MT position by maximizing the likelihood function for the
position parameter [2].

The specific form of an ML estimator for the position of
an MT depends on the joint PDF of the noise components in
Equation (1). When the MT has direct line-of-sight (LOS)
with all the FTs, the noise components are commonly mod-
eled as independent zero-mean Gaussian random variables
[1]. In this case, the ML estimator is given by

l̂ = [
x̂ŷ

]T = arg min
(x,y)

N∑
i=1

βi(zi − fi(x, y))2 (3)

‡ The results in this paper can also be extended to three-dimensional

positioning scenarios.
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where βi = 1/σ2
i represents a weighting coefficient for the

ith measurement, with σ2
i representing the error variance

of the measurement related to the ith FT. The estimator
in Equation (3) is referred to as the NLS estimator and is
commonly used in position estimation [1,2].

When the direct LOS between the MT and an FT is
blocked, i.e., in NLOS conditions, the corresponding dis-
tance measurement is corrupted by noise that can have
significantly different PDF from a zero-mean Gaussian ran-
dom variable [20,21]. Specifically, NLOS situations can
cause a bias in distance estimation; hence, the related
noise components commonly have positive mean values
[1]. Although the NLS estimator in Equation (3) is not
the ML solution for non-Gaussian noise components, it is
commonly employed for position estimation in the absence
of sufficient statistical information about the noise compo-
nents. In that case, βi is considered more generally as a
reliability weight for the ith distance measurement, which
takes a larger value as the accuracy of the measurement
increases§ [1]. In addition, in the presence of information
about the mean of the noise (bias) in NLOS scenarios, the
NLS estimator can be modified as [3]

l̂ = [
x̂ŷ

]T = arg min
(x,y)

N∑
i=1

βi

(
zi − b̂i − fi(x, y)

)2
(4)

where b̂i is the estimate of the bias in the ith distance mea-
surement. Finally, when the distance measurements related
to the NLOS FTs can be identified, for example, by one
of the algorithms proposed in References [22--24], the NLS
estimator in Equation (3) can be employed based on the dis-
tance measurements related to the LOS FTs only (if there
is a sufficient number of them).

Because the NLS estimator can be employed in vari-
ous scenarios and it is the ML estimator for independent
zero-mean Gaussian noise components, it is of interest to
investigate its theoretical limits. Since an ML estimator
asymptotically achieves the CRLB under certain condi-
tions [9], the NLS estimator can provide an asymptotically
optimal estimator under the stated conditions.

Based on the measurements model in Equation (1) with
independent zero-mean Gaussian noise components, the
CRLB for an unbiased NLS l̂ can be expressed as‖

Cov
{
l̂
} ≥ I−1 (5)

§ Accuracy of the ith distance measurement can be deduced, for exam-

ple, from the history of measurements related to the ith FT.
‖ Note that the CRLB is valid for all unbiased estimators that are based

on the measurements in Equation (1). Since our main purpose is to

consider the bound on the NLS estimator, we call it the CRLB for the

NLS estimator in this study.

with the following Fisher information matrix (FIM),

I =




∑N

i=1
(x−xi)2

σ2
i
f 2
i

(x,y)

∑N

i=1
(x−xi)(y−yi)
σ2
i
f 2
i

(x,y)∑N

i=1
(x−xi)(y−yi)
σ2
i
f 2
i

(x,y)

∑N

i=1
(y−yi)2

σ2
i
f 2
i

(x,y)


 (6)

where σ2
i denotes the variance of the noise in the ith mea-

surement [9,25,26]. Then, the lower bound on the MSE can
be calculated as

MSE = E{‖l̂ − l‖2} ≥ trace{I−1} = I11 + I22

I11I22 − I2
12

(7)

where Iij represents the element of matrix I in the ith row
and jth column, and I11 + I22 is equal to

∑N

i=1 σ−2
i .

As the NLS estimator in Equation (3) can asymptot-
ically achieve the MMSE in Equation (7) under certain
conditions, it provides a benchmark for the performance
of other estimators. The main disadvantage of the NLS
estimator is related to the nonlinear cost function for the
minimization problem, which increases the computational
complexity. The main techniques for obtaining the NLS
solution in Equation (3) include gradient descent algorithms
and linearization techniques via the Taylor series expansion
[1,13].

3. LINEAR LS APPROACHES AND
THEORETICAL LIMITS

3.1. Linear LS estimation

The high computational complexity of the NLS approach
is mainly due to the nonlinear cost function, the minimiza-
tion of which requires computation-intensive operations. In
order to provide a low complexity solution to the position
estimation problem, various LLS estimators are proposed
in References [14--16,27]. The main idea behind the LLS
approach is to obtain a set of linear equations from the non-
linear relations in Equations (1) and (2) via simple addition
and subtraction operations.

In order to comprehend the linearization process, one can
first consider the noiseless version of Equations (1) and (2),
which can be expressed as

z2
i = (x − xi)

2 + (y − yi)
2, i = 1, . . . , N (8)

Then, one of those equations, say the rth one, is selected
as the reference and subtracted from all the other equa-
tions, which results, after some manipulation [27], in the
following linear relation:

Ar l = pr (9)

where l = [x y]T is the MT position to be estimated,

Ar=2

[
x1−xr · · · xr−1−xr xr+1−xr · · · xN−xr

y1−yr · · · yr−1−yr yr+1−yr · · · yN−yr

]T

(10)
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and

pr =




z2
r − z2

1 − kr + k1

...

z2
r − z2

r−1 − kr + kr−1

...

z2
r − z2

r+1 − kr + kr+1

...

z2
r − z2

N − kr + kN




(11)

with

ki = x2
i + y2

i (12)

for i = 1, 2, . . . , N. Note that Ar is an (N − 1) × 2 matrix
that is specified by the positions of the FTs, andpr is a vector
of size (N − 1) that depends on both the FT positions and
the distance measurements.

Since Equation (9) defines a linear relation, the position
estimate can be obtained as [27]

l̂r = (AT
r Ar)

−1AT
r pr (13)

which is the LLS estimator when the rth FT is considered
as the reference FT.

Comparison of Equations (3) and (13) reveals that the
LLS estimator provides a low complexity solution for posi-
tion estimation. However, it also sacrifices certain amount
of optimality compared to the NLS solution. This is because
the LLS approach uses the measurements zi’s only through
the z2

r − z2
i terms, for i = 1, . . . , r − 1, r + 1, N, which

causes some loss in the information contained in the set
z1, . . . , zN .

In addition to the LLS algorithm specified by Equations
(10)–(13), call it LLS-1, there are also other versions of the
LLS approach proposed in References [14--16]. The LLS
estimator studied in References [14] and [15], call it LLS-2,
subtracts each equation in Equation (8) from all the other
equations, resulting in

(
N

2

)
distinct linear equations. Then,

the position estimate can be obtained similarly to the solu-
tion in Equation (13) for LLS-1. Instead of subtracting each
equation from all the remaining ones, the LLS approach in
References [16], call it LLS-3, first calculates the average of
the measurements in Equation (8), and then subtracts that
average from all the equations, yielding N linear relations.
Again, the position estimate is obtained by the LLS solution
as in Equation (13).

Similar to the LLS-1 algorithm, the LLS-2 and LLS-
3 algorithms also result in suboptimal position estimates
compared to the NLS algorithm in Section 2, since they
do not utilize all the information in the measurement set
z1, . . . , zN . In order to quantify the amount of optimality
loss induced by the LLS approach, one can compare the
CRLBs related to the NLS and LLS approaches.

3.2. CRLB analysis

In this section, the aim is to obtain the CRLBs for the
LLS estimators described in Section 3.1. In this way, the
theoretical performance difference between the NLS and
LLS approaches can be comprehended via the compari-
son of the corresponding CRLB expressions. It should be
noted that the NLS estimator is the ML solution under
the conditions stated in Section 2; hence, it can perform
very closely to the CRLB at reasonably small noise lev-
els. However, the LLS estimators described in the previous
section are not the ML solutions given the set of mea-
surements that they are utilizing. For example, it can be
shown that the LLS-1 estimator is not the ML estimator
based on z2

r − z2
i , for i = 1, . . . , r − 1, r + 1, N. Therefore,

the LLS estimators are not guaranteed to perform very
closely to the CRLBs. Hence, the difference between the
CRLBs for the NLS and LLS estimators may not always
provide an accurate measure of the performance improve-
ment that would be obtained by using the NLS approach
instead of one of the LLS estimators in Section 3.1.¶ In
order to compare the exact performance of the LS estima-
tors with the CRLBs, simulation results are provided in
Section 5. In addition, various LLS algorithms are pro-
posed in Section 4, which perform more closely to the
CRLB than the conventional LLS estimators in Refer-
ences [14--16]; hence, comparison of the CRLBs becomes
more meaningful for the NLS estimators and the proposed
algorithms.

In order to derive the CRLBs for the LLS estimators, the
LLS-1 estimator is considered first. Since the LLS-1 estima-
tor utilizes the measurements zi, i = 1, . . . , N, only through
the terms z2

r − z2
i , for i = 1, . . . , r − 1, r + 1, N (cf. Equa-

tions (9)–(13)), where r is the index of the reference FT, its
measurement set is specified as

z̃i = z2
r − z2

ĩ
, i = 1, . . . , N − 1 (14)

where

ĩ=̇
{

i, i < r

i + 1, i ≥ r
(15)

In order to simplify the notation, let r = N without loss
of generality and z̃ represent a vector that consists of z̃i’s in
Equation (14), z̃ = [

z2
N − z2

1 z2
N − z2

2 · · · z2
N − z2

N−1

]
.

The CRLB for any unbiased estimator that employs the
measurement set z̃ can be calculated from the conditional
PDF of z̃ given the MT position l = [x y]T. From Equations
(1), (2) and (14), z̃i = z2

r − z2
i can be expressed, for i =

1, . . . , N − 1, as

z̃i = kN − ki + 2(xi − xN )x + 2(yi − yN )y + 2nNfN (x, y)

−2nifi(x, y) + (n2
N − n2

i ) (16)

¶ In Section 4, various approaches, including a linear ML approach, are

proposed in order to narrow the gap between the performance of the

LLS algorithms and the CRLBs.
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where fi(x, y) and ki are given by Equations (2) and (12),
respectively. It is noted from Equation (16) that z̃i| l can be
accurately approximated by a Gaussian distribution when
the noise variances are considerably smaller than the dis-
tances between the MT and the FTs, which commonly holds
especially in LOS scenarios. Therefore, in order to simplify
the analysis and obtain a tractable CRLB expression, the
last term in Equation (16), namely n2

N − n2
i , is modeled

as a Gaussian random variable. In that case, z̃i given the
MT position, that is, z̃i| l, becomes Gaussian distributed
when the noise components are modeled as independent
zero-mean Gaussian random variables. Under this Gaus-
sian assumption, the conditional PDF of z̃i given l = [x y]T

can be obtained, after some manipulation, as

z̃i | l ∼ N
(
µi(x, y), σ̃i(x, y)

)
(17)

where

µi(x, y) = f 2
N (x, y) − f 2

i (x, y) + σ2
N − σ2

i (18)

σ̃i(x, y) = 4
[
σ2

Nf 2
N (x, y) + σ2

i f
2
i (x, y)

]
+ 2

(
σ4

N + σ4
i

)
(19)

Also, the covariance terms can be calculated as

E
{

(z̃i − µi(x, y))(z̃j − µj(x, y))
}=4σ2

Nf 2
N (x, y) + 2σ4

N

(20)

for i �= j. From Equations (17) to (20), the conditional dis-
tribution of z̃ given l can be expressed as

z̃ | l ∼ N
(
µ(x, y),�(x, y)

)
(21)

with µ(x, y) = [µ1(x, y µ2(x, y) · · · µN−1(x, y)]T, where
µi(x, y) is as in Equation (18) for i = 1, . . . , N − 1, and

�(x, y) = (
4σ2

Nf 2
N (x, y) + 2σ4

N

)
1N−1

+ 2diag
{

2σ2
1f

2
1 (x, y)

+σ4
1 , . . . , 2σ2

N−1f
2
N−1(x, y) + σ4

N−1

}
(22)

where 1N−1 denotes an (N − 1) × (N − 1) matrix of ones,
and diag{a1, . . . , aM} represents anM × M diagonal matrix
with ai being the ith diagonal. Based on the signal model
specified by Equations (21)–(22), the CRLB can be obtained
as stated in the following proposition.

Proposition 1. The CRLB on the MSE of an unbiased
position estimator l̂ based on the measurements model in
Equation (21) is given by

E{‖l̂ − l‖2} ≥ Ĩ11 + Ĩ22

Ĩ11Ĩ22 − Ĩ2
12

(23)

where#

Ĩ11 = (N − 1)

2g2

[
g

∂2g

∂x2
−

(
∂g

∂x

)2
]

+ 4bT
x�

−1bx + 2σ2
Nf 2

N

N−1∑
i,j=1

∂2hij

∂x2

+ 2
N−1∑
i=1

σ2
i f

2
i

∂2hii

∂x2
(24)

Ĩ22 = (N − 1)

2g2

[
g

∂2g

∂y2
−

(
∂g

∂y

)2
]

+ 4bT
y�

−1by + 2σ2
Nf 2

N

N−1∑
i,j=1

∂2hij

∂y2

+ 2
N−1∑
i=1

σ2
i f

2
i

∂2hii

∂y2
(25)

Ĩ12 = (N − 1)

2g2

[
g

∂2g

∂x∂y
− ∂g

∂x

∂g

∂y

]

+ 4bT
x�

−1by + 2σ2
Nf 2

N

N−1∑
i,j=1

∂2hij

∂x∂y

+ 2
N−1∑
i=1

σ2
i f

2
i

∂2hii

∂x∂y
(26)

with �(x, y) being given by Equation (22),
g(x, y)=̇

∣∣�(x, y)
∣∣, hij(x, y)=̇[

�−1(x, y)
]

ij
, bx=̇[x1 −

xN · · · xN−1 − xN ]T and by=̇[y1 − yN · · · yN−1 − yN ]T.

Proof. Please see Appendix A. �

Note that Proposition 1 provides generic CRLB expres-
sions that are valid for any system configuration. Although
the expressions in Equations (24)–(26) can be difficult to
evaluate analytically for a large number of FTs, they still
facilitate simple evaluations via computer programs, as
employed in Section 5.

After deriving the CRLB for the LLS-1 estimator** as in
Proposition 1, the CRLB for LLS-2 is considered next. Since
the LLS-2 estimator subtracts each equation in Equation (8)
from all the other equations, it utilizes the measurements zi,
for i = 1, . . . , N, only through the following terms:

žij = z2
i − z2

j , i, j = 1, 2, . . . , N, i < j (27)

# The function arguments (x, y)’s are omitted in order to have simpler

expressions.
**It should be noted that ‘the CRLB for the LLS-1 estimator’ more

generally means ‘the CRLB for any unbiased estimator based on the

linearized measurements in Equation (14)’.
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Note that LLS-2 employs more measurements than LLS-
1 (cf. Equation (14)). However, it is observed that all the
additional measurements in Equation (27) can be obtained
from the differences of the measurements in Equation (14).
In other words, there are no independent measurements,
or additional information, in the measurement set for the
LLS-2 algorithm compared to LLS-1. Therefore, the CRLB
expression for the LLS-1 estimator is also valid for LLS-2.

Finally, the CRLB for the LLS-3 estimator is considered.
Since LLS-3 subtracts the average of the measurements in
Equation (8) from all the equations, it effectively utilizes
the following measurements set:

z̄i = z2
i − 1

N

N∑
j=1

z2
j , i = 1, 2, . . . , N (28)

Although this measurements set seems to be quite differ-
ent from that in Equation (14) for the LLS-1 estimator, the
following proposition states that it carries the same amount
of statistical information as the one in Equation (14).

Proposition 2. The CRLB for estimating the MT posi-
tion based on the measurements set in Equation (28) is
the same as the CRLB based on the measurements set in
Equation (14).

Proof. Please see Appendix B. �

After obtaining the CRLB expression for the LLS algo-
rithms, the aim is to improve the performance of those
algorithms and make them perform closely to the CRLB.

4. REFERENCE FT SELECTION AND
ML ESTIMATION FOR LOS AND
NLOS SCENARIOS

In this section, two approaches, namely, reference selec-
tion and ML estimation, are proposed in order to improve
the performance of the LLS estimators. Although the
algorithms are developed for the LLS-1 technique in the
following, the proposed ML approach can also be applied
to the LLS-2 and LLS-3 techniques in a similar manner.

To develop the framework of the proposed algorithms,
the vector pr in Equation (11) is expanded as follows:

pr = p(c)
r + p(n)

r (29)

where p(c)
r and p(n)

r denote the constant and the noisy com-
ponents of pr , respectively [28]. From Equations (1) and

(11), p(c)
r and p(n)

r can be expressed as

p(c)
r =




f 2
r (x, y) − f 2

1 (x, y) − kr + k1

...

f 2
r (x, y) − f 2

r−1(x, y) − kr + kr−1

f 2
r (x, y) − f 2

r+1(x, y) − kr + kr+1

...

f 2
r (x, y) − f 2

N (x, y) − kr + kN




p(n)
r =




2fr(x, y)nr − 2f1(x, y)n1 + n2
r − n2

1

...

2fr(x, y)nr − 2fr−1(x, y)nr−1 + n2
r − n2

r−1

2fr(x, y)nr − 2fr+1(x, y)nr+1 + n2
r − n2

r+1

...

2fr(x, y)nr − 2fN (x, y)nN + n2
r − n2

N



(30)

4.1. Reference FT selection for LOS
scenarios

The LLS-1 estimator studied in Section 3 arbitrarily selects
one of the FTs as the reference. However, observation of the
noisy terms in p(n)

r (cf. Equation (30)) reveals that all the
rows of the vector p(n)

r depend on the true distance between
the MT and the reference FT, i.e., fr(x, y), and the noise
component related to that reference, i.e., nr . For exam-
ple, if the reference FT is away from the MT, this implies
that all the elements of vector pr can include larger noise
terms, degrading the position estimation accuracy. There-
fore, selection of the reference FT may considerably affect
the MSE of the estimator.

In order to develop an optimal selection strategy, first
express the estimator in Equation (13) as follows:

l̂r = Brp
(c)
r + Brp

(n)
r (31)

where Br=̇(AT
r Ar)−1AT

r , and p(c)
r and p(n)

r are given by
Equation (30). Since the second term on the right-hand-
side of Equation (31) is due to noise, the ‘best’ reference
FT can be selected as the one that minimizes the expected
value of the square of the L2-norm for that term; i.e.,

ropt = arg min
r∈{1,...,N}

E
{∣∣∣∣Brp

(n)
r

∣∣∣∣2

2

}
(32)
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If the elements of Br are denoted as

Br=̇
[

ηr,1 · · · ηr,r−1 ηr,r+1 · · · ηr,N

υr,1 · · · υr,r−1 υr,r+1 · · · υr,N

]
(33)

the expectation in Equation (32) can be obtained from Equa-
tion (30) as

E
{∣∣∣∣Brp

(n)
r

∣∣∣∣2

2

}
=

N∑
i=1
i�=r

N∑
j=1
j �=r

ηr,iηr,j E{Fr,iFr,j}

+
N∑
i=1
i�=r

N∑
j=1
j �=r

υr,iυr,j E{Fr,iFr,j} (34)

where††

Fr,i=̇2fr(x, y)nr + n2
r − 2fi(x, y)ni − n2

i (35)

As the noise components are distributed as ni ∼ N(0, σ2
i )

in the LOS case, E{Fr,iFr,j} in Equation (34) can be calcu-
lated, after some manipulation, as

E{Fr,iFr,j} = 4f 2
r (x, y)σ2

r + 3σ4
r − σ2

r (σ2
i + σ2

j ) + Ii,j (36)

where

Ii,j =
{

σ2
i σ

2
j , i �= j

4f 2
i (x, y)σ2

i + 3σ4
i , i = j

(37)

From Equations (34), (36), and (37), the optimal refer-
ence FT can be determined via Equation (32). Note that
the exact solution of the optimization problem requires the
knowledge of the fi(x, y) terms, which are not available in
practice. Therefore, the noisy measurements zi can be used
as their estimates in the calculations. Once the reference FT
is selected through Equation (32), the matrix Ar in Equa-
tion (10) and the vector pr in Equation (11) can be obtained
using this selected reference FT (FT-ropt), and the position
estimate is then obtained from Equation (13). The result-
ing estimator is referred as LLS with reference selection
(LLS-RS).

In the case of equal noise variances, i.e., σ2
i = σ2 ∀ i, it

can be shown that Equation (32) is minimized by selecting
the reference FT as the one that has the minimum (mea-
sured) distance, i.e.,‡‡

ropt = arg min
i∈{1,...,N}

{zi} (38)

††The argument (x, y) is omitted for the function Fr,i for simplicity of

notation.
‡‡Again the measurement zi is used as an estimate of the true distance

fi(x, y).

Figure 1. Trilateration yields multiple intersection of circles
defined by TOA measurements in the presence of noise.

For example, in Figure 1, FT-2 is used to obtain the linear
model from nonlinear expressions (i.e., selected as the ref-
erence), since z2 is the minimum among all the measured
distances. Note that even for different noise variances, if
the FT having the smallest measured distance also has the
smallest noise variance (which is typically the case), Equa-
tion (38) still minimizes the expectation in Equation (32);
hence, it is a practical simplification for typical scenarios.

4.2. Reference FT selection for NLOS
scenarios

In NLOS scenarios, it is more complicated to select an
optimal reference FT due to the presence of NLOS errors.
Specifically, the noise components are no longer zero mean
Gaussian random variables in NLOS scenarios, and the
statistical information about the noise components can be
limited. Depending on the amount of a-priori information
about the NLOS noise, various approaches can be consid-
ered for optimal reference FT selection.

4.2.1. Case-1: NLOS bias estimates are

available.

In some cases, noise in NLOS measurements can be mod-
eled as the summation of a constant NLOS bias and a zero
mean Gaussian error. If an estimate of the NLOS bias is
obtained (e.g., as in Reference [13]), then the measurements
can be corrected by that estimate, and the LOS reference
selection rule in Equation (32) can be employed. However,
estimation of NLOS biases is typically quite challenging.
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4.2.2. Case-2: Identities of NLOS FTs are

available.

If the knowledge of which FTs are in NLOS of the MT is
available (but NLOS noise statistics are unavailable), then a
simple reference selection technique utilizing the minimum
distance measurement criteria and only the LOS FTs can be
stated as follows (call it LLS-RS-LO)§§

ropt = arg min
i∈CLOS

{zi} (39)

where CLOS denotes the index set for all the LOS FTs.
Some NLOS identification techniques as in References [22-
-24,29] can be used to determine the NLOS FTs and exclude
them from the set CLOS. Note that the geometry of the ter-
minals and how the reference FT is placed with respect
to the NLOS FTs and the MT become more important in
an NLOS scenario. A drawback of Equation (39) is that it
never selects an NLOS FT as the reference. However, in the
cases of small NLOS errors, it may be preferable to select
an NLOS FT as the reference if it is sufficiently close to the
MT.

4.2.3. Case-3: NLOS noise statistics are

available.

Now consider that the following statistical information is
available about the NLOS noise related to the ith reference
FT:

E{ni} = µi, E{n2
i } = µ2,i, E{n3

i } = µ3,i, E{n4
i } = µ4,i

(40)

Then, the optimal reference FT can be selected according
to the optimality criterion in Equation (32). In that case, the
cost function in Equation (34) should be calculated based
on the available NLOS statistics:

E{Fr,iFr,j} =
{

Hr + Hi − 2GiGr, i = j

Hr + GiGj − Gr(Gi + Gj), i �= j

(41)

where

Hi = 4f 2
i (x, y)µ2,i + 4fi(x, y)µ3,i + µ4,i (42)

Gi = 2fi(x, y)µi + µ2,i (43)

Since the true distances fi(x, y) are not available in
practice, the unbiased estimates zi − µi are used instead
of fi(x, y) in evaluating Equations (41)–(43). Also, it is
observed that Equations (41)–(43) reduce to Equations (36)

§§Here, LLS-RS-LO refers to the LLS estimator with reference selection

that uses the LOS measurements only.

and (37) for LOS scenarios, for which

µi = µ3,i = 0, µ2,i = σ2
i , µ4,i = 3σ4

i (44)

Note that when the noise moments are specified as in
Equation (40), it is more practical to modify the NLS algo-
rithm as in Equation (4) by subtracting the noise means from
the measurements. Therefore, the effective noise in the mea-
surements that are employed in the LLS estimation can be
described by the ξi=̇ni − µi terms. Hence, the moments in
Equation (40) become

E{ξi} = 0, E{ξ2
i } = σ2

i , E{ξ3
i } = µ̌3,i, E{ξ4

i } = µ̌4,i

(45)

and Equation (41) can be evaluated for Hi = 4f 2
i (x, y)σ2

i +
4fi(x, y)µ̌3,i + µ̌4,i and Gi = σ2

i .

4.3. ML estimation for LOS scenarios

As discussed in Section 3.2, the LLS estimators may not
perform very closely to the CRLBs since they are not the
ML solutions for the considered measurements sets. Specif-
ically, the LLS approach does not take into account the
correlations between the rows of the vector p(n)

r , which
become correlated due to the linearization process. In this
section, an improved LLS technique is proposed based on
the ML approach which naturally takes the correlations in
the measurements into account.

In order to derive the ML estimator in the presence of
correlated measurements [30], the expression in Equation
(29) can be reformulated, by using p(c)

r = Arl with l being
the true location of the MT, as

pr = Arl + p(n)
r (46)

In order to obtain an estimator with low computational
complexity, it is assumed that p(n)

r can be modeled as a
jointly Gaussian random vector as in Section 3. Note from
Equation (30) that when the noise terms are small com-
pared to the distances between the FTs and the MT, the
assumption becomes more accurate. If the distribution of
p(n)

r is represented by p(n)
r ∼ N(µr,Cr), the conditional

PDF of pr in Equation (46) given l can be expressed as
pr| l ∼ N(Arl + µr,Cr). Then, the ML solution is given
by [30]

l̂r = arg min
l

{
lTAT

r C
−1
r Arl − 2(pr − µr)

TC−1
r Arl

}
(47)

from which the ML estimator (MLE) can be derived as

l̂ = (AT
r C

−1
r Ar)

−1AT
r C

−1
r (pr − µr) (48)

When all the FTs are in LOS, the mean of p(n)
r can be

obtained from Equation (30) as
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µr=
[

σ2
r −σ2

1 · · · σ2
r −σ2

r−1 σ2
r −σ2

r+1 · · · σ2
r −σ2

N

]T

(49)

On the other hand, it is observed from Equations (30) and
(35) that the elements of the covariance matrix Cr of vector
p(n)

r can be calculated as

[Cr]ij = E{FiFj} − [µr]i[µr]j (50)

where E{FiFj} is given by Equations (36) and (37), and
[µr]i is the ith element of µr in Equation (49). Again note
that fi(x, y) terms in the calculations should be replaced by
their estimates, zi’s.

4.4. ML estimation for NLOS scenarios

The MLE in NLOS scenarios is the same as the formulation
in Equation (48), when Cr and µr are replaced by appropri-
ate values considering NLOS noise statistics. Assuming that
the statistics of the NLOS noise components are available
as in Equation (40), the mean µr can be expressed as

µr =




2fr(x, y)µr + µ2,r − 2f1(x, y)µ1 − µ2,1

...

2fr(x, y)µr + µ2,r − 2fr−1(x, y)µr−1 − µ2,r−1

2fr(x, y)µr + µ2,r − 2fr+1(x, y)µr+1 − µ2,r+1

...

2fr(x, y)µr + µ2,r − 2fN (x, y)µN − µ2,N



(51)

while the covariance matrix Cr is calculated as in Equation
(50) by using Equations (41)–(43) for the first term and
Equation (51) for the second term.

4.5. Summary of improved LLS algorithms
and complexity comparison

A generic block diagram for the proposed improvements
over the conventional LLS-1 estimator is illustrated in Fig-
ure 2. First, from N distance measurements, which can, for
example, be obtained from TOA measurements, a reference
FT is selected. Reference selection is performed accord-
ing to the optimization problem defined by Equation (32).
For LOS scenarios, the cost function of the optimization
problem is specified by Equations (33)–(37). In addition,
for equal noise variances, that is, for σ2

i = σ2 ∀i, the ref-
erence selection problem simplifies to Equation (38).‖‖ On

‖‖ The simplified selection rule is also valid if the measurement variance

increases with increasing distance as in many practical scenarios.

the other hand, for NLOS scenarios, the reference selec-
tion rule is based on the same optimization problem in
Equation (32), but the cost function is evaluated differ-
ently for various NLOS situations (cf. Equations (39)–
(43)).

While the knowledge of noise variance is sufficient for
evaluating Equation (32) in an LOS scenario, the first four
moments of the noise variance are employed in order to
evaluate Equation (39) in certain NLOS scenarios (Case-3
in Section 4.2). If the estimates for the NLOS biases are
available, they can be subtracted from the biased measure-
ments, followed by the LOS reference selection rule (Case-1
in Section 4.2). On the other hand, if only the indices of the
NLOS FTs are available, they may simply be excluded from
the set of candidate reference FTs if there are at least three
LOS FT measurements (Case-2 in Section 4.2).

Once the reference FT is selected, the corresponding
distance measurement is used to obtain a set of N −
1 linear equations corresponding to the remaining FTs,
and the position estimate is obtained through the LLS
estimator in Equation (13). Alternatively, an (N − 1) ×
(N − 1) covariance matrix can be obtained as described
in Section 4.3 or Section 4.4 for LOS or NLOS sce-
narios, respectively, followed by an MLE solution as
in Equation (48). Although the proposed reference selec-
tion techniques are specific to the LLS-1 estimator, the
ML estimation technique, which improves position esti-
mation by taking correlations between measurements into
account, can be applied to the LLS-2 and LLS-3 estimators,
as well.

It is useful to compare the computational complexities
of the different techniques discussed in the paper for a bet-
ter understanding of their applicability to low-complexity
systems. Computational complexities of different methods
can be obtained in terms of their CPU cycle counts by con-
sidering the individual cycle counts for addition (ADD),
multiplication (MUL), and comparison (CMP) operations.
For example, in a Xilinx DSP48 slice, these cycle counts
are 1, 3, and 1, respectively, for ADD, MUL, and CMP
operations [31]. Table I presents a breakdown of number
of cycle counts required for each operation corresponding
to four different LLS methods, where Np = (

N

2

)
and it is

assumed that the noise variance at all the FTs are identical.
It can easily be seen that complexity of LLS-1, LLS-3, and
LLS-RS are O(N), while complexity of LLS-2 is O(N2)
due to large matrix sizes of Np × Np that are involved.
While it is not specifically included in Table I, complexity
of MLE isO(N3) due to the inversion of (N − 1) × (N − 1)
covariance matrices in Equation (48). Therefore, MLE has
significantly larger complexity compared to all four of the
LLS techniques. In Figure 3, CPU cycle counts of different
algorithms are plotted with respect to the number of FTs in
the environment. The LLS-RS is seen to have minimal com-
putational complexity increase compared to that of LLS-1,
and better computational complexities compared to LLS-2
and LLS-3. As will be shown in the next section, LLS-RS
also outperforms the localization accuracies of all the other
three LLS methods.
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Figure 2. Block diagram of the proposed reference FT selection and MLE algorithms.

5. SIMULATION RESULTS

In this section, simulation studies are performed in order
to evaluate the CRLBs and compare the performance of

the LLS algorithms studied in the previous section. In the
simulation environment, different numbers of FTs are con-
sidered for position estimation, as illustrated in Figure 4. In
particular, we consider position estimation with 3, 4, 5, and

Table I. Number of computations required for different algorithms.

Operation MUL ADD CMP

LLS-1
Calculate Ar 2(N − 1) 2(N − 1)
Calculate pr 3N 3(N − 1)
Calculate AT

r pr 2(N − 1) 2(N − 2)
Calculate (AT

rAr )−1 4N + 4 4N − 7
Product of (AT

rAr )−1 and AT
r pr 4 2

LLS-2
Calculate Ar 2Np 2Np

Calculate pr 3N 3Np + N

Calculate AT
r pr 2Np 2(Np − 1)

Calculate (AT
rAr )−1 4Np + 8 4Np − 3

Product of (AT
rAr )−1 and AT

r pr 4 2
LLS-3

Calculate Ar 2(N + 1) 4N

Calculate pr 6N + 3 8N

Calculate AT
r pr 2N 2(N − 1)

Calculate (AT
rAr )−1 4N + 8 4N − 3

Product of (AT
rAr )−1 and AT

r pr 4 2
LLS-RS

Calculate arg min
i∈{1,...,N}

{zi } N

Calculate Ar 2(N − 1) 2(N − 1)
Calculate pr 3N 3(N − 1)
Calculate AT

r pr 2(N − 1) 2(N − 2)
Calculate (AT

rAr )−1 4N + 4 4N − 7
Product of (AT

rAr )−1 and AT
r pr 4 2
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Figure 3. Comparison of computational complexities of different
algorithms as a function of number of FTs.

6 FTs, which are represented by triangles, squares, penta-
grams, and hexagrams, respectively. In each case, the FTs
are located with uniform spacing over a circle centered at
the origin with a radius of 100 m. As illustrated in Figure 4,
a grid of 15 × 15 test locations (marked by small dots) are
considered and performance metrics (including the CRLBs)
are calculated as the averages over those different locations.
For simplicity, the same noise variances are assumed for all
the distance measurements in LOS scenarios, i.e., σ2

i = σ2.
First, an LOS scenario is considered with four FTs as in

Figure 4, where the FTs are labeled as FT-1, FT-2, FT-3,
and FT-4. The average root mean-squared error (RMSE)
results for different algorithms and the CRLBs for this sce-
nario are presented in Figure 5. It is observed that there is a
linear relation between the standard deviation of the noise
and the RMSE, which can also be observed from Equations
(6) and (7) for the CRLB in the nonlinear case. Comparison
of the three LLS algorithms reveals that LLS-2 and LLS-
3 have the same performance, which is better than that of
LLS-1. In other words, LLS-1 has the highest RMSEs. The
worst performance of LLS-1 is mainly due to its estimation
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Figure 4. Simulation environment with 3, 4, 5, and 6 FTs, where
the coordinates are in the unit of meters.
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Figure 5. RMSE versus the noise variance (equal noise variances
are assumed for all FTs) for the linear LS algorithms, and the

CRLBs.

technique which uses one of the FTs as the reference for
other measurements (cf. Equation (14)). In the presence of
large noise in the reference, the estimate can have signifi-
cant errors. However, LLS-2 and LLS-3 have an averaging
effect in selecting the reference, since not only a single
measurement is used as the reference (cf. Equations (27)
and (28)).

Another observation from Figure 5 is that there is con-
siderable difference between the theoretical limits, CRLBs,
and the performance of the prior-art LLS algorithms. For
example, for a noise standard deviation of 2 m, the per-
formance difference between LLS-1 and the CRLB is
about 0.4 m. When the optimal RS technique described in
Equation (32), call it LLS-RS-Opt, is used, the average local-
ization performance approaches to the CRLB significantly,
and it performs better than all the prior-art LLS algorithms.
Moreover, since the noise variances are the same for dif-
ferent FTs in this scenario, the simplified version of the
reference selection technique in Equation (38), call it LLS-
RS-Smp, performs equally well. Some further performance
gain is obtained through utilizing the MLE method in Equa-
tion (48). Also, the results show that the reference selection
technique does not modify the performance of the MLE
method for an LOS scenario. Finally, the CRLBs for the
linear and nonlinear cases in Section 2 and Section 3, respec-
tively, seem to have close values, but the CRLB for the
nonlinear case is lower than that for the linear case, as
expected. Also, the proposed techniques, especially the ML
approach, narrow the gap between the performance of linear
position estimation and the CRLB significantly.

The topology and the number of FTs can have signifi-
cant impacts on positioning accuracy. In order to observe
how the RMSEs change for different numbers of FTs, sim-
ulation results are obtained for scenarios with 3, 4, 5, and
6 FTs in Figure 4. Since the RMSE of a certain algo-
rithm has a linear relation with the standard deviation of
noise for LOS scenarios, the following metric is employed
[1], GDOPavg = Average RMSE

σ
, which is referred to as the
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Figure 6. Average GDOP versus the number of FTs for various
algorithms.

average geometric dilution of precision (GDOP), and is
independent of the noise standard deviation. In Figure 6,
the average GDOPs are plotted versus the number of FTs
involved in position estimation for various algorithms. The
results indicate that when there is a larger number of FTs,
the performance gap between LLS-1 and LLS-RS increases,
and it becomes more advantageous to use the LLS-RS algo-
rithm. This is because at a particular test location, it becomes
more likely to find a better FT for linearization purposes.
Another critical observation is that the MLE converges to
the CRLB as the number FTs increases. Moreover, as the
number of FTs increases, average GDOP value becomes
less than one. Based on the definition of GDOP, this implies
that the variance of the position estimate becomes smaller
than the variance of the individual distance measurements
for large N.

For NLOS simulations, we consider the topology with
4 FTs as in Figure 4, and FT-4 is taken as the NLOS FT
(the remaining FTs are all in LOS of the MT). In Figure
7, the simulation results for LLS-1 are presented for σ2 ∈
{0.3, 3} m2 when different FTs are selected as the reference
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Figure 7. Performance of LLS-1 for various NLOS scenarios.
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Figure 9. Average RMSE versus NLOS bias (�2 = 3 m2).

FT¶¶. The NLOS noise at FT-4 is modeled as the sum of
a constant bias b4 and the Gaussian measurement noise as
in LOS measurements. The NLOS bias at FT-4 is changed
from 0 to 3.6 m. The CRLBs with biased measurements are
also indicated. A critical observation is that when FT-4 is
selected as the reference FT (i.e., when r = 4), the average
RMSEs become the largest for all scenarios. This verifies
the claim that on the average, an NLOS FT should not be
selected as the reference FT***. On the other hand, FT-2,
which is the FT that is the furthest from the NLOS FT†††,
is the best reference FT to select for both σ2 = 0.3 m2 and
σ2 = 3 m2.

¶¶ The RMSE of LLS-1 has been derived in closed form in the presence

of NLOS bias in References [18,19]. However, comparison of different

selections of the reference FT has not been performed.
***The RMSEs are averaged over different locations on the grid, and

given b4, there may be individual locations close to FT-4 on the grid

where selecting FT-4 as the reference may be preferable.
†††As an alternative method to LLS-RS, the reference FT can be selected

and fixed for a given set of user locations, which may be an efficient

approach if users are clustered around certain regions.
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Figure 10. Average RMSE versus noise standard deviation when
FT-4 is subject to an additional NLOS noise with mean 3 m and

variance 3 m2.

The NLOS simulations in Figures 8 and 9 compare the
accuracies of the proposed techniques with those of LLS-1
for different values of σ2. FT-2 (which is the best reference
FT on the average according to Figure 7) is always selected
as the reference FT for LLS-1. Again, the NLOS noise is
modeled as the sum of a constant bias and the Gaussian
measurement noise as in LOS measurements. The results
show that LLS-RS and LLS-RS-LO perform better than LLS-
1 for LOS scenarios or for small NLOS bias values. When
the NLOS bias value gets larger, after some point, LLS-1
starts performing better. This is because LLS-RS uses the
measured distances, which gets considerably biased as the
NLOS bias increases. For larger σ2, the range of the NLOS
bias values where LLS-RS beats LLS-1 gets larger. More-
over, it is observed that there is only marginal improvement
of using LLS-RS-LO rather than LLS-RS, which appears
when σ2 is small and when the NLOS bias is large. This is
because LLS-RS-LO never selects the NLOS FT as the refer-
ence FT even when the MT is very close to it. In both figures,
the MLE with perfect bias knowledge performs close to
the CRLB (as in an LOS scenario)‡‡‡, while without any
knowledge of the NLOS bias, it still performs better than
LLS-RS.

Finally, in Figure 10, performances of various algorithms
are compared for the four FT scenarios in Figure 4, when the
FT-4 is subject to an additional Gaussian NLOS noise with a
mean of 3 m and a variance of 3 meters2. All the FTs are also
subject to measurement noise with a standard deviation indi-
cated on the x-axis of Figure 10. The results indicate that the
LLS-1 estimator, which uses the measurements without any
bias adjustment as in Equation (4) and selects FT-1 as the
reference FT, has the worst performance among all the algo-
rithms. For comparison purposes, the results for the LLS-RS
and MLE algorithms that do not have any information about

‡‡‡ One can also consider LLS-RS with perfect bias knowledge, which

would yield the same accuracy as in an LOS scenario.

the NLOS noise statistics are also plotted (‘LLS-RS (No
NLOS info.)’ and ‘MLE (No NLOS info.)’, respectively).
When the statistics of the NLOS noise is known, a rea-
sonable approach for least-squares algorithms is to subtract
the mean of the NLOS noise from the related measure-
ment as shown in Equation (4). When the LLS-1 estimator
is implemented based on such bias corrected measurements,
its performance can increase significantly as shown by the
‘LLS-1 (Bias corrected)’ curve in Figure 10. It is observed
that the performance of the bias corrected LLS-1 estimator
can still be improved via the proposed reference selection
and ML approaches by using the statistical information
about the NLOS noise. The curves ‘LLS-RS (NLOS info.)’
and ‘MLE (NLOS info.)’ refer to position estimation based
on the proposed approaches in Section 4.2 and Section 4.4,
respectively. The resulting estimators perform more closely
to the CRLB, and specifically, the MLE algorithm performs
better than all the algorithms especially at low measurement
noise levels.

6. CONCLUDING REMARKS

While location estimation based on non-linear observations
provides high localization accuracy, it has large computa-
tional complexities. Using linearized observations allows
significant reduction in the computational complexity. In
this paper, a generic CRLB expression has been derived
for position estimators that utilize linearized measurements.
This CRLB expression quantifies the performance loss
in using linearized measurements in least-squares esti-
mators. In order to reduce that performance loss, both
reference selection and ML techniques have been proposed.
In reference selection, the reference FT is selected opti-
mally according to the cost function in Equation (32). In
addition, the ML technique takes into account the corre-
lations between linear measurements and provides further
performance improvement. Computational complexities of
different approaches have also been compared. Simulation
results indicate that both techniques perform better than
the prior-art LLS estimators and reduce the gap between
theoretical limits and practical algorithms. Proposed low-
complexity techniques with good localization accuracy may
be useful, for example, for wireless sensor network appli-
cations, which require low computational complexity due
to battery/hardware limitations.

APPENDIX A

Proof of Proposition 1. From Equation (21) to (22),
the log-likelihood function of z̃ given l = [x y]T can be
expressed as

ln p(z̃| l) ∝ − (N − 1)

2
ln |�(x, y)|

−1

2
(z̃ − µ(x, y))T �−1(x, y) (z̃ − µ(x, y)) (52)
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Then, the FIM, given by

Ĩ =




−E

{
∂2

∂x2 lnp(z̃| l)
}

−E

{
∂2

∂x∂y
lnp(z̃| l)

}

−E

{
∂2

∂x∂y
lnp(z̃| l)

}
−E

{
∂2

∂y2 lnp(z̃| l)
}


 (53)

can be obtained by first calculating the partial derivatives
of the log-likelihood function in Equation (52).

For simplicity of the expressions, the (x, y) arguments
in Equation (52) are omitted, and g = |�| and hij = [�−1]ij
are defined, where |�| represents the determinant of � and
[�−1]ij represents the element of �−1 in the ith row and
jth column. Then, the first derivative of Equation (52) with
respect to x can be calculated as

∂

∂x
ln p(z̃| l) = − (N − 1)

2g

∂g

∂x
− 1

2

N−1∑
i,j=1

{
− ∂µi

∂x
hij(z̃j − µj)

+ (z̃i − µi)
∂hij

∂x
(z̃j − µj)

−(z̃i − µi)hi,j

∂µj

∂x

}
(54)

For ∂ ln p(z̃| l)/∂y, the same expression as in Equation
(54) is obtained, with the only difference being that the
partial derivatives are with respect to y in that case.

After calculating the second derivative and taking the
expectation, we obtain

E

{
∂2

∂x2
lnp(z̃| l)

}
= − (N − 1)

2g2

[
g
∂2g

∂x2
−

(
∂g

∂x

)2
]

−
N−1∑
i,j=1

hij

∂µi

∂x

∂µj

∂x

−2f 2
Nσ2

N

N−1∑
i,j=1

∂2hij

∂x2

−2
N−1∑
i=1

∂2hii

∂x2
f 2

i σ2
i (55)

Similarly, E

{
∂2

∂y2 lnp(z̃| l)
}

can be obtained.

The off-diagonal terms in Equation (53) can be derived
after some manipulation as

E

{
∂2

∂x∂y
lnp(z̃| l)

}
= − (N − 1)

2g2

[
g

∂2g

∂x∂y
− ∂g

∂x

∂g

∂y

]

−
N−1∑
i,j=1

hij

∂µi

∂x

∂µj

∂y

−2f 2
Nσ2

N

N−1∑
i,j=1

∂2hij

∂x∂y

−2
N−1∑
i=1

f 2
i σ2

i

∂2hii

∂x∂y
(56)

In addition, it can be shown from Equations (2) and (18)
that

∂µi

∂x
= 2(xi − xN ),

∂µi

∂y
= 2(yi − yN ) (57)

Therefore,
∑N−1

i,j=1 hij
∂µi

∂x

∂µj

∂x
becomes equal to

4bT
x�

−1bx, where bx (by) is as given in Proposition

1. Similarly,
∑N−1

i,j=1 hij
∂µi

∂y

∂µj

∂y
and

∑N−1
i,j=1 hij

∂µi

∂x

∂µj

∂y

become equal to 4bT
y�

−1by and 4bT
x�

−1by, respectively.
Then, from Equations (55) to (57), the inverse of Ĩ in

Equation (53) can be calculated, and the CRLB expression
in Proposition 1 can be obtained. �

APPENDIX B

Proof of Proposition 2. One way to prove the claim in the
proposition is to show that there is a one-to-one mapping
between the measurement sets in Equations (28) and (14).
To that aim, it is first observed that each measurement in
Equation (14) is simply equal to the difference of two mea-
surements in Equation (28). Specifically, z̃i = z̄r − z̄ĩ for
i = 1, . . . , N − 1, where ĩ is as in Equation (15). Then, it
can be shown that each measurement in Equation (28) can
be obtained from those in Equation (14) as the difference
between the average of the measurements in Equation (14)
and the corresponding measurement in Equation (14). In
other words,

z̄i = 1

N

N−1∑
j=1

z̃j − z̃i = 1

N

N−1∑
j=1

(
z2

r − z2
j

) − (z2
r − z2

i )

=
(

z2
r − 1

N

N∑
j=1

z2
j

)
− (z2

r − z2
i ) = z2

i − 1

N

N∑
j=1

z2
j

for i = 1, . . . , N − 1, where r = N is assumed without loss
of generality. Note that z̄N can be obtained from 1

N

∑N−1
j=1 z̃j .

Since the measurements in the sets (14) and (28) can be
obtained from each other, they carry the same amount of
statistical information; hence, the CRLBs based on those
measurements are the same. �
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