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Abstract—This paper studies the positioning problem
of a single target node based on time-difference-of-arrival
(TDOA) measurements in the presence of clock imperfec-
tions. Employing an affine model for the behaviour of a
local clock, it is observed that TDOA based approaches
suffer from a parameter of the model, called the clock
skew. Modeling the clock skew as a nuisance parameter, this
paper investigates joint clock skew and position estimation.
The maximum likelihood estimator (MLE) is derived for
this problem, which is highly nonconvex and difficult to
solve. To avoid the difficulty in solving the MLE, we employ
suitable approximations and relaxations and propose two
suboptimal estimators based on semidefinite programming
and linear estimation. To further improve the estimation
accuracy, we also propose a refining step. In addition,
the Cramér-Rao lower bound (CRLB) is derived for this
problem as a benchmark. Simulation results show that the
proposed suboptimal estimators can attain the CRLB for
sufficiently high signal-to-noise ratios.

Index Terms– Wireless sensor network, time-difference-
of-arrival (TDOA), clock skew, semidefinite programming,
linear estimator, maximum likelihood estimator (MLE),
Cramér-Rao lower bound (CRLB), positioning, clock syn-
chronization.

I. INTRODUCTION

Positioning of sensor nodes based on time-of-arrival

(TOA) measurements is a popular technique for wireless

sensor networks (WSNs) [1]–[6]. TOA-based positioning

can potentially provide highly accurate estimation of

target’s position in some situations, e.g., in line-of-sight

conditions and for sufficiently high signal-to-noise ratios

(SNRs) [1], [7]. Despite its high performance, TOA-

based positioning is strongly affected by the clock offset

imperfection, a fixed deviation from a reference clock

at time zero. To resolve this problem, time-difference-

of-arrival (TDOA) based positioning has been proposed

M. R. Gholami and E. G. Ström are with the Division of
Communication Systems, Information Theory, and Antennas, De-
partment of Signals and Systems, Chalmers University of Technol-
ogy, SE-412 96 Gothenburg, Sweden (e-mail: moreza@chalmers.se;
erik.strom@chalmers.se).

S. Gezici is with the Department of Electrical and Electron-
ics Engineering, Bilkent University, Ankara 06800, Turkey (e-mail:
gezici@ee.bilkent.edu.tr).

This work was supported in part by the European Commission
in the framework of the FP7 Network of Excellence in Wireless
COMmunications # (contract no. 318306), in part by the Swedish
Research Council (contract no. 2007-6363), and in part by Turk
Telekom (contract no. 3015-02).

as an alternative approach in the literature [1], [2], [8],

which has found various applications in practice, e.g., in

the Global Positioning System.

The clock of an oscillator can be described via an

affine model, which involves the clock offset and clock

skew parameters [9]. While the clock offset corresponds

to a fixed time offset due to clock imperfections, the

clock skew parameter defines the rate of variations in

the local clock compared to the real time [10], [11].

While the TDOA technique resolves the clock offset

ambiguity, it can still suffer from the clock skew. It

means that the actual difference between two TOAs,

which forms a TDOA measurement, in a target node

might be larger or smaller than the actual difference

even in the absence of the measurement noise. For an

ideal clock, the clock skew is equal to one and it might

be larger or smaller than one for an unsynchronized

clock. Thus, a position estimate may be considerably

affected by a non-ideal clock skew for an unsynchronized

network in practical scenarios, depending on how much

the clock skew deviates from one.

During the last few years, various synchronization

techniques have been proposed in the literature; e.g.,

see [10]–[13] and references therein. While traditionally

synchronization and positioning are separately studied

in MAC and physical layers, respectively, the authors

in [14] formulate a joint synchronization and positioning

problem in the MAC layer. If the major delay is the

fixed delay due to propagation through the radio chan-

nel, the joint position and timing estimation technique

works well. The method developed in [14] is based

on a two-way message passing protocol that can be

considered as a counterpart to two-way TOA ranging

in the physical layer [15]. The authors in [7] investi-

gate the positioning problem based on time of flight

measurements for asynchronous networks in the physical

layer and propose a technique based on the linear least

squares. Using approximations, the authors in [16]–[18]

propose differential TDOA to mitigate the effects of

imperfect clock impairments. This method can cause

noise enhancement and performance degradation in some

scenarios. Such an approach is effective when only clock

offsets exist in target and reference nodes and when

there are more than one target node. In addition, the
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proposed iterative method based on a nonlinear least

squares criterion may converge to a local minimum

resulting in a large positioning error since the objective

function is nonconvex.

In this paper, we study the single node positioning

problem in the physical layer for one way ranging, where

an unsynchronized target node tries to find its position by

computing TDOA measurements (self-positioning). We

assume that a number of reference nodes are perfectly

synchronized with a reference clock and transmit their

signals at a common time instant.1 Then, the target

node measures the TOAs of the received signals and

forms a set of the TDOA measurements. By constructing

a TDOA measurement, the clock offset vanishes in

the TDOA measurement, but, as mentioned previously,

an unsynchronized clock skew still affects the TDOA

measurements. Since the clock skew is unknown, in

this study, we consider it as a nuisance parameter and

involve it in the position estimation. In fact, we deal

with the joint estimation of the clock skew and the

position of the target node. Note that we consider a

fixed clock skew during the TDOA measurements since

its variations during a period of time is assumed to

be negligible. For Gaussian measurement errors, the

maximum likelihood estimator (MLE) for this problem

is highly nonconvex and difficult to solve. In order to

derive a computationally efficient algorithm, we consider

a number of approximations and relaxations, and propose

two suboptimal estimators, which can be efficiently

solved to provide coarse position estimates. The first

estimator is based on relaxing the nonconvex problem to

a semidefinite programming (SDP). Using a linearization

technique, we derive a linear model and consequently

apply a linear least squares (LLS) approach to find

an estimate of the target position. We, then, apply

a correction technique [19] to improve the estimation

accuracy. In order to improve the accuracy of the coarse

estimate provided by the SDP or the LLS, we linearize

the measurements using the first-order Taylor series ex-

pansion around the estimate and obtain a linear model in

which the estimation error can be approximated. Based

on that model, the coarse position estimate can be further

improved. To compare different approaches, we derive

the Cramér-Rao lower bound (CRLB) as a benchmark.

We also study the CRLB when an estimate of the clock

skew is available (through simulations) and investigate

the effectiveness of the proposed approaches.

In summary, the main contributions of this work are:

1Another alternative is to measure TOAs of the signal transmitted
by a target node in the reference nodes and then to transfer the
measurements to a central unit to compute the TDOAs, from which the
position of the target is estimated (remote positioning). Although this
method can resolve the clock imperfection of the target node, it needs
a central processing unit and requires that the final estimate should be
sent back to the target node.

1) the idea of joint clock skew and position estimation

based on TDOA measurements;

2) derivation of the MLE and the CRLB for the

problem considered in this study;

3) deriving two suboptimal estimators to provide

coarse estimates of the target location based on

linearization and relaxation techniques;

4) proposing a simple estimator based on the first

order Taylor-series expansion around the coarse

estimate to obtain a refined position estimate.

The remainder of the paper is organized as follows.

Section II explains the signal model considered in this

paper. In Section III, the maximum likelihood estima-

tor and a theoretical lower bound are derived for the

problem. Two suboptimal estimators are studied in Sec-

tion IV. Simulation results are discussed in Section V.

Finally, Section VI makes come concluding remarks.

Notation: The following notations are used in this pa-

per. Lowercase and bold lowercase letters denote scalar

values and vectors, respectively. Matrices are written in

bold uppercase letters. 1M and 0 denote the vector of

M ones and the vector (matrix) of all zeros, respectively.

IM is an M by M identity matrix. The operators tr(·)
and E{·} are used to denote the trace of a square matrix

and the expectation of a vector (variable), respectively.

The Euclidian norm of a vector is denoted by ‖ · ‖.

The (blk)diag(X1, . . . , XN) is a (block) diagonal matrix

with diagonal elements (blocks) X1, . . . , XN . d(a,b) =
‖a−b‖ is the distance between a and b, and ⊗ denotes

the Kronecker product. Given two matrices A and B,

A � B means that A−B is positive semidefinite. Sm

and R
m
+ denote the set of all m×m symmetric matrices

and the set of all m× 1 vectors with positive elements,

respectively. [A]i,j denotes the element of matrix A in

the ith row and the jth column.

II. SYSTEM MODEL

Consider a two-dimensional (2-D) network2 with N+
1 sensor nodes. Suppose that the first N sensors are

reference (anchor) nodes which are located at known

positions ai = [ai,1 ai,2]
T ∈ R

2, i = 1, ..., N , and the

last sensor node is the target node which is placed at

unknown position x = [x1 x2]
T ∈ R

2. It is assumed

that the reference nodes are synchronized with a ref-

erence clock while the clock of the target node is left

unsynchronized. The following affine model is employed

for the local clock of the target node [10]:

C(t) = θ0 + w t , (1)

where θ0 and w denote, respectively, the relative clock

offset and the clock skew between the target node and

the reference time t.

2The generalization to a three-dimensional scenario is straightfor-
ward, but is not explored in this paper.
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Fig. 1. Local clock versus real clock.
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Fig. 2. TDOA measurement at the target node for signals from two
reference nodes i and j.

To get some insight into this model, consider Fig. 1,

which illustrates the relation between a local clock and a

real clock. For the example in the figure, the local time

varies faster than the ideal time, i.e., w > 1. The affine

model for the clock is a common model and has been

justified in the literature, e.g., see [9], [10], [20] and

references therein. Therefore, this model is employed

throughout the paper. Assume that the target node is able

to measure the TOAs of the received signals from the

reference nodes. Suppose that the synchronized reference

nodes send their signals at the time instant T k
0 (see

Fig. 2). The TOA measurement for the signal transmitted

from reference node i at the target node for the kth

measurement can be written3 as [21], [22]

tki = θ0 + w

(

T k
0 +

d(ai,x)

c

)

+ ñk
i ,

i = 1, . . . , N, k = 1, . . . ,K, (2)

where c is the speed of propagation, d(ai,x) is the

Euclidian distance between reference node i and the

3If time stamping is performed in the MAC layer, a model including
fixed and random delays with no measurement noise can be considered.
Such a model has been extensively studied in the synchronisation
literature, e.g., in [10] and references therein.

point x, ñk
i is the TOA estimation error at the target

node for the signal transmitted from the ith reference

node at time T k
0 , and K is the number of TOA mea-

surements (messages) for every link between a reference

node and the target node (collected in the target node).

The estimation error is often modeled by a zero-mean

Gaussian random variable with variance σ2
i /c

2; i.e.,

ñk
i ∼ N (0, σ2

i /c
2) [4], [5]. In addition, it is assumed

that E{ñl
i ñ

m
j } = 0 for i 6= j or l 6= m. Note that we

assume that θ0 and w are fixed unknown parameters for

k = 1, . . . ,K .

The preceding measurement model indicates that in

order to obtain an estimate of the distance between the

target node and a reference node, parameters θ0, w, and

T k
0 (as nuisance parameters) should be estimated as well.

For instance, the measurements in (2) can be collected

by the target node to derive an optimal estimator for es-

timating the unknown parameters including the nuisance

parameters, which makes the problem quite complex

and challenging. One way to get rid of some of the

unknown parameters is to subtract TOA measurements

of the signals sent from reference nodes i and j, and

form a TDOA measurement as follows:

∆tki,j = tki − tkj = w

(
d(ai,x)

c
−
d(aj ,x)

c

)

+ ñk
i − ñk

j ,

i 6= j = 1, . . . , N. (3)

As observed from (3), the clock offset θ0 and T k
0

have no effect on TDOA measurements since they

cancel out in the TDOA calculation. The clock skew,

however, still affects the TDOA measurements and it

should be considered when estimating the target node

position. Throughout this paper, we assume that the

TDOA measurements are computed by subtracting all

the TOA measurements, except the first one, from the

first TOA. Consequently, the range-difference-of-arrival

(RDOA) measurements are obtained as

zki,1 = c∆tki,1 = w di,1 + nk
i − nk

1 ,

i = 2, . . . , N, k = 1, . . . ,K, (4)

where nk
i = c ñk

i and di,1 = d(ai,x)− d(a1,x).

Define the vector of measurements z as

z =
[
zT1 · · · zTK

]T
∈ R

K(N−1), (5)

where

zk =
[
zk2,1 . . . zkN,1

]T
∈ R

(N−1). (6)

In order to find the position of the target node based on

the measurements in (5), one needs to estimate the clock

skew w as well.
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III. MAXIMUM LIKELIHOOD ESTIMATOR AND

THEORETICAL LIMITS

In this section, we first derive the MLE for the

positioning problem based on the measurements in (4)–

(6). In the sequel we obtain a theoretical lower bound

on the variance of any unbiased estimator. Note that the

estimator obtained in this section is optimal for the new

set of measurements in (5) and not necessarily optimal

for the original TOA measurements in (2).

A. Maximum Likelihood Estimator (MLE)

To find the MLE, we need to solve the following

optimization problem [23, Ch. 7]:

[x̂T ŵ] = arg max
[xT w]∈R3

pZ(z;x, w) , (7)

where pZ(z;x, w) is the probability density function of

vector z, which is indexed by parameters x and w.

Since the TOA errors are Gaussian random variables,

z in (5) is modeled as a Gaussian random vector,

i.e., z ∼ N (µK ,CK), with mean µk and covariance

matrix CK being computed as follows:

µK = 1K ⊗ µ ∈ R
K(N−1),

CK = blkdiag
(

C, . . . ,C
︸ ︷︷ ︸

K times

)

∈ R
K(N−1)×K(N−1), (8)

where

µ = w [d2,1 . . . dN,1]
T
,

C = diag(σ2
2 , . . . , σ

2
N ) + σ2

11N−11
T
N−1. (9)

Therefore considering the model in (4), the MLE formu-

lation can be expressed as

[x̂T ŵ] = arg min
[xT w]∈R3

[
z− µK

]T
C−1

K

[
z− µK

]
. (10)

Using Woodbury’s identity [24], which is a special case

of the matrix inversion lemma, one can write

C−1 = diag
(
σ−2
2 , . . . , σ−2

N

)

− s diag
(
σ−2
2 , . . . , σ−2

N

)
1N−11

T
N−1diag

(
σ−2
2 , . . . , σ−2

N

)
.

(11)

where s , 1/(
∑N

i=1 σ
−2
i ).

Then, the MLE can be obtained as

[x̂T ŵ] = arg min
[xT w]∈R3

K∑

k=1

N∑

i=2

((zki,1 − w di,1

σi

)2

−

s

N∑

j=2

(zki,1 − w di,1)(z
k
j,1 − w dj,1)

σ2
i σ

2
j

)

. (12)

As observed from (12), the MLE problem is highly

nonconvex and therefore is difficult to solve. To obtain

the solution of this problem, a grid search approach or an

iterative search, e.g., gradient-based approach, initialized

close to the target position and close to the clock skew

can be used. A grid search method has some drawbacks

such as complexity. Moreover, finding a good initial

point in the positioning problem is often a challenging

task [21]. In Section IV, we derive suboptimal estimators

to find good initial points. Before the detailed discussions

on these suboptimal estimators in Section IV, the CRLBs

are obtained in the following subsection in order to

provide performance benchmarks.

B. Cramér-Rao Lower Bound (CRLB)

Considering the measurement vector in (5) with mean

µK and covariance matrix CK as in (8), the elements of

the Fisher information matrix can be computed as [23,

Ch. 3]

Jnm = [J]nm =

[
∂µK

∂ψn

]T

C−1
K

[
∂µK

∂ψm

]

, n,m = 1, 2, 3,

(13)

where

ψn =

{

xn, if n = 1, 2

w, if n = 3.
(14)

From (9), ∂µK/∂ψn can be obtained as follows:
[
∂µK

∂ψn

]

= 1K ⊗

[
∂µ1

∂ψn
. . .

∂µN−1

∂ψn

]T

, n = 1, 2, 3,

(15)

where

∂µi

∂ψn
=

{

w
(

xn−ai+1,n

d(ai+1,x)
− xn−a1,n

d(a1,x)

)

, if n = 1, 2

di+1,1, if n = 3.

(16)

After some calculations, the entries of the Fisher infor-

mation matrix can be computed as follows:

J11 = Kw2
N∑

i=2

(
I2i,1 − sIi,1Īi,1

)
,

J22 = Kw2
N∑

i=2

(
I2i,2 − sIi,2Īi,2

)
,

J33 = K

N∑

i=2

(d2i,1
σ2
i

− s

N∑

j=2

di,1dj,1
σ2
i σ

2
j

)

,

J12 = J21 = Kw2
N∑

i=2

(
Ii,1Ii,2 − sIi,2Īi,1

)
,

J13 = J31 = Kw

N∑

i=2

(

Ii,1di,1 −
s

σi
Īi,1di,1

)

,

J23 = J32 = Kw

N∑

i=2

(

Ii,2di,1 −
s

σi
Īi,2di,1

)

(17)
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where

Ii,n =
1

σi

(
xn − ai,n
d(ai,x)

−
xn − a1,n
d(a1,x)

)

,

Īi,n =

N∑

l=2

1

σ2
l σi

(
xn − al,n
d(al,x)

−
xn − a1,n
d(a1,x)

)

. (18)

The CRLB, which is a lower bound on the variance of

any unbiased estimator, is given as

Var(φ̂i) ≥ [J−1]i,i . (19)

Then, the lower bounds on the error variances for any

unbiased estimates of the position and the clock skew

can be computed as (using the inverse of a 3× 3 square

matrix [24])

E{‖x̂− x‖2} ≥

J33(J22 + J11)− (J2
32 + J2

13)

J33(J11J22 − J2
12) + (2J31J23J12 − J22J2

13 − J11J2
23)

,

(20a)

E{‖ŵ − w‖2} ≥

J11J22 − J2
12

J33(J11J22 − J2
12) + (2J31J23J12 − J22J2

13 − J11J2
23)

.

(20b)

In the rest of this section, we derive an alternative

CRLB for position estimation when an estimate of the

clock skew is available. To that aim, we model the

clock skew estimate as a Gaussian random variable

ŵ = w + ξw, where ξw is the error in the clock skew

estimation that is modeled as a zero-mean Gaussian

random variable, ξw ∼ N (0, σ2
w), and rewrite (4) as

z̄ki,1 = ŵ di,1 − ξw di,1 + nk
i − nk

1 , i = 2, . . . , N.
(21)

We assume that ξw and nk
i are independent. We collect

all the measurements when an estimate of the clock skew

is available as follows:

z̄ =
[
z̄T1 · · · z̄TK

]T
∈ R

K(N−1), (22)

where

z̄k =
[
z̄k2,1 . . . z̄kN,1

]T
∈ R

(N−1). (23)

Considering that the vector z̄ is a Gaussian random

vector z̄ ∼ N (µ̄K , C̄K) with

µ̄K = 1K ⊗ ŵ [d2,1 . . . dN,1]
T
,

C̄K = blkdiag
(

C̄, . . . , C̄
︸ ︷︷ ︸

Ktimes

)

, (24)

and

C̄ =diag(σ2
2 , . . . , σ

2
N ) + σ2

11N−11
T
N−1

+ σ2
w [d2,1 . . . dN,1]

T
[d2,1 . . . dN,1] , (25)

the entries of the Fisher information matrix is obtained

as [23, Ch. 3]

J̄nm = [J̄]nm =

[
∂µ̄K

∂xn

]T

C̄−1
K

[
∂µ̄K

∂xm

]

+
1

2
tr

(

C̄−1
K

∂C̄K

∂xm
C̄−1

K

∂C̄K

∂xn

)

,

n = 1, 2, m = 1, 2. (26)

Then, the CRLB for the position estimate is given by

E{‖x̂− x‖2} ≥
J̄11 + J̄22

J̄11J̄22 − J̄2
12

· (27)

This CRLB expression will be useful for providing

theoretical limits on the performance of position es-

timators that are based on already available estimates

of the clock skew parameter. In addition, for σw = 0
(i.e., no estimation errors), the CRLB expression covers

the special case in which the clock skew parameter is

perfectly known.

IV. SUBOPTIMAL ESTIMATORS

To solve the MLE formulated in (12) using an iter-

ative algorithm, we need a suitable initial point that is

sufficiently close to the optimal solution. In this section,

we propose two suboptimal estimators that provide such

initial points. In particular, we consider a two step

estimation procedure: coarse and fine. For the coarse

estimation step, we derive two suboptimal estimators

based on semidefinite programming (SDP) relaxation

and linear least squares (LLS). In the fine estimation

step, we derive a linear model and employ a technique

based on the regularized least squares critrerion.

A. Coarse estimate

We first express the clock skew parameter as w =
1+ δ, where δ is a small value.4 Dividing both sides of

(3) by w and using the approximation 1/(1+δ) ≃ 1−δ,

we can approximate the RDOA measurement in (4) as

zki,1 (1− δ) ≃ di,1 + (1− δ) (nk
i − nk

1),

i = 2, . . . , N, k = 1, . . . ,K, (28)

which can be further simplified (for the purpose of ob-

taining the approximate MLE in Section IV-A1 in which

the covariance matrix is independent of the unknown

parameter δ) as

zki,1 (1 − δ) ≃ di,1 + (nk
i − nk

1),

i = 2, . . . , N, k = 1, . . . ,K. (29)

4This is a reasonable model since the deviation of the clock skew
parameter from the ideal value of w = 1 is not significant for most
practical clocks.
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It is noted that keeping δ in (28) for the SDP for-

mulation in the next section complicates the problem.

In fact the covariance matrix of measurement noise will

be dependent on the unknown parameter δ and therefore

it is difficult to convert the corresponding MLE to an

SDP problem. However, for the LLS formulation we

apply a nonlinear processing on measurements in (28)

that makes the measurement noise be dependent on both

δ and unknown distance. Hence, neglecting δ does not

change the complexity of the problem considerably. As

explained later, in the LLS approach, we first neglect the

effect of the unknown parameters on the covariance ma-

trix of the measurement noise and find a first estimate of

the unknown parameters. We then use the first estimate

to approximate the covariance matrix.

1) Semidefinite Programming: In this section, we first

apply the maximum likelihood criterion to the model in

(29) and then change it to an SDP problem. The MLE

for the model in (29) can be obtained as

[x̂T δ̂] =

arg min
[xT δ]∈R3

K∑

k=1

(zk(1 − δ)−Pd)
T
C−1 (zk(1− δ)−Pd) ,

(30)

where zk is as in (6) and matrix P and vector d are

given by

P =








−1 1 0 0 . . . 0
−1 0 1 0 . . . 0

...
...

...
...

...
...

−1 0 0 0 . . . 1







, (31a)

d = [d(a1,x) d(a2,x) . . . d(aN ,x)]
T . (31b)

To solve (30), we use an alternative projection ap-

proach. That is, we first optimize the MLE objective

function with respect to the unknown parameter δ. Tak-

ing the derivative of the objective function in (30) with

respect to δ and equating to zero yield the following

expression for δ:

δ = 1− gTd , (32)

where

g =

∑K
k=1 P

T zkC
−1

∑K
k=1 z

T
kC

−1zk
. (33)

In the next step of the alternative projection approach, we

insert the expression in (32) into the MLE cost function

in (30). We also note that δ is small and then impose

a constraint (an upper bound) on its absolute value, i.e,

|δ| ≤ δmax, where δmax is a reasonable upper bound on δ.

After some manipulation, we can express the MLE for

the position as

minimize
x∈R2

dTQd

subject to |1− gTd| ≤ δmax (34)

where Q is given by

Q =
K∑

k=1

(

zk

∑K
k=1 z

T
kC

−1P
∑K

k=1 z
T
kC

−1zk
−P

)T

C−1

(

zk

∑K
k=1 z

T
k C

−1P
∑K

k=1 z
T
k C

−1zk
−P

)

. (35)

The optimization problem in (34) is nonconvex and

difficult to solve. In order to obtain a convex problem, we

express dTQd as dTQd = tr(QV), where V = ddT ,

and relax the nonconvex constraint V = ddT as follows.

Recalling that vij = [V]ij = ‖ai − x‖‖aj − x‖, we can

represent the diagonal entries of V as

vii = ‖ai − x‖2 = tr

([
I2 −ai

−aTi ‖ai‖2

]

Z

)

, (36)

where Z =
[
xT 1

]T [
xT 1

]
, i.e., Z is a rank-1 positive

semidifinite matrix. In addition, using Cauchy-Schwarz

inequality, we can express vij , i 6= j as

vij = ‖ai − x‖‖aj − x‖ ≥

∣
∣
∣
∣
tr

([
I2 −ai

−aTj aTi aj

]

Z

)∣
∣
∣
∣
.

(37)

Hence, the problem in (34) can be written as:

minimize
z∈S3;d∈RN

+
;V∈SN

dTQd

subject to tr

([
I2 −ai

−aTj aTi aj

]

Z

)

≤ vij , i 6= j,

tr

([
−I2 ai
aTj −aTi aj

]

Z

)

≤ vij , i 6= j,

tr

([
I2 −ai

−aTi ‖ai‖2

]

Z

)

= vii,

gTd ≤ 1 + δmax,

−gTd ≤ δmax − 1,

V = ddT , Z � 0, rank(Z) = 1,

[Z]3,3 = 1, i, j = 1, . . . , N. (38)

The nonconvex problem in (38) can be changed to

a convex problem by dropping the rank-1 constraint

rank(Z) = 1 and relaxing the nonconvex constraint

V = ddT to a convex one, i.e., V � ddT . Then, the
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convex optimization problem, called SDP, can be cast as

minimize
z∈S3;d∈RN

+
;V∈SN

dTQd

subject to tr

([
I2 −ai

−aTj aTi aj

]

Z

)

≤ vij , i 6= j,

tr

([
−I2 ai
aTj −aTi aj

]

Z

)

≤ vij , i 6= j,

tr

([
I2 −ai

−aTi ‖ai‖2

]

Z

)

= vii,

gTd ≤ 1 + δmax,

−gTd ≤ δmax − 1,
[

V d

dT 1

]

� 0, Z � 0,

[Z]3,3 = 1, i, j = 1, . . . , N. (39)

Note that the constraint V � ddT is expressed

as a linear matrix inequality using the Schur comple-

ment [25]. If the optimal solution of (39), i.e., Ẑ, has

rank-1 property and V = ddT , then the optimal solution

is at hand. Otherwise, we can apply a rank-1 approxi-

mation technique to improve the position estimate [26].

2) Linear least squares (LLS): In this section, we

derive a linear estimator to estimate the position of the

target node based on a nonlinear processing technique.

We first translate the network such that the first refer-

ence node lies at the origin. In particular, we define

a′i = ai − a1 for i = 1, . . . , N and t = x − a1.

Then, we move d(a1,x) in (28) (remembering that

di,1 = d(ai,x) − d(a1,x)) to the right-hand-side in the

translated coordinates as

zki,1 (1− δ) + ‖t‖ ≃ d(a′i, t) + (1− δ) (nk
i − nk

1),

i = 2, . . . , N.
(40)

Assume that the noise is small compared to the distance

d(a′i, t). Then, squaring both sides of (40) and dropping

the small term, we get

(zki,1)
2(1 − δ)2 + 2zki,1 (1− δ)‖t‖+ ‖t‖2 ≃

‖a′i‖
2 − 2(a′i)

T t+ ‖t‖2 + 2d(a′i, t)(1 − δ) (nk
i − nk

1),

i = 2, . . . , N. (41)

Assuming small δ, we can write (1−δ)2 ≃ 1−2δ. Hence,

we obtain a linear model based on unknown vector θ =
[tT ‖t‖ δ]T as

z̄ki = (gk
i )

Tθ + ξki , (42)

where gk
i = 2[−(a′i)

T − zki,1 (zki,1)
2]T , z̄ki = (zki,1)

2 −
‖a′i‖

2 and ξki = 2d(a′i, t)(1− δ) (nk
i − nk

1) + 2δ‖t‖zki,1.

Following the procedure explained above for all mea-

surements, we obtain a linear model in the matrix form

as

h = Gθ + ξ, (43)

where matrix G, and vectors h and ξ are computed as

G =
[
g1
2 . . . gK

1 . . . gK
1 . . . gK

N

]T
∈ R

(N−1)K×3,

h = [z̄12 . . . z̄1N . . . z̄K2 . . . z̄KN ]T ∈ R
(N−1)K ,

ξ = [ξ12 . . . ξ1N . . . ξK2 . . . ξKN ]T ∈ R
(N−1)K . (44)

Note that the noise vector ξ is a random vector with a

nonzero mean. In fact, E(ξ) = 2δ‖t‖µK , where µK is

given in (8). The covariance matrix of ξ can be computed

as

Cξ = blkdiag
(

D, . . . ,D
︸ ︷︷ ︸

K times

)

CKblkdiag
(

D, . . . ,D
︸ ︷︷ ︸

K times

)

,

(45)

where

D = 4diag
(
d(a′2, t)(1− δ) + δ‖t‖, . . . , d(a′N , t)(1− δ)

+ δ‖t‖
)
. (46)

Using the least squares criterion, a solution to (43) is

obtained as [23]

θ̂ = (GTC−1
ξ G)−1GTC−1

ξ (h− E(ξ)). (47)

Note that the mean vector E(ξ) and the inverse of

the covariance matrix C−1
ξ are unknown in advance

since they are dependent on the unknown parameters.

We first assign a zero vector and an identity matrix to the

mean vector and the covariance matrix, respectively, and

find an estimate of the unknown parameters. Then, we

approximate the mean vector and the covariance matrix

and recalculate the estimate given in (47).

The covariance matrix of the estimate in (47) is given

by [23]

C
θ̂
= (GTC−1

ξ G)−1. (48)

Remark 1: In cases that the observation matrix G is

ill-conditioned, we can use a regularization technique

in (47) to obtain a solution to the linear model in

(43). When the regularization parameter applies to the

last component of the unknown vector θ, it has a nice

interpretation. That is, the deviation of the clock skew

from the ideal clock is extremely small.

Remark 2: The procedure for approximating the co-

variance matrix and mean vector of ξ can be iterated

for several times. However, in practice one round of

updating is enough to achieve good performance.

We can further improve the accuracy of the estimate

in (47) by taking the relation between the elements of
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the estimate vector θ̂ into account. Each element of (47)

can be written as

[θ̂]1 = t1 + χ1,

[θ̂]2 = t2 + χ2,

[θ̂]3 = ‖t‖+ χ3, (49)

where χ = [χ1 χ2 χ3]
T denotes the estimation error, i.e.,

χ = θ̂−θ, and t = [t1 t2]
T . Suppose that the estimation

errors are considerably small. Therefore, squaring both

sides of the elements in (49) yields

[θ̂]
2

1 ≃ t21 + 2t1χ1,

[θ̂]
2

2 ≃ t22 + 2t2χ2,

[θ̂]
2

3 ≃ ‖t‖2 + 2‖t‖χ3. (50)

Hence, the relation between the estimated elements in

(47) can be obtained using (50) as

u = Bφ+ ν, (51)

where

ν = [2t1χ1 2t2χ2 2‖t‖χ3]
T ,

u =
[

[θ̂]
2

1 [θ̂]
2

2 [θ̂]
2

3

]T

,

φ =
[
t21 t

2
2

]T
,

B =





1 0
0 1
1 1



 . (52)

Then, the least squares solution to (51) is obtained as

φ̂ = (BTC−1
ν B)−1C−1

ν BTu, (53)

where the covariance matrix of Cν can be computed as

Cν = diag(t1, t2, ‖t‖)
[
C

θ̂

]

1:3,1:3
diag(t1, t2, ‖t‖).

(54)

To compute the covariance matrix Cν , we use the

estimate given in (47) instead of the true values of t1, t2,

and ‖t‖, which are unknown a-priori.

Based on the preceding calculations, the target posi-

tion can be obtained as follows:

x̃j = sgn([θ]j)

√
∣
∣[φ̂]j

∣
∣+ a1,j , j = 1, 2 . (55)

where the signum function sgn(x) is defined as

sgn(x) =

{
1 if x ≥ 0,
−1 if x < 0.

(56)

Note that using a similar approach as employed in

[19], [27], we can compute the covariance of the estimate

in (55).

B. Fine estimate

The approaches considered in the coarse estimation

step provide good initial points for further refining the

position estimates. One method is to implement the MLE

using an iterative search approach initialized with the

estimate in the coarse estimation step. In this section,

we propose another approach with lower complexity. To

that end, we first update the estimate of the clock skew.

Assuming an estimate of the location x̄ (x̄ = x̂ for

x̂ given by the SDP solution in (39) or x̄ = x̃ for x̃

provided by the LLS in (55)), an estimate of the clock

skew can be obtained from (4) using the method of

moments [23] as

ŵ =

∑K
k=1

∑N
i=2 z

k
i,1

K
∑N

i=2 d̄i,1
, (57)

where d̄i,1 = d̄i−d̄1 and d̄i = ‖x̄−ai‖. Now considering

an estimate of the clock skew in (57) and applying the

first order Taylor series expansion about x̄ to (4), we get

the following expression:

zki,1 ≃ ŵd̄i,1 + ḡT
i ∆x+ nk

i − nk
1 , (58)

where ḡi = ŵ(x̄ − ai)/d̄i − ŵ(x̄ − a1)/d̄1, and ∆x =
x− x̄. Thus, we arrive at the following linear model to

estimate the estimation error ∆x:

t̄ = Ḡ∆x+ ϑ, (59)

where

ϑ = [n1
2 − n1

1 . . . n1
N − n1

1 . . . n
K
2 − nK

1 . . . nK
N − nK

1 ]T

t̄ = [z12,1 − ŵd̄2,1 . . . z1N,1 − ŵd̄N,1 . . . zK2,1 − ŵd̄2,1

. . . zKN,1 − ŵd̄N,1]
T ,

G = IK ⊗ [ḡT
2 . . . ḡT

N ]T . (60)

The assumption in deriving the model in (59) requires

that the estimation error ∆x, be small enough. We take

this assumption into account and apply a regularized

least squares (Tikhonov regularization technique) to find

an estimate of ∆x as [19], [28], [29]

∆̂x = (ḠTC−1
K Ḡ+ λI2)

−1ḠTC−1
K t̄, (61)

where λ defines a trade-off between ‖∆x‖2 and

(Ḡ∆x− t̄)TC−1
K (Ḡ∆x− t̄).

Finally, the updated estimate is obtained as

ˆ̄x = x̄+ ∆̂x. (62)

C. Complexity analysis

In this section we evaluate the complexity of the

estimators considered in this study based on the total

number of the floating-point operations or flops. We

assume that an addition, subtraction, and multiplicationin

opertion in the real domain can be computed by one
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flop [28], and that a division or square root operation

needs r flops (usually 20 to 30 flops [30]). We calculate

the total number of flops for every method and express

it as a polynomial of the free parameters. Then, we

compute the complexity as the order of growth for each

approach. To simplify the results, we keep only the

leading terms of the complexity expressions.

1) The maximum likelihood estimator: As previously

mentioned, the MLE is nonlinear and nonconvex. There-

fore the complexity of the MLE highly depends on the

solution method. In addition, the complexity of each

method also depends on a number of parameters, e.g., the

number of iterations, the initial point, and the solution

accuracy. Here we compute the cost of evaluating the

objective function of the MLE in (12) for a certain point

and also the cost of the Gauss-Newton (GN) approach

to solve the MLE when a good initial point is available.

We note that we need (r + 5) flops to compute a

distance. The number of flops required to evaluate the

objective function of the MLE is approximately given by

K(N − 1)(2N + 2+ r) +N(6 + r). Then, considering

the leading term, the complexity of evaluating the MLE

objective function is expressed as O(KN2). It can be

shown that the complexity of every Newton step is on the

order of (KN)3. Then the total cost of the GN approach

for solving the MLE is O(IGN(KN)3), where IGN is

the number of iterations in the GN method to converge

to the solution.

2) The semidefinite programming: The worst-

case complexity of the SDP in (39) is given by

O(ISDP (
∑Nc

i (L2s2i + Ls3i ) + L3) log(1/ǫ)) [31],

where L is the number of equality constraints, si is

the dimension of the ith semidefinite cone, Nc is the

number of semidefinite constraints, ISDP is the number

of iterations, and ǫ is the accuracy of the SDP solution.

Therefore, the complexity of the SDP formulated in

(39) is given as

SDP cost ≃ O

(

ISDP

(

(N + 1)2
(
(N + 1)3 + 33

+ (N + 1)3 + 9(N + 1)
)
+ (N + 1)3

)

log(1/ǫ)

)

.

(63)

Then, the number of iterations ISDP is approximated as

ISDP ≃ O(N1/2) [31].

3) The linear least squares: To compute the complex-

ity of the LLS, we note that the matrix Cξ is a block

diagonal matrix. In addition, since the matrix CK in (8)

is fixed and diagonal, the inverse of CK can be computed

once and used later. Then the complexity of the linear

estimator in (47) can be computed as

Flops of LLS in (47)

≃ (N − 1)(3K + r + 10) + r + 5
︸ ︷︷ ︸

cost of computing h−E(ξ)

+ (N − 1)(r + 7) + r + 5
︸ ︷︷ ︸

cost of computing D

++ (N − 1)2(r + 1)
︸ ︷︷ ︸

cost of computing C
−1

ξ

+ 6K(N − 1)
︸ ︷︷ ︸

cost of GTC
−1

ξ

+ 6K(N − 1)
︸ ︷︷ ︸

cost of GTC
−1

ξ
G

+ 3K(N − 1)
︸ ︷︷ ︸

cost of C
−1

ξ
G(h−E(ξ))

+ 33.
︸︷︷︸

cost of (GTC
−1

ξ
G)−1GTC

−1

ξ
(h−E(ξ))

(64)

It can easily be verified that the complexity of the correc-

tion technique compared to the LLS in (47) is negligible.

Then, the complexity of the the linear estimator (for large

K and N ) can be computed as O(18KN + rN2).
4) Fine estimation step: In a similar way the com-

plexity of the fine estimation step can be computed as

Finestep ≃ N(5 + r)
︸ ︷︷ ︸

cost of computing d̄i

+N(K + 1) + r −K
︸ ︷︷ ︸

cost of computing ŵ

+ (K + 1)(N − 1)
︸ ︷︷ ︸

cost of computing t̄

+2(KN)2 + 2N(r + 2)− 2
︸ ︷︷ ︸

cost of computing ḠTC
−1

K

+ 2KN + 1 + 8
︸ ︷︷ ︸

cost of (ḠTC
−1

K
Ḡ+λI2)−1

+ 2KN
︸ ︷︷ ︸

cost of ḠTC
−1

K
t̄

+ 6.
︸︷︷︸

cost of (ḠTC
−1

K
Ḡ+λI2)−1ḠTC

−1

K
t̄

(65)

Then the complexity of the fine estimation step can be

approximated as O(2K2N2).
Table I summarizes the complexity of the different

approaches for large K and N . Note that for small K
and N , the cost for different approaches can be different

from the ones in Table I.

We have also measured the average running time of

different algorithms for a network consisting of 8 refer-

ence nodes as considered in Section V. The algorithms

have been implemented in Matlab 2012 on a MacBook

Pro (Processor 2.3 GHz Intel Core i7, Memory 8 GB

1600 MHz DDR3). To implement the MLE, we use the

Matlab function named lsqnonlin [32] initialized with

the true values of the location and the clock skew. To

implement the SDP, we use the CVX toolbox [33]. We

run the algorithms for 200 realizations of the network

and compute the average running time in ms as shown

in Table II. It is noted that although the MLE has

lower complexity than the SDP, we need a good initial

point for the GN algorithm, which in turn poses further

complexity. From Table I and Table II, it is observed that

the proposed approaches have reasonable complexity,

especially the linear estimator.
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TABLE I
COMPLEXITY OF DIFFERENT APPROACHES.

Method Complexity

Evaluation of the MLE objective function at a point O(KN2)
MLE using GN (true initialization) O(IGN(KN)3)
SDP O(ISDP(N + 1)5) log(1/ǫ)), ISDP ≃ O(N1/2)
LLS O(18KN + rN2)
Fine estimation step O(2K2N2)

TABLE II
AVERAGE RUNNING TIME OF DIFFERENT APPROACHES.

Method Time (ms)

MLE using (true initialization) 247
SDP 525
LLS 1
Fine estimation step 0.9
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Fig. 3. A 2-D network deployment used in the simulations (blue
squares and red circles show reference and target nodes, respectively).

V. SIMULATION RESULTS

A. Simulation Setup

Computer simulations are conducted in order to eval-

uate the performance of the proposed approaches. Fig. 3

illustrates the positions of the reference and target nodes

for a 2-D network. In the simulations, the clock skew is

randomly drawn from [0.995, 1.005], and it is assumed

that the standard deviation of the noise is the same

for all nodes, i.e., σi = σ, ∀i. In the simulations, we

assume that a reference node sends its (k + 1)th signal

after other reference nodes complete transmitting the kth

signal. For simplicity of implementation, we consider the

order of TDOA measurements according to (5) and (6).

To evaluate the performance of different approaches, we

consider the root-mean-squared error (RMSE) and the

cumulative distribution function (CDF) of the position

error.

B. CRLB Analysis

In this section, we investigate CRLBs on position

estimation in the presence and absence of clock skew

information. Fig. 4 shows the CRLBs for various target

nodes and for different values of K . We compare the

CRLBs in two scenarios: i) joint estimation of the

position and the clock skew parameter (i.e., unknown

clock skew), and ii) perfect knowledge of the clock

skew parameter (i.e., perfectly synchronized clocks). It is

observed that for small values of σ, the CRLBs are close

to each other in both scenarios and the degradation due

to the unknown clock skew increases with the standard

deviation of the noise, σ. Except for target node two

located at the center of the reference nodes, adding a

new unknown variable as a nuisance parameter (i.e.,

the clock skew parameter) deteriorates the accuracy of

position estimates.

To visualize the effects of an unknown clock skew on

the position estimation accuracy, we plot the CRLB as

an ellipsoid uncertainty in Fig. 5 for σ = 10 m. We scale

the coordinates of the target nodes so that the difference

between the two scenarios is clearly visible. We observe

from the figure that different locations for the target

nodes show different behaviors. For target node two,

two ellipsoids coincide while for the other target nodes

the volume of the ellipsoid for the unknown clock skew

parameter scenario is larger than the one for the perfect

synchronization scenario.

In the next simulations, we compare the performance

of the joint position and clock skew estimation with

the position estimation when an estimate of the clock

skew is available. As mentioned in Section III-B, we

model the available clock skew estimate as a Gaussian

random variable, that is, ŵ ∼ N (w, σ2
w). The CRLBs for

the two cases are plotted in Fig. 6 for target one when

K = 3. It is observed from the figure that when the

standard deviation of the clock skew estimate increases,
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Fig. 4. CRLBs for various target nodes in two scenarios (joint estimate of the target position and the clock skew, and perfect knowledge of
the clock skew) for (a) target node one, (b) target node two, (c) target node three, and (d) target node four.
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for two scenarios: i) joint clock skew and position estimation, ii) partial
knowledge of clock skew (in the form of a clock skew estimate) is
available.
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the joint estimation technique outperforms the one that is

based on available estimates of the clock skew. It is also

seen for low SNRs (high σ’s) that the joint estimation

approach has better performance than the other one.

From the figure, we can derive thresholds for σw and σ to

specify when the joint estimation technique outperforms

the other technique. For example, for target node one,

when σw ≥ 0.15 and σ = 3meters, the joint estimation

approach is superior.

C. Performance of Estimators

In this section, we evaluate the performance of the

position estimation techniques developed in Section III

and Section IV. To solve the MLE in (12), we use

Matlab’s function named lsqnonlin [32] initialized with

the true value of the position and the clock skew or with

the estimates from the SDP or LLS. To solve the SDP

in (39), we employ the CVX toolbox [33]. The upper

bound δmax in the SDP and the regularization parameter

λ are set to 0.1 and 0.02, respectively. Fig. 7 shows

the RMSEs of different approaches versus the standard

deviation of the measurement noise. It is observed that

the proposed estimators in the coarse estimation step can

provide good initial points such that the MLE initialized

with the coarse estimation step estimate (the SDP or

LLS estimate) attains the CRLB. The figure also shows

that the fine estimation step significantly improves the

accuracy of the coarse estimate for both the SDP and

LLS. In some scenarios, the SDP approach outperforms

the LLS and in other scenarios the LLS has better

performance compared to the SDP. For instance, the

LLS approach for target one in Fig. 7(a) and Fig. 7(b)

significantly outperforms the SDP and the LLS followed

by the fine step estimation is very close to the CRLB.

Note that the performance of the estimators can be

improved by increasing the number of messages, K .

From the figure it is observed that the behavior of

improvement can vary for different estimators. In fact,

since we have derived the suboptimal estimators from

the measurements using two different approaches, the

relation between parameter K and the performance of

the estimators can be different. It is also observed that the

performance of the estimation depends on the geometry

of the network. The effect of the geometry can be studied

through the so-called geometric dilution of precision,

e.g., see [1], which relates the position estimation error

to the geometry of the network and the measurement

errors. Finally, in Fig. 8, we plot the CDF of the position

errors defined as ‖x̂−x‖, where x̂ is an estimate of the

target position. For this figure, we set K = 3 and σ = 2
[m]. From the figure, we observe that the fine estimate

considerably improves the coarse estimate most of the

time and its performance is close to the MLE.

VI. CONCLUDING REMARKS

In this paper, we have studied the problem of self-

positioning a single target node based on TDOA mea-

surements when the local clock of the target node is

unsynchronized. Although TDOA-based positioning is

not sensitive to a clock offset, it suffers from another

clock imperfection parameter, namely, the clock skew. To

address this problem, we have considered a joint position

and clock skew estimation technique and derived the

MLE for this problem. Since the MLE is highly noncon-

vex, we have studied two suboptimal estimators that can

be efficiently solved. Using relaxation and approximation

techniques, we have derived two estimators based on

semidefinite programming (SDP) and linear least squares

(LLS) approximation. To further refine the estimates,

we have linearized the measurements using the first

order Taylor series around the SDP or LLS estimate to

derive a linear model in which the estimation error can

be approximated. To compare different approaches, we

have derived the CRLBs for the problem when either

no knowledge or partial knowledge of the clock skew is

available. The simulation results show that the proposed

techniques can attain the CRLB for sufficiently high

signal-to-noise ratios.
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Fig. 8. CDFs of the position error for σ = 2 m and K = 3 for (a) target node one and (b) target node three.
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