
Optimal Detector Randomization for Multiuser
Communications Systems

Mehmet Emin Tutay, Student Member, IEEE, Sinan Gezici, Senior Member, IEEE,
and Orhan Arikan, Member, IEEE

Abstract—Optimal detector randomization is studied for the
downlink of a multiuser communications system, in which
users can perform time-sharing among multiple detectors. A
formulation is provided to obtain optimal signal amplitudes,
detectors, and detector randomization factors. It is shown that
the solution of this joint optimization problem can be calculated
in two steps, resulting in significant reduction in computational
complexity. It is proved that the optimal solution is achieved via
randomization among at most min{K,Nd} detector sets, where
K is the number of users and Nd is the number of detectors
at each receiver. Lower and upper bounds are derived on the
performance of optimal detector randomization, and it is proved
that the optimal detector randomization approach can reduce the
worst-case average probability of error of the optimal approach
that employs a single detector for each user by up to K times.
Various sufficient conditions are obtained for the improvability
and nonimprovability via detector randomization. In the special
case of equal crosscorrelations and noise powers, a simple solution
is developed for the optimal detector randomization problem,
and necessary and sufficient conditions are presented for the
uniqueness of that solution. Numerical examples are provided to
illustrate the improvements achieved via detector randomization.

Index Terms– Detection, multiuser, randomization, probability
of error, time-sharing, minimax.

I. INTRODUCTION

Recently, the effects of randomization or time-sharing have
been investigated in various studies such as [1]-[13]. In [1], the
convexity properties of error probability in terms of signal and
noise power are investigated for binary-valued scalar signals
over additive unimodal noise channels under an average power
constraint. Based on the convexity results, the scenarios in
which power randomization can or cannot be useful for
improving error performance are determined, and optimal
strategies for jammer power randomization are developed. The
study in [2] generalizes the results of [1] by exploring the
convexity properties of the error probability for constellations
with arbitrary shape, order, and dimensionality for a maximum
likelihood (ML) detector in the presence of additive Gaussian
noise with no fading and with frequency-flat slowly fading
channels. For communications systems that operate over time-
invariant non-Gaussian channels [14], randomization (time-
sharing) among multiple signal constellations can improve
performance of a given receiver in terms of error probability.
Specifically, it is shown in [3] that randomization among up
to three distinct signal constellations can reduce the average
probability of error of a communications system that operates
under second and fourth moment constraints. In addition, [4]
investigates the joint optimization of the signal constellation
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randomization and detector design under an average power
constraint and shows that the use of at most two distinct signal
constellations and the corresponding maximum a posteriori
probability (MAP) detector minimizes the average probability
of error. In [5], optimal signal constellation randomization
is studied for the downlink of a multiuser communications
system considering given detectors at the receivers, and an
approximate solution is provided based on convex relaxation.
In addition, asymptotical improvements that can be achieved
via constellation randomization are quantified when symmetric
signaling and sign detectors are employed. In a different con-
text, time-varying or random signal constellations are utilized
in [15]-[20] for the purpose of enhancing error performance
or achieving diversity.

Another technique for enhancing error performance of some
communications systems that operate over time-invariant chan-
nels is to perform detector randomization, which involves
the use of multiple detectors at the receiver with certain
probabilities (certain fractions of time) [6]-[8], [21], [22]. In
other words, a receiver can randomize (time-share) among
multiple detectors in order to reduce the average probability
of error. In [6], randomization between two antipodal signal
pairs and the corresponding MAP detectors is performed for an
average power constrained binary communications system, and
significant performance improvements are observed as a result
of detector randomization in some cases in the presence of
symmetric Gaussian mixture noise. In [7], the results in [6] and
[4] are extended by considering both detector randomization
and signal constellation randomization for an average power
constrained M -ary communications system. It is proved that
the joint optimization of detector and signal constellation
randomization results in a randomization between at most two
MAP detectors corresponding to two deterministic signal con-
stellations. The study in [7] is extended to the Neyman-Pearson
(NP) framework in [21] by considering a power constrained
on-off keying communications systems. As discussed in [23],
detector randomization can be regarded as a generalization
of noise enhanced detection with a fixed detector [9], [13].
In addition, when variable detectors are considered, noise
enhanced detection and detector randomization can be consid-
ered as alternative approaches.1 In [8], probability distributions
of optimal additive noise components are investigated for
variable detectors, and the optimal randomization between
detector and additive noise pairs is investigated for optimal
noise enhancement.

Although detector randomization has recently been investi-
gated, e.g., in [6]-[8], [21], no previous studies have considered
detector randomization for multiuser communications systems.

1The main difference is that an additive noise component is employed at
the detector in the noise enhanced detection approach whereas the transmitted
signal values are adapted according to the detector randomization strategy in
the detector randomization approach.



In this manuscript, we study optimal detector randomiza-
tion for multiuser communications systems. In particular, we
consider the downlink of a direct sequence spread spectrum
(DSSS) communications system under an average power con-
straint, and propose an optimization problem to obtain optimal
signal amplitudes (corresponding to information symbols for
different users), detectors, and detector randomization factors
(probabilities) that minimize the worst-case (maximum) av-
erage probability of error of the users. Since this joint opti-
mization problem is quite complex in its original formulation,
a low-complexity approach is developed in order to obtain
the optimal solution in two steps, where the optimal signal
amplitudes and detector randomization factors are calculated
in the first step, and the corresponding ML detectors are
obtained in the second step. Also, it is shown that the optimal
solution requires randomization among at most min{K,Nd}
detectors for each user, where K is the number of users and
Nd is the number of detectors at each receiver. In addition, the
performance of the optimal detector randomization approach is
investigated, and a lower bound is presented for the minimum
worst-case average probability of error. It is proved that the
optimal detector randomization approach can improve the
performance of the optimal approach that employs a single
detector for each user (i.e., no detector randomization) by
up to K times. Sufficient conditions are derived for the im-
provability and nonimprovability via detector randomization.
Furthermore, in the special case of equal crosscorrelations and
noise powers, a simple solution is proposed for the optimal
detector randomization problem, and necessary and sufficient
conditions are obtained for the uniqueness of that solution.
Finally, numerical examples are presented in order to illustrate
the improvements achieved via detector randomization. Al-
though the results in this study are obtained for the downlink of
a binary DSSS system, possible extensions to uplink scenarios
and M -ary systems are discussed in Section VI.

It should be emphasized that detector randomization in
this study is designed for time-invariant channels; equiva-
lently, detector randomization is performed for each channel
realization assuming that channel statistics do not change
for a certain number of symbols [6], [7], [21]. Therefore,
the proposed approach is different from power control (and
detector adaptation) algorithms that are developed for varying
channel conditions [24]-[26]. In addition, randomized power
control algorithms in the literature, such as [27]-[32], employ
significantly different approaches than that in this study. For
example, a random power control algorithm is proposed in
[29], where the transmitter selects its power level randomly
from a uniform distribution. This approach is shown to
improve network connectivity over the fixed power control
approach for static channels. In [31], random power allocation
is performed according to a certain probability distribution;
namely, the transmit power is modeled by a truncated inverted
exponential distribution, and the parameter of this distribution
is updated at certain intervals based on feedback. In addition,
[27] considers a scenario in which transmit powers are se-
lected from a discrete set of power levels, namely, zero and
peak power, and optimal power randomization strategies are
developed under that specification for a two-hop interference
channel.

The remainder of the manuscript is organized as follows.
In Section II, the system model is introduced and receiver

Fig. 1. System model. The transmitter sends information bearing signals to
K users over additive noise channels, and each user estimates the transmitted
symbol by performing detector randomization among Nd detectors.

structures are described. In Section III, the optimal detector
randomization problem is formulated, and a low-complexity
approach is presented. Analysis of optimal detector random-
ization is performed in Section IV, and lower bounds and
upper bounds are obtained on the performance of optimal
detector randomization. In addition, various conditions for
improvability or nonimprovability via detector randomization
are derived, and simple solution is provided for equal crosscor-
relations and noise powers. Numerical examples are presented
in Section V. In Section VI, concluding remarks are made and
possible extensions to uplink scenarios and M -ary systems are
discussed.

II. SYSTEM MODEL

Consider the downlink of a multiuser communications sys-
tem in which the transmitter (e.g., base station or access
point) sends information bearing signals to K users simultane-
ously via code division multiple access (CDMA). In addition,
assume that the users can perform detector randomization
[6], [7] in coordination with the transmitter by employing
different detectors for certain fractions of time. In particular,
suppose that each user can time-share (randomize) among
Nd detectors; namely, user k employs detector ϕ

(k)
1 for the

first Ns,1 symbols, detector ϕ
(k)
2 for the next Ns,2 symbols,

. . . , and detector ϕ
(k)
Nd

for the last Ns,Nd
symbols2, where

k ∈ {1, 2, . . . ,K}. The described scenario is also depicted in
Fig. 1, which illustrates a K-user system with Nd detectors
for each user.

For the downlink of a DSSS binary3 communications system
as in Fig. 1, the baseband model of the transmitted signal can
be expressed as

p(t) =

K∑
k=1

S
(ik)
k,l ck(t) , (1)

for l ∈ {1, . . . , Nd} and ik ∈ {0, 1}, where K is the number
of users, S

(ik)
k,l denotes the transmitted signal amplitude for

information bit ik that is intended for detector l of user
k, and ck(t) is the real pseudo-noise signal for user k [5].

2Such a coordination can be achieved in practice by employing a com-
munications protocol that informs the users about this randomization (time-
sharing) structure by including the related information in the header of the
communications packet [7].

3As mentioned in Section VI, the results can be extended to M -ary
communications systems as well.



Fig. 2. Receiver structure for user k. The received signal is first despread
by the pseudo-noise signal, and the resulting signal, Yk , is processed by one
of the detectors according to a detector randomization strategy.

Pseudo-noise signals are employed to spread the spectra of
users’ signals and provide multiple-access capability [33]. It
is assumed that the prior probabilities of bit 0 and bit 1 are
equal to 0.5 for all users, and that the information bits of
different users are independent.

The signal in (1) is transmitted to K users over the additive
noise channels as in Fig. 1, and the received signal at user k
is modeled as

rk(t) =
K∑
j=1

S
(ij)
j,l cj(t) + nk(t) , (2)

for k = 1, . . . ,K, where nk(t) is the noise at the receiver
of user k, which is a zero-mean white Gaussian process with
spectral density σ2

k. The noise processes at different receivers
are supposed to be independent. Although a simple additive
noise model is employed in (2), multipath channels with
slow frequency-flat fading can also be incorporated into the
model under the assumption of perfect channel estimation by
adjusting the average powers of the noise components in (2),
equivalently, the σ2

k terms, accordingly [3], [5].
The receiver structure for user k is illustrated in Fig. 2. The

received signal rk(t) in (2) is first correlated with the pseudo-
noise signal for user k, ck(t). Then, the correlator output is
processed by one of the detectors according to the detector
randomization strategy and the transmitted bit of user k is
estimated. (Although Nd detectors are shown in Fig. 2, the
receiver can also be implemented by adapting the parameters
of one detector over time.) From (2) and Fig. 2, the correlator
output for user k, Yk, can be expressed as

Yk = S
(ik)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l +Nk , (3)

for k = 1, . . . ,K, where ρk,j ,
∫
ck(t)cj(t)dt denotes the

crosscorrelation between the pseudo-noise signals for user k
and j (it is assumed that ρk,k = 1 for k = 1, . . . ,K), and
Nk ,

∫
nk(t)ck(t)dt is the noise component. The noise com-

ponents N1, . . . , NK form a sequence of independent zero-
mean Gaussian random variables with variances, σ2

1 , . . . , σ
2
K ,

respectively [5]. It is noted from the expression for Yk in (3)
that the first term corresponds to the desired signal compo-
nent, the second term denotes the multiple-access interference
(MAI), and the last term is the noise component.

As shown in Fig. 2, the correlator output in (3) is processed
by detectors ϕ(k)

1 , . . . , ϕ
(k)
Nd

according to a detector randomiza-
tion strategy, and an estimate of the transmitted information
bit, îk, is generated. Mathematically, for a given correlator

output Yk = yk, the bit estimate is obtained as

îk = ϕ
(k)
l (yk) =

{
1 , if yk ∈ Γ

(k)
l

0 , otherwise
(4)

if the lth detector is employed for user k, where l ∈
{1, . . . , Nd} and k ∈ {1, . . . ,K}. In (4), Γ

(k)
l denotes the

decision region in which bit 1 is selected by the lth detector
of user k. The receiver of user k can perform randomization
among these Nd detectors in order to optimize the error per-
formance. Let vl denote the randomization (or time-sharing)
factor for detector ϕ

(k)
l , where

∑Nd

l=1 vl = 1 and vl ≥ 0 for
l = 1, . . . , Nd. In other words, user k employs detector ϕ

(k)
l

for 100vl percent of the time, where l ∈ {1, . . . , Nd} and
k ∈ {1, . . . ,K}.4 It should be noted that employing the same
randomization factors for all users does not cause any loss of
generality since the cases in which different randomization
factors are used for different users can be covered by the
preceding formulation by considering an updated value of Nd

with corresponding detectors and randomization factors.

III. OPTIMAL DETECTOR RANDOMIZATION

The aim in this study is to jointly optimize the ran-
domization factors, the detectors (decision regions), and the
transmitted signal amplitudes for all the users under an average
power constraint. In order to formulate this generic problem,
we first define the following signal vector Sl that consists of
the signal amplitudes intended for detector l for bit 0 and bit
1 of all users: Sl =

[
S
(0)
1,l S

(1)
1,l · · ·S

(0)
K,l S

(1)
K,l

]
. In addition,

let ϕl denote the set of the lth detectors of the users, which
is defined as ϕl =

[
ϕ
(1)
l · · ·ϕ(K)

l

]
for l ∈ {1, . . . , Nd}. For

a randomization strategy specified by randomization factors
{v1, . . . , vNd

} (as described in the previous paragraph), the
system in Fig. 1 operates as follows: For vl fraction of the
time, the transmitter sends the signal vector Sl and the users
employ the corresponding detectors in ϕl for l = 1, . . . , Nd.
Therefore, the aim is to obtain the optimal set {vl,ϕl,Sl}Nd

l=1
that optimizes the error performance of the system under an
average power constraint. Specifically, the following optimiza-
tion problem is proposed:

min
{vl,ϕl,Sl}

Nd
l=1

max
k∈{1,...,K}

Pk (5)

subject to E

{∫
|p(t)|2dt

}
≤ A (6)

where Pk is the average probability of error for user k,
A specifies an average power constraint, and p(t) is as in
(1). Similar to [5], the minimax approach is adopted for
fairness [35]-[38] by preventing scenarios in which the average
probabilities of error are very low for some users whereas they
are (unacceptably) high for others.5

The constraint in (6) is defined in such a way that the
average power is limited in each bit duration. In other words,
the expectation operation in (6) is over the equiprobable

4It is assumed that statistics of channel noise do not change during this
randomization (time-sharing) operation. Therefore, the detector randomization
approach is well-suited for block fading channels, where detector randomiza-
tion can be performed for each channel realization [34].

5It is possible to extend the results to cases in which different users have
different levels of importance by multiplying each Pk with a weighting factor.



information bits of the users. Hence, from (1), (6) can be
expressed as

K∑
k=1

K∑
j=1

ρk,j E
{
S
(ik)
k,l S

(ij)
j,l

}
≤ A , (7)

where E
{
S
(ik)
k,l S

(ij)
j,l

}
is given by

E
{
S
(ik)
k,l S

(ij)
j,l

}
=


0.25S

(0)
k,l S

(0)
j,l + 0.25S

(0)
k,l S

(1)
j,l

+ 0.25S
(1)
k,l S

(0)
j,l + 0.25S

(1)
k,l S

(1)
j,l , k ̸= j

0.5
∣∣S(0)

k,l

∣∣2 + 0.5
∣∣S(1)

k,l

∣∣2, k = j
(8)

for l ∈ {1, . . . , Nd}. If symmetric signaling is employed, (i.e.,
if signal amplitudes are selected as S

(0)
k,l = −S

(1)
k,l for k =

1, . . . ,K and l = 1, . . . , Nd), then E
{
S
(ik)
k,l S

(ij)
j,l

}
=
∣∣S(1)

k,l

∣∣2
for k = j and E

{
S
(ik)
k,l S

(ij)
j,l

}
= 0 for k ̸= j. Then, the

expression in (7) becomes
∑K

k=1

∣∣S(1)
k,l

∣∣2 ≤ A. (We consider
the generic case in this study and the results for symmetric
signaling can be obtained as a special case.)

For notational simplicity in the following analysis, we define

h(Sl) ,
K∑

k=1

K∑
j=1

ρk,j E
{
S
(ik)
k,l S

(ij)
j,l

}
(9)

where Sl is as defined in the first paragraph of this section.
Then, the average power constraint in (7) (hence, in (6)) is
given by

h(Sl) ≤ A for l ∈ {1, . . . , Nd}. (10)

In order to calculate the average probability of error for user
k, Pk, we first express, from (3) and (4), the error probability
of the lth detector of user k when the signal vector Sl is
employed as follows:

gk,l(Sl) =

1

2K

∑
ik∈{0,1}K−1

(
P

{(
Nk + S

(1)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)
/∈ Γ

(k)
l

}

+ P

{(
Nk + S

(0)
k,l +

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)
∈ Γ

(k)
l

})
, (11)

with ik , [i1 · · · ik−1 ik+1 · · · iK ] (the vector of all the bit
indices except for the kth one), and Γ

(k)
l denoting the decision

region of the lth detector of user k for information symbol 1;
that is, ϕ(k)

l , as specified in (4). In (11), the probabilities are
with respect to the distribution of the noise component Nk for
a given value of Sl. Also, it should be noted that the decision
region Γ

(k)
l can be a function of Sl in general due to the joint

optimization in (5) and (6).
Since gk,l(Sl) in (11) denotes the error probability of the

lth detector of user k when signal vector Sl is employed, the
average probability of user k for a randomization strategy that
employs signal vector Sl and detectors ϕl with probability vl
for l = 1, . . . , Nd can be expressed as

Pk =

Nd∑
l=1

vl gk,l(Sl) . (12)

From (10) and (12), the optimization problem in (5) and (6)
can be stated as

min
{vl,ϕl,Sl}

Nd
l=1

max
k∈{1,...,K}

Nd∑
l=1

vl gk,l(Sl) (13)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . , Nd} (14)
Nd∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . , Nd} . (15)

This problem is very challenging in general since it requires
joint optimization of the signal amplitudes, the detectors, and
the detector randomization factors. However, a significant sim-
plification can be achieved based on the following proposition:

Proposition 1: The optimization problem in (13)-(15) can
be expressed as

min
{vl,Sl}

Nd
l=1

max
k∈{1,...,K}

Nd∑
l=1

vl
2

∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy

(16)
subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . , Nd} (17)

Nd∑
l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . , Nd} (18)

where p
(k)
ik

(y|Sl) is given by

p
(k)
ik

(y|Sl) =
1

σk

√
2π 2K−1

(19)

×
∑

ik∈{0,1}K−1

exp

{
− 1

2σ2
k

(
y − S

(ik)
k,l −

K∑
j=1

j ̸=k

ρk,jS
(ij)
j,l

)2}

for ik = 0, 1 with ik , [i1 · · · ik−1 ik+1 · · · iK ].
Proof: Consider the optimization problem in (13)-(15),

where gk,l(Sl) is defined as in (11) and represents the
error probability of the lth detector of user k when sig-
nal vector Sl is employed. Since the aim is to minimize

max
k∈{1,...,K}

∑Nd

l=1 vl gk,l(Sl) over all possible {vl,ϕl,Sl}Nd

l=1

under the specified constraints, optimal decision rules, ϕl,
that minimize gk,l(Sl) must be employed for each signal
vector Sl. For any signal vector, it is known that the ML
detector minimizes the error probability when the information
symbols are equally likely [39]. Therefore, it is concluded
that the optimal solution to (13)-(15) results in the use of
ML detectors at the receivers. Considering the lth detector
of user k, the ML decision rule can be specified as ik = 1

if p
(k)
1 (y|Sl) ≥ p

(k)
0 (y|Sl) and ik = 0 otherwise, where

p
(k)
ik

(y|Sl) is the conditional probability density function
(PDF) of observation Yk when the information bit ik is
transmitted for the lth detector of user k (see (3)). Therefore,
the error probability of the ML detector can be calculated from
1
2

∫
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy [1], which corresponds to

gk,l(Sl) when the lth detector of user k employs the ML
decision rule. Hence, the expression in (16) is obtained from
(13). (It is noted that the optimization space is reduced from
{vl,ϕl,Sl}Nd

l=1 to {vl,Sl}Nd

l=1 since the error probabilities of
the optimal detectors are expressed in terms of the signal
vectors.) In addition, based on (3), p(k)ik

(y|Sl) can be expressed
as in (19) considering equally likely information bits. �



Based on Proposition 1, it is concluded that for the joint
optimization problem in (13)-(15), where the detectors are
modeled as generic ones, the joint optimal solution always
results in the use of ML detectors at all the users. It is also
noted that the results of Proposition 1 will be valid for any non-
Gaussian PDF as well when the conditional PDF expression
in (19) is updated accordingly.

Comparison of the optimization problems in (13)-(15) and
in (16)-(18) reveals that Proposition 1 provides a significant
simplification in obtaining the optimal solution as it reduces
the optimization space from {vl,ϕl,Sl}Nd

l=1 to {vl,Sl}Nd

l=1.
Namely, instead of searching over all possible signal ampli-
tudes, detectors, and detector randomization factors, (16)-(18)
requires a search over possible signal amplitudes and detector
randomization factors. Once the optimal signal amplitudes and
detector randomization factors are obtained from (16)-(18),
the optimal detectors are specified by the corresponding ML
decision rules. In particular, if {Ŝl}Nd

l=1 denote the optimal
signal amplitudes obtained from (16)-(18), the lth detector of
user k outputs bit 1 if p

(k)
1 (y|Ŝl) ≥ p

(k)
0 (y|Ŝl) and bit 0

otherwise for k ∈ {1, . . . ,K} and l ∈ {1, . . . , Nd}, where
p
(k)
0 (y|Ŝl) and p

(k)
1 (y|Ŝl) are obtained from (19).

Although the formulation in (16)-(18) provides a signif-
icant simplification over that in (13)-(15), it can still have
high computational complexity when the number of detectors
and/or the number of users are high. In particular, it is
noted from (16)-(18) that the optimal solution of the signal
amplitudes and the randomization factors requires a search
over a (2K+1)Nd dimensional space ( (K+1)Nd dimensional
space if symmetric signaling is employed). In the following
proposition, it is stated that employing more than K detectors
at a receiver is not needed for the optimal solution.

Proposition 2: The optimization problem in (16)-(18)
achieves the same minimum value as the following problem:

min
{vl,Sl}

min{K,Nd}
l=1

max
k∈{1,...,K}

min{K,Nd}∑
l=1

vl
2

(20)

×
∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . ,min{K,Nd}} (21)
min{K,Nd}∑

l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . ,min{K,Nd}} (22)

where p
(k)
ik

(y|Sl) is as in (19).
Proof: Define

g̃k(Sl) , 0.5

∫ ∞

−∞
min

{
p
(k)
0 (y|Sl), p

(k)
1 (y|Sl)

}
dy (23)

and express the objective function in (16) as
∑Nd

l=1 vl g̃k(Sl) =
E{g̃k(S)}, where S is a discrete random vector that takes the
value of Sl with probability vl for l = 1, . . . , Nd (cf. (18)).
Let pS denote the probability mass function (PMF) of S. In
addition, define PA as the set of all PMFs with Nd point
masses for which pS(S) = 0 whenever h(S) > A. Then,
(16)-(18) can be expressed as

min
pS∈PA

max
k∈{1,...,K}

E{g̃k(S)} . (24)

Optimization problems that are in similar forms to (24) have
been studied in the literature, such as in [12] and [11]. First,

the following set is defined: U = {(g̃1(S), . . . , g̃K(S)) , ∀S ∈
SA}, where SA is the set of S for which h(S) ≤ A.
Then, it can be observed that set W , defined as W =
{(E{g̃1(S)}, . . . ,E{g̃K(S)}) , ∀pS ∈ PA}, corresponds to
the convex hull of set U . Therefore, based on Carathéodory’s
theorem [40], any K-tuple at the boundary of set W can be
obtained as the convex combination of at most K elements in
U . (The boundary is considered since a minimization operation
is to performed.) Hence, the optimal solution to (24) can be
expressed in the form of a discrete random vector with at
most K non-zero point masses. For this reason, if Nd is larger
than K, it is sufficient to perform the search over probability
distributions with K point masses. �

Based on Proposition 2, it is concluded that there is no
need for employing more than K detectors at a receiver in a
K-user system for achieving the optimal error performance.
In other words, randomization among more than K detectors
cannot provide any additional performance improvements. In
addition, as observed from (20)-(22), the dimension of the
search space in obtaining the optimal solution is specified by
(2K+1)min{K,Nd} (by (K+1)min{K,Nd} for symmetric
signaling). It is also noted that the results of Proposition 2 will
be valid for non-Gaussian PDFs as well when the conditional
PDF expression in (19) is updated accordingly.

IV. ANALYSIS OF OPTIMAL DETECTOR RANDOMIZATION

In this section, we investigate the performance of the op-
timal detector randomization approach specified by (20)-(22),
and determine scenarios in which performance improvements
can be obtained over the optimal approach that does not
employ any detector randomization, which is called as the
optimal single detectors approach in the following.

The optimal single detectors approach can be considered as
a special case of the detector randomization approach when
there is only one detector at each receiver; that is, Nd = 1.
Therefore, based on (13)-(15), the optimal single detectors
approach can be specified by the following optimization prob-
lem:

min
ϕ,S

max
k∈{1,...,K}

gk(S)

subject to h(S) ≤ A (25)

where gk(S) can be expressed as in (11) by removing the
dependence on l in the expressions (since there is only one
detector for each user), ϕ =

[
ϕ(1) · · ·ϕ(K)

]
represents the de-

tectors of the users, and S is the vector of signal amplitudes for
bit 0 and bit 1 of all users; i.e., S =

[
S
(0)
1 S

(1)
1 · · ·S(0)

K S
(1)
K

]
.

Since (25) is a special case of (13)-(15), its solution can
be obtained from Proposition 1 by setting Nd = 1 in (16)-
(18). Hence, the optimal single detectors approach can also
be formulated as

min
S

max
k∈{1,...,K}

g̃k(S)

subject to h(S) ≤ A (26)

where g̃k(S) is as defined in (23). In other words, the
optimal single detectors approach requires the calculation of
the optimal signal amplitudes from (26). Then, each user
employs the corresponding ML detector, which selects bit 1
if p

(k)
1 (y|S⋄) ≥ p

(k)
0 (y|S⋄) and bit 0 otherwise, where S⋄

denotes the solution of (26).



Let PSD denote the optimal value achieved by the op-
timization problem in (26) (equivalently, (25)); that is, the
minimum worst-case (maximum) average probability of er-
ror corresponding to the optimal single detectors approach.
Similarly, let PDR represent the solution of the optimization
problem in (20)-(22) (equivalently, (13)-(15)), which is the
minimum worst-case average probability of error achieved
by the optimal detector randomization approach. The main
purpose of this section is to provide bounds on PDR, and to
specify various relations between PSD and PDR. First, the
following proposition is obtained to provide a lower bound on
PDR.

Proposition 3: The minimum worst-case average probabil-
ity of error achieved by the optimal detector randomization
approach in (20)-(22), PDR, is lower bounded as follows:

PDR ≥ 1

K

K∑
k=1

g̃k(S
∗) , PLB (27)

with

S∗ = arg min
S∈SA

K∑
k=1

g̃k(S) (28)

where SA is defined as SA , {S : h(S) ≤ A} and g̃k(S) is
as in (23). In addition, the lower bound in (27) is achieved;
that is, PDR = PLB, if and only if there exists feasible
{vl,Sl}min{K,Nd}

l=1 (i.e., satisfying (21) and (22)) such that∑min{K,Nd}
l=1 vl g̃k(Sl) = PLB, ∀k ∈ {1, . . . ,K}.
Proof: Consider a modified version of the optimization

problem in (20)-(22), which is described as

min
{vl,Sl}

min{K,Nd}
l=1

1

K

K∑
k=1

min{K,Nd}∑
l=1

vl g̃k(Sl) (29)

subject to h(Sl) ≤ A , ∀ l ∈ {1, . . . ,min{K,Nd}} (30)
min{K,Nd}∑

l=1

vl = 1 , vl ≥ 0 , ∀ l ∈ {1, . . . ,min{K,Nd}} (31)

where g̃k(Sl) is given by (23). Define gavg(S) ,
1
K

∑K
k=1 g̃k(S) and express the problem in (29)-(31) as

min
{vl,Sl∈SA}min{K,Nd}

l=1

min{K,Nd}∑
l=1

vl gavg(Sl) (32)

subject to
min{K,Nd}∑

l=1

vl = 1, vl ≥ 0, ∀ l ∈ {1, . . . ,min{K,Nd}}

(33)

where SA is as described in the proposition. The optimal
solution of (32)-(33) is obtained by assigning all the weight
to the minimizer of gavg(S) over SA, which corresponds
to S∗ defined in (28). For example, v1 = 1, vl = 0 for
l = 2, . . . , Nd, and S1 = S∗ achieves the minimum value of
the objective function in (32)-(33). Therefore, the minimum
value achieved by the optimization problem in (29)-(31) is
equal to gavg(S

∗) = 1
K

∑K
k=1 g̃k(S

∗). When the optimization
problems in (20)-(22) and in (29)-(31) are compared, it is
observed that the latter provides a lower bound on the former
since the average of the error probabilities of the users is con-
sidered in (29) whereas the maximum of the error probabilities

is employed in (20). (Please note the 1
K

∑K
k=1 and max

k∈{1,...,K}
operators, respectively.) Therefore, the solution of (29)-(31),
which is specified by 1

K

∑K
k=1 g̃k(S

∗), provides a lower bound
on the solution of (20)-(22), PDR. Hence, (27) is obtained.

In order to prove the sufficiency of the achievability con-
dition in Proposition 3, assume that there exists feasible
{vl,Sl}min{K,Nd}

l=1 (i.e., satisfying (21) and (22)) such that∑min{K,Nd}
l=1 vl g̃k(Sl) = PLB, ∀k ∈ {1, . . . ,K}. Then, it

is easy to verify from (20) and (23) that the summation
term in (20) becomes equal to PLB, ∀k ∈ {1, . . . ,K}, for
the specified solution. Hence, (20)-(22) achieves the lower
bound in this case, and PDR = PLB is obtained. For
proving the necessity of the achievability condition in the
proposition via contradiction, assume that PDR = PLB and the
optimal solution of (20)-(22), denoted by {v̂l, Ŝl}min{K,Nd}

l=1 ,
results in a scenario in which the

∑min{K,Nd}
l=1 v̂l g̃k(Ŝl)

terms are not all the same. In particular, assume that ∃k′ ∈
{1, . . . ,K} such that

∑min{K,Nd}
l=1 v̂l g̃k′ (Ŝl) < PLB and

that
∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) = PLB, ∀k ∈ {1, . . . ,K}\{k′}.6
Then, the following inequality is obtained:

1

K

K∑
k=1

min{K,Nd}∑
l=1

v̂l g̃k(Ŝl) < PLB . (34)

However, this implies a contradiction since

1

K

K∑
k=1

min{K,Nd}∑
l=1

v̂l g̃k(Ŝl)

=

min{K,Nd}∑
l=1

v̂l

(
1

K

K∑
k=1

g̃k(Ŝl)

)
≥ PLB (35)

where the inequality follows from (27). Therefore, when
the lower bound is achieved, i.e., PDR = PLB, all the∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) terms must be equal to PLB. Hence,
in order to achieve the lower bound in (27), there must exist
feasible {vl,Sl}min{K,Nd}

l=1 such that
∑min{K,Nd}

l=1 vl g̃k(Sl) =
PLB, ∀k ∈ {1, . . . ,K}, as stated in the proposition. �

Proposition 3 presents a bound on the performance of the
optimal detector randomization approach in (20)-(22). The
advantage of this lower bound is that it is calculated based
on the solution of the minimization problem in (28), which is
much simpler than the optimization problem in (20)-(22). In
addition, the achievability condition in Proposition 3 implies
that the worst-case average probability of error achieved by
the optimal detector randomization approach attains the lower
bound if and only if there exists an equalizer solution for the
optimal detector randomization problem in (20)-(22), which
equates the average error probabilities of all users to the
lower bound in (27). As a simple example, if S∗ in (28)
satisfies that g̃1(S

∗) = · · · = g̃K(S∗), then v1 = 1,
vl = 0 for l = 2, . . . ,min{K,Nd}, and S1 = S∗ results in∑min{K,Nd}

l=1 vl g̃k(Sl) = g̃k(S
∗) = PLB, ∀k ∈ {1, . . . ,K};

hence, the lower bound is achieved in this scenario; i.e.,
PDR = PLB, as a result of Proposition 3. As investigated

6Note that none of the
∑min{K,Nd}

l=1 v̂l g̃k(Ŝl) terms can be larger than
PLB since it is assumed that PDR = PLB; i.e., the maximum of these terms
is equal to PLB (see (20) and (23)). Therefore, either all these terms can be
equal to PLB or some of them can be smaller than PLB. The latter is shown
to be impossible in the remaining part of the proof.



in the following, there also exist other scenarios in which
PDR = PLB is satisfied when all g̃k(S∗)’s are not the same.

Next, improvements that can be achieved via the optimal
detector randomization approach over the optimal single de-
tectors approach are quantified in the following proposition.

Proposition 4: Let PSD and PDR denote the minimum
worst-case error probabilities obtained from the solutions of
(26) and (20)-(22), respectively. Then, the following relations
hold between PSD and PDR.

(i) The improvement ratio, defined as PSD/PDR, is bounded
as follows:

1 ≤ PSD

PDR
≤ K . (36)

(ii) The maximum improvement ratio, K, is achieved if and
only if PDR = PLB (where PLB is as defined in (27)),
and S∗ in (28) is the optimal solution to the optimization
problem in (26) with g̃k(S

∗) = 0, ∀k ∈ {1, . . . ,K} \
{k∗} and g̃k∗(S∗) > 0, where g̃k is given by (23) and
k∗ is any value in {1, . . . ,K}.

(iii) No improvement is achieved; that is, PDR = PSD, if
g̃1(S

∗) = · · · = g̃K(S∗).
(iv) Improvement is guaranteed; that is, PDR < PSD, if

PDR = PLB and g̃k(S
⋄) ̸= g̃l(S

⋄) for some k, l ∈
{1, . . . ,K}, where S⋄ denotes the solution of (26).

Proof: (i) Since the optimal single detectors approach is a
special case of the detector randomization approach, PDR ≤
PSD is always satisfied; hence, the lower bound in (36) is
directly obtained. In order to derive the upper bound in (36),
the following inequalities are considered first:

PSD = max
k

g̃k(S
⋄) ≤ max

k
g̃k(S

∗) ≤
K∑

k=1

g̃k(S
∗) (37)

where S⋄ is the solution of (26), and S∗ is given by (28).
Note that the first inequality follows by definition since S⋄

and S∗ are the solutions of (26) and (28), respectively, and
the second inequality follows from the identity ∥x∥∞ ≤ ∥x∥1,
∀x, where ∥x∥∞ and ∥x∥1 are the maximum and Manhattan
norms, respectively. Then, the upper bound in (36) is obtained
as follows:

PSD

PDR
≤
∑K

k=1 g̃k(S
∗)

PDR
≤
∑K

k=1 g̃k(S
∗)

PLB
= K (38)

where the first inequality is obtained from (37), and the second
inequality and the equality follow from (27).

(ii) In order to achieve the maximum improvement ratio
of K in (36), the inequalities in (37) and (38) should hold
with equality. Then, from (37), it is concluded that S∗ in (28)
should also be a solution of (26) (so that max

k
g̃k(S

⋄) =

max
k

g̃k(S
∗) ), and g̃k(S

∗) should be zero for all k except

for one of them (so that max
k

g̃k(S
∗) =

∑K
k=1 g̃k(S

∗) ). In
addition, for the second inequality in (38) to hold with equality,
PDR = PLB should be satisfied. Hence, the conditions in Part
(ii) of Proposition 4 are obtained.

(iii) Consider a scenario in which g̃1(S
∗) = · · · = g̃K(S∗).

In order to prove that PDR = PSD via contradiction, first
suppose that max

k
g̃k(S

⋄) < max
k

g̃k(S
∗). Then, the following

relation is obtained:
K∑

k=1

g̃k(S
⋄) ≤ Kmax

k
g̃k(S

⋄) < Kmax
k

g̃k(S
∗) =

K∑
k=1

g̃k(S
∗).

(39)

Note that the second inequality and the equality in (39) are
due to the assumptions of max

k
g̃k(S

⋄) < max
k

g̃k(S
∗) and

g̃1(S
∗) = · · · = g̃K(S∗), respectively. Since (39) implies that∑K

k=1 g̃k(S
⋄) <

∑K
k=1 g̃k(S

∗), it results in a contradiction
due to the definition of S∗ in (28). Therefore, when g̃1(S

∗) =
· · · = g̃K(S∗), the relation max

k
g̃k(S

⋄) < max
k

g̃k(S
∗)

cannot be true. This implies that max
k

g̃k(S
⋄) = max

k
g̃k(S

∗)

must be satisfied in this scenario since max
k

g̃k(S
⋄) ≤

max
k

g̃k(S
∗) is always satisfied by definition (as S⋄ is the

solution of (26)). Then, PDR = PSD is obtained as follows:

PSD = max
k

g̃k(S
⋄) = max

k
g̃k(S

∗) =
1

K

K∑
k=1

g̃k(S
∗) = PLB

(40)

where the third equality is due to g̃1(S
∗) = · · · = g̃K(S∗) and

the last equality is from (27). Since in general PLB ≤ PDR ≤
PSD holds (see (27) and Part (i) of Proposition 4), (40) implies
that PDR = PSD = PLB when g̃1(S

∗) = · · · = g̃K(S∗).
(iv) Assume that PDR = PLB and g̃k(S

⋄) ̸= g̃l(S
⋄) for

some k, l ∈ {1, . . . ,K}. Then, the result is derived as follows:

PSD = max
k

g̃k(S
⋄) >

1

K

K∑
k=1

g̃k(S
⋄)

≥ 1

K

K∑
k=1

g̃k(S
∗) = PLB = PDR , (41)

where the first inequality is obtained from the assumption that
g̃k(S

⋄) ̸= g̃l(S
⋄) for some k, l ∈ {1, . . . ,K}, the second

inequality and the second equality follow from Proposition 3,
and the final equality is due to the assumption of PDR = PLB.
�

Proposition 4 quantifies the improvements that can be
achieved via the optimal detector randomization approach
and states that the worst-case average probability of error
can be reduced by a factor of K compared to the optimal
single detectors approach that does not perform any detector
randomization. Therefore, significant gains can be possible
in the presence of a large number of users. In addition, the
scenarios in which this maximum improvement ratio can be
achieved are specified based on the conditions in Part (ii)
of the proposition. It should be noted that the condition of
g̃k(S

∗) = 0, ∀k ∈ {1 . . .K} \ {k∗} and g̃k∗(S∗) > 0 cannot
hold exactly for ML detectors that operate in the presence
of Gaussian noise, which has an infinite support. Therefore,
the maximum improvement ratio of K may not be achieved
exactly in practice; however, it can be quite close to K in
certain scenarios (see, e.g., Fig. 3 at 28 dB). Proposition 4 also
provides some simple conditions to determine if the optimal
detector randomization approach can or cannot provide any
improvements over the optimal single detectors approach.

Remark 1: Although the results in Proposition 3 and Propo-
sition 4 are obtained when all the users employ ML detectors,
which are specified by the error probability expression g̃k in



(23), the results are also valid for other types of detectors; e.g.,
the sign detector or the optimal single-threshold detector. In
other words, Proposition 3 and Proposition 4 hold for arbitrary
g̃k corresponding to any type of detectors. �

In the following proposition, the structure of the optimal
detector randomization solution obtained from (20)-(22) is
specified in the case of equal crosscorrelations and noise
powers.

Proposition 5: Assume that there are at least K detectors
at each receiver; that is, Nd ≥ K. If the crosscorrelations
between the pseudo-noise signals for different users are equal;
i.e., ρk,j = ρ, ∀k ̸= j, and the standard deviations of the noise
at the receivers are the same; i.e., σk = σ, ∀k, then an optimal
solution to (20)-(22), which achieves the lower bound in (27),
can be expressed as

vl =
1

K
, Sl = CS2l−2(S

∗) for l = 1, . . . ,K (42)

where S∗ is as in (28) and CS2l−2(S
∗) denotes the circular

shift of the elements of S∗ by 2l − 2 positions.7

Proof: When the solution in (42) is employed, the objective
function in (20) becomes

max
k∈{1,...,K}

1

2K

∫ ∞

−∞

K∑
l=1

min
{
p
(k)
0 (y|CS2l−2(S

∗)) , (43)

p
(k)
1 (y|CS2l−2(S

∗))
}
dy .

In addition, for equal crosscorrelations and noise variances,
p
(k)
ik

(y|Sl) in (19) is given by

p
(k)
ik

(y|Sl) =
1

σ
√
2π 2K−1

∑
ik∈{0,1}K−1

(44)

exp

{
− 1

2σ2

(
y − S

(ik)
k,l − ρ

K∑
j=1

j ̸=k

S
(ij)
j,l

)2}

for ik = 0, 1, where Sl =
[
S
(0)
1,l S

(1)
1,l · · ·S

(0)
K,l S

(1)
K,l

]
and

ik = [i1 · · · ik−1 ik+1 · · · iK ]. Then, if Sl = CS2l−2(S
∗)

is employed for l = 1, . . . ,K, where S∗ ,
[S

(0)
1,∗ S

(1)
1,∗ · · ·S

(0)
K,∗ S

(1)
K,∗], it can be shown based on (44) that

the
∑K

l=1 min
{
p
(k)
0 (y|CS2l−2(S

∗)), p
(k)
1 (y|CS2l−2(S

∗))
}

terms in (43) become equal for k = 1, . . . ,K.8 Therefore,
the overall expression in (43) can be stated as

1

2K

K∑
l=1

∫ ∞

−∞
min

{
p
(k)
0 (y|CS2l−2(S

∗)) , (45)

p
(k)
1 (y|CS2l−2(S

∗))
}
dy

7Since S∗ is feasible; i.e, satisfies h(S∗) ≤ A by definition (see (28)),
CS2l(S

∗)’s are feasible as well due to the definition of h in (9).
8For example, if K = 2, then CS0(S

∗) =

[S
(0)
1,∗ S

(1)
1,∗ S

(0)
2,∗ S

(1)
2,∗] and CS2(S

∗) = [S
(0)
2,∗ S

(1)
2,∗ S

(0)
1,∗ S

(1)
1,∗],

for which min
{
p
(k)
0 (y|CS0(S

∗)), p
(k)
1 (y|CS0(S

∗))
}

+

min
{
p
(k)
0 (y|CS2(S

∗)), p
(k)
1 (y|CS2(S

∗))
}

is the same for k = 1
and k = 2, as can be observed from (44).

for any k ∈ {1, . . . ,K}. From (44), it is easy to verify that
(45) is also equal to

1

2K

K∑
k=1

∫ ∞

−∞
min

{
p
(k)
0 (y|S∗), p

(k)
1 (y|S∗)

}
dy , (46)

which can be expressed as 1
K

∑K
k=1 g̃k(S

∗) , PLB based on
the definitions in (23) and (27). Hence, it is observed that
for the solution in (42), the optimization problem in (20)-(22)
achieves the lower bound in Proposition 3; i.e., (42) provides
an optimal solution to (20)-(22) that achieves the lower bound
in (27), as claimed in the proposition. �

Although the optimal solution to the generic problem in
(20)-(22) requires a search over a (2K + 1)K dimensional
space (assuming Nd ≥ K), a significantly simpler solution can
be obtained under the conditions in Proposition 5; namely, the
following algorithm can be employed: (i) Calculate S∗ from
(28). (ii) Obtain the optimal solution as in (42).9 It is noted that
this algorithm requires a search over a 2K dimensional space
in order to calculate S∗. In addition, if symmetric signaling is
employed, the search space dimensions reduce to (K + 1)K
and K for the problems in (20)-(22) and in (28), respectively.

Remark 2: Under the conditions in Proposition 5, if S∗

is a solution of (28), any permutation of the signal amplitude
pairs for different users is a solution as well.10 For example,
if S∗ =

[
S
(0)
1,∗ S

(1)
1,∗ S

(0)
2,∗ S

(1)
2,∗ S

(0)
3,∗ S

(1)
3,∗
]
= [−1 1−2 2−3 3],

then [−1 1−3 3−2 2], [−2 2−1 1−3 3], [−2 2−3 3−1 1],
[−3 3−1 1−2 2], and [−3 3−2 2−1 1] are solutions of (28),
too. �

The following proposition presents necessary and sufficient
conditions for the uniqueness of the solution in (42).

Proposition 6: Consider scenarios in which performance
improvements are achieved via optimal detector randomiza-
tion over the optimal single detectors approach. Under the
conditions in Proposition 5, the optimal solution in (42) is
unique if and only if

• the solution of (28), S∗, is unique up to permutations of
signal amplitude pairs (see Remark 2), and

• the signal amplitude pairs in S∗ are the same except for
one of them.11

Proof: Please see Appendix A.
Proposition 6 guarantees the uniqueness of the optimal

solution in (42) based on the uniqueness of the solution S∗ of
(28) and the structure of this optimal solution. As an example,
for K = 4, if S∗ = [−1 1−1 1−1 1−2 2] is the unique
solution of (28) up to permutations of signal amplitude pairs
(i.e., the only solutions of (28) are [−1 1−1 1−1 1−2 2],
[−1 1−1 1−2 2−1 1], [−1 1−2 2−1 1−1 1], and
[−2 2−1 1−1 1−1 1] ), then the optimal solution is unique
as a result of Proposition 6 since the signal amplitude pairs
in S∗ are the same except for one of them. Also, from
Proposition 5, the optimal solution in (42) is given by v1 =

9The definition of the circular shift in Proposition 5 can be a right circular
shift or a left circular shift without affecting the optimality of the solution in
(42).

10This is implied by the proof of Proposition 5 based on the equivalence
of (45) and (46) (see (23) and (28) as well).

11The case in which S∗ is unique and the signal amplitude pairs in S∗ are
all the same is not considered since no improvement is achieved via detector
randomization in that scenario (i.e., the condition in Part (iii) of Proposition
4 is satisfied). Specifically, S∗ is employed all the time and each user runs a
single ML detector corresponding to S∗.



v2 = v3 = v4 = 0.25, S1 = [−1 1−1 1−1 1−2 2]
S2 = [−2 2−1 1−1 1−1 1], S3 = [−1 1−2 2−1 1−1 1],
and S4 = [−1 1−1 1−2 2−1 1] in this example.

V. PERFORMANCE EVALUATION

In this section, numerical results are presented to investi-
gate the theoretical results obtained in the previous sections
and to compare the proposed optimal detector randomization
approach against other approaches that do not perform any
detector randomization. Specifically, the following approaches
are considered in the simulations.

Optimal Detector Randomization: This scheme refers to
the proposed optimization problem in (13)-(15), which can be
solved via (20)-(22), as stated in Proposition 2. It is noted that
when the conditions in Proposition 5 are satisfied, the optimal
solution can also be obtained via (42), which has significantly
lower computational complexity.

Optimal Single Detectors: In this approach, a single detec-
tor is employed by each user; hence, no detector randomization
is performed. The solution is obtained from (25) (equivalently,
(26)). Namely, the optimal signals and the corresponding
single detectors (ML rules) are calculated in this approach.

Single Detectors at Power Limit: This approach employs
a single detector for each user, and equalizes the signal-
to-interference-plus-noise ratios (SINRs) at all the detectors.
In addition, all the available power is utilized. Specifically,
in this scheme, the signal amplitudes are chosen in such a
way that SINR1 = · · · = SINRK and h(S) = A, where
SINRk is the SINR for user k and h(S) is as in (9). The
SINR for user k can be calculated from (3) as SINRk =
E
{∣∣S(ik)

k

∣∣2}/(E{∣∣∑j ̸=k ρk,jS
(ij)
j

∣∣2}+σ2
k

)
for k = 1, . . . ,K,

which becomes SINRk =
∣∣S(1)

k

∣∣2/(∑j ̸=k ρ
2
k,j

∣∣S(1)
j

∣∣2 + σ2
k

)
for symmetric signaling. In general, the single detectors
at power limit approach has low computational complexity
compared to the other approaches; however, it can result in
degraded performance as investigated in the following.

In the simulations, symmetric signaling with equiprobable
information symbols is considered for all users, and the
standard deviations of the noise at the receivers are set to the
same value; i.e., σk = σ, k = 1, . . . ,K. In addition, as stated
after (3), ρk,j’s are taken as one for k = j; that is, ρk,k = 1
for k = 1, . . . ,K.

First, a 5-user scenario is considered (that is, K = 5),
and the crosscorrelations between the pseudo-noise signals for
different users are set to 0.27; i.e., ρk,j = 0.27 for k ̸= j. Also,
the average power constraint A in (6) is taken as 5. In Fig. 3,
the maximum average probability of error is plotted versus
1/σ2 for the optimal detector randomization, optimal single
detectors, and single detectors at power limit approaches.
From the figure, it is observed that the optimal detector
randomization approach achieves the best performance among
all the approaches, and the optimal single detectors approach
outperforms the single detectors at power limit approach
for small noise variances. In addition, the calculations show
that for high noise variances the nonimprovability condition
in Part (iii) of Proposition 4 is satisfied, while for small
noise variances the improvability condition stated in Part (iv)
of the same proposition is valid. It is also noted that the
improvement ratio, which is the ratio between the maximum
error probabilities of the optimal single detectors and optimal
detector randomization approaches, satisfies the inequality (36)
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Fig. 3. Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 5, ρk,j = 0.27 for all k ≠ j, and A = 5.

TABLE I
SOLUTION OF THE OPTIMAL SINGLE DETECTORS APPROACH IN (26) FOR
THE SCENARIO IN FIG. 3. (ONLY THE SIGNAL AMPLITUDES FOR BIT 1 OF

THE USERS ARE SHOWN DUE TO SYMMETRY.)

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄

18 1 1 1 1 1
20 1 1 1 1 1
22 1.1167 0.9686 0.9686 0.9686 0.9686
24 1.1321 0.9642 0.9642 0.9642 0.9642
26 1.1421 0.9612 0.9612 0.9612 0.9612
28 0.1514 1.1154 1.1154 1.1154 1.1154

in Proposition 4. In particular, the maximum improvement
ratio of 5 is approximately achieved at 1/σ2 = 28 dB.

In order to investigate the results in Fig. 3 in more de-
tail, Table I presents the solution S⋄ of the optimal single
detectors approach in (26) for various noise variances, where
S⋄ =

[
S
(0)
1,⋄ S

(1)
1,⋄ · · ·S

(0)
K,⋄ S

(1)
K,⋄
]
. Since symmetric signaling

is employed, only the signal amplitudes corresponding to bit
1 of the users are shown in the table. (The signal amplitudes
for bit 0 are given by S

(0)
k,⋄ = −S

(1)
k,⋄ for k = 1, 2, 3, 4, 5.). In

addition, Table II illustrates the solution of (28), S∗, which
specifies the solution of the optimal detector randomization
approach as described in (42) in Proposition 5. Again only
the signal amplitudes corresponding to bit 1 of the users are
shown due to symmetry. From Tables I and II, it is observed
that both the optimal single detectors and the optimal detector
randomization approaches converge to the single detectors at
power limit approach for high noise variances. This is due
to the fact that the Gaussian noise becomes dominant as
the noise variance increases and the multiuser interference

TABLE II
SOLUTION OF (28), S∗ , FOR THE SCENARIO IN FIG. 3. (ONLY THE SIGNAL
AMPLITUDES FOR BIT 1 OF THE USERS ARE SHOWN DUE TO SYMMETRY.)
NOTE THAT S∗ SPECIFIES THE SOLUTION OF THE OPTIMAL DETECTOR

RANDOMIZATION APPROACH AS IN (42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗

18 1 1 1 1 1
20 1 1 1 1 1
22 0.1531 1.1154 1.1154 1.1154 1.1154
24 0.1522 1.1154 1.1154 1.1154 1.1154
26 0.1516 1.1155 1.1155 1.1155 1.1155
28 0.1513 1.1155 1.1155 1.1155 1.1155
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Fig. 4. Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 5, ρk,j = 0.35 for all k ̸= j, and A = 5.

plus noise term becomes approximately a Gaussian random
variable, in which case the optimal solution is to assign
equal powers for all users at the maximum power limit.
Also, it is noted that the nonimprovability condition in Part
(iii) of Proposition 4 is satisfied for that scenario. On the
other hand, for small noise variances, the solutions become
different from that of the single detectors at power limit
approach, and improvements are achieved as observed in
Fig. 3. In addition, Table II implies that the conditions in
Proposition 6 are satisfied for small noise variances; hence,
the solution of the optimal detector randomization approach
specified in (28) is unique in those scenarios. For example,
at 1/σ2 = 24 dB, the unique solution of the optimal detector
randomization approach is specified by vl = 0.2 and Sl =
CS2l−2([−0.1522 0.1522 −1.1154 1.1154 −1.1154 1.1154 −
1.1154 1.1154 − 1.1154 1.1154]) for l = 1, 2, 3, 4, 5. Another
important observation can be made from Table II regarding the
signal values for the optimal detector randomization approach.
When the noise variance is smaller than a certain value, the
optimal solution does not vary significantly with the noise
level. Hence, perfect knowledge of the noise level may not
be required for achieving a near optimal performance. Finally,
it is observed from Tables I and II that the optimal signal
values are the same for many (or, all) of the users at a given
noise variance, which is mainly due to the the structures of
the optimization problems in (26) and (28), and the facts
that the crosscorrelations between the pseudo-noise signals
for different users are equal, and the standard deviations of
the noise at the receivers are the same. In other words, the
optimization problems in (26) and (28) tend to yield equalizer
rules (for all or some of the users) in the considered scenario.

Next, another scenario with K = 5 users is considered,
where ρk,j = 0.35 for k ̸= j, and A = 5. In Fig. 4, the maxi-
mum average probability of error is illustrated for the optimal
detector randomization, optimal single detectors, and single
detectors at power limit approaches. Similar observations to
those for Fig. 3 can be made. The main difference is that im-
provements are achieved for a larger range of noise variances
in this scenario. In addition, the solutions of the optimal single
detectors and the optimal detector randomization approaches

TABLE III
SOLUTION OF THE OPTIMAL SINGLE DETECTORS APPROACH IN (26) FOR

THE SCENARIO IN FIG. 4.

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄

15 1 1 1 1 1
20 1.1099 1.1099 0.9195 0.9195 0.9195
25 0.2180 0.2180 1.2787 1.2787 1.2787
30 0.2218 0.2218 1.2782 1.2782 1.2782

TABLE IV
SOLUTION OF (28), S∗ , FOR THE SCENARIO IN FIG. 4. NOTE THAT S∗

SPECIFIES THE SOLUTION OF THE OPTIMAL DETECTOR RANDOMIZATION
APPROACH AS IN (42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗

15 1 1 1 1 1
20 0.2084 0.2084 1.2797 1.2797 1.2797
25 0.2180 0.2180 1.2787 1.2787 1.2787
30 0.2218 0.2218 1.2782 1.2782 1.2782

are specified in Tables III and IV for the scenario in Fig. 4
for some values of 1/σ2. Again similar observations to those
in the previous scenario can be made. However, in this case,
the solution in (28) is not unique since the second uniqueness
condition in Proposition 6 is not satisfied, as observed from
Table IV.

Then, a scenario with K = 6 users is considered, where
ρk,j = 0.21 for k ̸= j, and A = 6. In Fig. 5, the maximum
average probability of error is illustrated for the optimal
detector randomization, optimal single detectors, and single
detectors at power limit approaches. Similar observations as
in the previous scenarios are made. The main difference in this
scenario is that the improvement ratio is smaller than those in
Fig. 3 and Fig. 4. Also, the solutions of the optimal single
detectors and the optimal detector randomization approaches
are specified in Tables V and VI for the scenario in Fig. 5 for
some values of 1/σ2.

Finally, a system with 10 users is considered, where ρk,j =
0.17 for k ̸= j, and A = 10. In Fig. 6, the maximum
average probability of error is plotted versus 1/σ2 for the
optimal detector randomization, optimal single detectors, and
single detectors at power limit approaches. Again similar
observations to those for the previous scenarios are made. The
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Fig. 5. Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 6, ρk,j = 0.21 for all k ≠ j, and A = 6.



TABLE V
SOLUTION OF THE OPTIMAL SINGLE DETECTORS APPROACH IN (26) FOR

THE SCENARIO IN FIG. 5.

1/σ2 (dB) S
(1)
1,⋄ S

(1)
2,⋄ S

(1)
3,⋄ S

(1)
4,⋄ S

(1)
5,⋄ S

(1)
6,⋄

18 1 1 1 1 1 1
20 1 1 1 1 1 1
22 1.0662 0.9862 0.9862 0.9862 0.9862 0.9862
24 1.0978 0.9793 0.9793 0.9793 0.9793 0.9793
26 1.1353 0.9707 0.9707 0.9707 0.9707 0.9707
28 1.1602 0.9648 0.9648 0.9648 0.9648 0.9648

TABLE VI
SOLUTION OF (28), S∗ , FOR THE SCENARIO IN FIG. 5. NOTE THAT S∗

SPECIFIES THE SOLUTION OF THE OPTIMAL DETECTOR RANDOMIZATION
APPROACH AS IN (42).

1/σ2 (dB) S
(1)
1,∗ S

(1)
2,∗ S

(1)
3,∗ S

(1)
4,∗ S

(1)
5,∗ S

(1)
6,∗

18 1 1 1 1 1 1
20 1 1 1 1 1 1
22 1.1117 0.9761 0.9761 0.9761 0.9761 0.9761
24 1.1283 0.9723 0.9723 0.9723 0.9723 0.9723
26 1.1430 0.9689 0.9689 0.9689 0.9689 0.9689
28 1.1606 0.9647 0.9647 0.9647 0.9647 0.9647

main difference in this case is that the error rates are higher
for a given noise level than those in the previous scenarios,
which is mainly due to the large number of users.

VI. CONCLUSIONS AND EXTENSIONS

Optimal detector randomization has been studied for the
downlink of a DSSS system. An optimization problem has
been formulated in order to obtain the optimal signal ampli-
tudes, detectors, and detector randomization factors. Since this
joint optimization problem is quite challenging in general, a
simplified problem has been proposed, in which the search is
performed over signal amplitudes and detector randomization
factors only, and then the ML detectors corresponding to the
optimal signal amplitudes are employed at the receivers. It has
been shown that this simplified approach provides the optimal
solution to the generic problem when detector randomization
is performed over at most min{K,Nd} detector sets, where
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Fig. 6. Maximum average probability of error versus 1/σ2 for the optimal
detector randomization, optimal single detectors, and single detectors at power
limit approaches, where K = 10, ρk,j = 0.17 for all k ̸= j, and A = 10.

K is the number of users and Nd is the number of detec-
tors at each receiver. Then, the performance of the optimal
detector randomization approach has been investigated, and
a lower bound has been obtained for the minimum worst-
case average probability of error. Also, it has been shown that
the optimal detector randomization approach can improve the
performance of the optimal single detectors approach by up to
K times. In addition, various sufficient conditions have been
obtained for the improvability and nonimprovability via detec-
tor randomization. Furthermore, in the special case of equal
crosscorrelations and noise powers, a simple solution has been
provided for the optimal detector randomization problem, and
necessary and sufficient conditions have been presented for
the uniqueness of that solution. Finally, numerical examples
have been presented in order to illustrate the improvements
achieved via detector randomization.

Although the downlink of a DSSS system is considered in
this study, the results can also be applied to the uplink of
a synchronous DSSS under certain assumptions. Specifically,
suppose that the receiver (the base station or the access point)
employs a bank of K correlators corresponding to the pseudo-
noise signals of the users and then performs the bit decision
for user k based on the kth correlator output via detector
randomization among Nd detectors, where k ∈ {1, . . . ,K}.
In this scenario, the theoretical results in Section III and
Section IV can be extended to the uplink as well. However,
when an asynchronous system is considered or when the
receiver employs multiuser detection approaches [33], the
results in this study cannot be directly applied. Therefore,
optimal detector randomization in such scenarios is considered
as a future work.

The results in this study can also be extended to cover
scenarios in which each user performs M -ary modulation for
M > 2. In that case, the definitions of ϕ

(k)
l in (4), Sl at the

beginning of Section III, h in (9), gk,l in (11), and g̃k in (23)
can be updated accordingly, and the theoretical results in the
previous sections can still be employed based on these new
definitions.

APPENDIX

A. Proof of Proposition 6

First, it is shown that the optimal solution in (42) is unique
if the conditions in the proposition are satisfied. To that aim,
define the following sets

Sequ =

{
S ∈ SA :

K∑
k=1

g̃k(S) =
K∑

k=1

g̃k(S
∗)

}
(47)

Slar =

{
S ∈ SA :

K∑
k=1

g̃k(S) >
K∑

k=1

g̃k(S
∗)

}
(48)

where g̃k is given by (23) and SA is as defined in Proposition
3. Note that each S ∈ SA must belong to either Sequ or Slar

due to the definition of S∗ in (28). Let {vl,Sl}Kl=1 denote the
optimal solution of (20)-(22). Then, it is proved that Sl ∈ Sequ

must hold for all l ∈ {1, . . . ,K} since it would otherwise lead
to a scenario in which the optimal solution of (20)-(22), PDR,



could not achieve the lower bound in (27) as shown below:

PDR = max
k∈{1,...,K}

K∑
l=1

vlg̃k(Sl) ≥
1

K

K∑
l=1

vl

K∑
k=1

g̃k(Sl)

>
1

K

K∑
l=1

vl

K∑
k=1

g̃k(S
∗) = PLB . (49)

Here, the strict inequality is obtained under the assumption
that there exists l ∈ {1, . . . ,K} such that Sl /∈ Sequ (i.e.,
Sl ∈ Slar). However, as stated in Proposition 5, the lower
bound must be achieved in the considered scenario. Therefore,
(49) presents a contradiction, implying that Sl ∈ Sequ must
hold for all l ∈ {1, . . . ,K}.

Next, define set Sper as follows: Sper = {S ∈ SA :
S is a permutation of signal amplitude pairs in S∗}. From
Remark 2, it is noted that the elements of Sper corre-
spond to all possible S ∈ SA that satisfy

∑K
k=1 g̃k(S) =∑K

k=1 g̃k(S
∗); hence, Sper = Sequ. Then, based on the argu-

ment in the previous paragraph, it is concluded that the optimal
solution of (20)-(22), {vl,Sl}Kl=1, must satisfy Sl ∈ Sper for
all l ∈ {1, . . . ,K}. If the conditions in the proposition are
satisfied (i.e., S∗ is unique up to permutations of the signal
amplitude pairs, which are the same except for one of them),
there exist exactly K elements in Sper, which correspond to
the circular shifts of S∗ by 2l− 2 elements for l = 1, . . . ,K;
that is, Sper = {CS2l−2(S

∗), l = 1, . . . ,K}. In order to
specify the randomization factors, v1, . . . , vK , of the optimal
solution in this scenario, define v as v = [v1 · · · vK ]T and G
as a K × K matrix with its element in row k and column l
being equal to g̃k(CS2l−2(S

∗)).12 Then, based on Proposition
3, the optimal weights must satisfy

Gv = pLB and 1Tv = 1 , (50)

where 1 , [1 · · · 1]T and pLB , [PLB · · ·PLB]
T with

PLB = 1
K

∑K
k=1 g̃k(S

∗) as in (27). Note that each element
of Gv corresponds to the average error probability of a user,
which should be equal to PLB, since the lower bound in
(27) is achieved, i.e., PDR = PLB, in this scenario (see the
achievability condition in Proposition 3). It can be shown that
G is a circulant matrix [41] based on the following lemma:

Lemma 1: Under the conditions in Proposition 5,
g̃k(CS2l−2(S

∗)) = g̃j(CS2m−2(S
∗)) if (l − k)modK =

(m− j)modK for k, l, j,m ∈ {1, . . . ,K}.
Proof: From (23), g̃k(CS2l−2(S

∗)) can be expressed as

g̃k(CS2l−2(S
∗)) = (51)

0.5

∫ ∞

−∞
min

{
p
(k)
0 (y|CS2l−2(S

∗)) , p
(k)
1 (y|CS2l−2(S

∗))
}
dy

where p
(k)
ik

is given by (44) under the conditions in Proposition
5. From (44) and (51), it is observed that g̃k(CS2l−2(S

∗)) and
g̃j(CS2m−2(S

∗)) are equal if the kth signal amplitude pair in
CS2l−2(S

∗) is the same as the jth signal amplitude pair in
CS2m−2(S

∗). Since the kth and the jth signal amplitude pairs
in CS2l−2(S

∗) and CS2m−2(S
∗), respectively, become the

same for (l−k)modK = (m−j)modK due to the nature of the
circular shift operator, g̃k(CS2l−2(S

∗)) = g̃j(CS2m−2(S
∗)) is

obtained for (l− k)modK = (m− j)modK , where k, l, j,m ∈
{1, . . . ,K}. �

12Note that the elements of G are strictly positive based on (23) and (44).

In addition to being a circulant matrix, G also has the
property that its elements in each row are either all the same or
the same except for one of them under the second condition
in the proposition (i.e., when the signal amplitude pairs in
S∗ are the same except for one of them). This observation
follows directly from (23) and (44). Therefore, one of the
rows of G, say the first one, is in the form of [a b · · · b],
and the other rows are the circular shifts of this row in such
a way that G is a circulant matrix. First consider the case in
which a ̸= b. Then, it is concluded that G is nonsingular since
its eigenvalues are all nonzero. (In particular, one eigenvalue
is a + (K − 1)b and the remaining ones are a − b.) Hence,
there exists a unique solution of (50). Based on the fact
that 1

K

∑K
l=1 g̃k(CS2l−2(S

∗)) = 1
K

∑K
j=1 g̃j(S

∗) for each
k ∈ {1, . . . ,K} (which can be verified from (23) and (44)),
the unique solution of (50) is obtained as v =

[
1
K · · · 1

K

]T
. For

a = b, all the elements of G; hence, all the g̃k(CS2l−2(S
∗))

terms, are the same. Therefore, no improvement is achieved
via detector randomization in that scenario, and the optimal
solution can be achieved by employing S∗ all the time. Hence,
this trivial scenario is excluded as stated at the beginning of
Proposition 6; that is, a = b does not hold for scenarios
considered in the proposition.

In order to prove the necessity of the conditions in the
proposition, first assume that S∗ is not unique up to permuta-
tions of signal amplitude pairs. Then, a different solution can
be obtained for each distinct S∗ as described above. Namely, a
distinct solution is calculated as in (42) for each S∗. Therefore,
the solution is not unique if the first condition in Proposition
6 is not satisfied. Next, assume that S∗ is unique up to
permutations of signal amplitude pairs but it does not satisfy
the second condition in the proposition; that is, there are at
least three distinct signal amplitude pairs in S∗ or two distinct
signal amplitude pairs each with multiple repetitions. Then, the
permutations of the signal amplitude pairs in S∗ result in more
than K different signal vectors; i.e., there exist more than K
elements in set Sper, which is as defined above. (In particular,
if there exist Np distinct signal amplitude pairs in S∗, each of
which has R1, . . . , RNp repetitions, respectively, then there are
K!/(R1! · · ·RNp

!) different permutations of signal amplitude
pairs; i.e., |Sper| = K!/(R1! · · ·RNp !).) In this case, there
exist at least two distinct signal vectors S∗

x1
and S∗

x2
, which

are not circular shifts of each other. Then, the circular shifts of
S∗

x1
and S∗

x2
can be employed in order to obtain two distinct

solutions based on (42). Hence, it is concluded that the solution
is not unique if the second condition in the proposition is not
satisfied. �
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