
Optimal Randomization of Signal Constellations on
the Downlink of a Multiuser DS-CDMA System

Mehmet Emin Tutay, Student Member, IEEE, Sinan Gezici, Senior Member, IEEE,
and Orhan Arikan, Member, IEEE

Abstract— In this study, the jointly optimal power control with
signal constellation randomization is proposed for the downlink
of a multiuser communications system. Unlike a conventional
system in which a fixed signal constellation is employed for all
the bits of a user (for given channel conditions and noise power),
power control with signal constellation randomization involves
randomization/time-sharing among different signal constellations
for each user. A formulation is obtained for the problem of
optimal power control with signal constellation randomization,
and it is shown that the optimal solution can be represented
by a randomization among (K + 1) or fewer distinct signal
constellations for each user, where K denotes the number of
users. In addition to the original nonconvex formulation, an
approximate solution based on convex relaxation is derived. Then,
detailed performance analysis is presented when the receivers
employ symmetric signaling and sign detectors. Specifically, the
maximum asymptotical improvement ratio is shown to be equal
to the number of users, and the conditions under which the
maximum and minimum asymptotical improvement ratios are
achieved are derived. Numerical examples are presented to
investigate the theoretical results, and to illustrate performance
improvements achieved via the proposed approach.

Index Terms– Multiuser, downlink, probability of error, time-
sharing, randomization, minimax.

I. INTRODUCTION

In this study, we consider a generic problem on the signal
constellation design for the downlink of a binary multiuser
communications system in which users can randomize or
time-share among multiple signal constellations. Unlike con-
ventional systems in which a fixed signal constellation is
employed for all the bits of a user (for given channel conditions
and noise power) [1], we formulate a generic problem that
can involve randomization/time-sharing among different signal
constellations for each user. Due to such randomization/time-
sharing, the signal amplitude corresponding to each bit of
a user can be modeled as a generic random variable in
this approach. Therefore, the problem can be formulated as
obtaining the optimal probability distribution for the signal
amplitude corresponding to each bit of each user in a multiuser
system.

The proposed approach, which is called power control with
signal constellation randomization, differs from randomized
power control algorithms in the literature from various per-
spectives [2]-[7].1 First, as the power control with signal
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1Please refer to [8]-[10] for surveys on power control in wireless networks.

constellation randomization approach can result in strategies
in which different power allocation strategies are employed
for different bits of a given user, it is a more generic ap-
proach than randomized power control in general. Second, the
proposed approach is employed for each state of the channel
whereas power control algorithms are used with respect to
varying channel conditions. In other words, the power control
strategies in the literature adapt the power as the channel
state changes, whereas the proposed approach performs con-
stellation randomization for a given (fixed) channel state.
Third, even for the symmetric signaling case (in which signal
amplitudes for bit 0 and bit 1 are negatives of each other,
and the same power allocation strategy is employed for bit
0 and bit 1 for each user), the proposed approach differs
from those in the literature [2]-[7] by modeling the signal
amplitudes (powers) of the users as generic random variables
and obtaining the optimal probability distributions of those
random variables that minimize a probability of error metric.
For example, in [2], transmit powers are selected from a
discrete set of power levels, namely, zero and peak power,
and optimal power randomization strategies are obtained under
that specification for a two-hop interference channel.2 [3]
considers the same strategy for power control in ad-hoc sensor
networks, and works on the optimization of transmission
(on-state) probability to meet certain quality of service re-
quirements. In another study [4], a random power control
algorithm is proposed, in which the transmitter selects its
power level randomly from a uniform distribution. It is shown
that this approach can improve network connectivity over the
fixed power control approach in the case of static channels.
However, the performance of this uniform power selection
approach deteriorates in fading channels, as investigated in [5].
In [6], random power allocation according to a certain prob-
ability distribution is proposed. Namely, the transmit power
is modeled by a truncated inverted exponential distribution,
and the parameter of this distribution is updated at certain
intervals based on feedback. The connectivity analysis of this
approach is presented in [7] for wireless sensor networks, and
improvements in energy efficiency are observed.3

The power control with signal constellation randomization
problem considered in this study is also related to some of
the recent works in the literature that investigate the effects of
randomizing transmitted signals, additive “noise”, and jammer

2Please refer to [11] and [12] for other game theoretic approaches for power
control.

3In [13] and [14], the term “stochastic power control” is used in a different
meaning from “randomized power control” in [2]-[7]. Specifically, [13] and
[14] do not employ any power or signal randomization but apply an approach
that is based on measurements (which are inherently random) instead of known
deterministic parameters.



power [15]-[24]. In [15], the stochastic signaling approach
is considered by modeling transmitted signal amplitudes in
a binary communications system as random variables instead
of fixed quantities for each information symbol. It is shown
that the probability of error is minimized when each signal
amplitude is represented by a randomization (time-sharing) of
at most three different signal levels under second and fourth
moment constraints. The results are extended in [16] to cases
in which signals and detectors are jointly designed. In addition,
[18] investigates the problem of joint detector randomization
and stochastic signaling for minimum probability of error
receivers. The effects of randomization are observed also in
improving performance of suboptimal detectors and estimators
by injecting “noise” to their observations [19]-[21], [25]. For
example, additive noise that is a randomization between two
different signal levels can increase detection probabilities of
some suboptimal detectors under false-alarm constraints [19],
[20]. The studies in [22] and [23] investigate the convexity
properties of the average probability of error in the presence of
additive white Gaussian noise (AWGN) when maximum like-
lihood (ML) detectors are employed at the receivers. Based on
the convexity results, the cases in which power randomization
can or cannot be useful for improving error performance are
specified, and optimal jammer power randomization strategies
are proposed. In [24], the jamming problem is studied based
on a dynamic game model, in which transmit and jammer
powers can be chosen randomly.

The idea of using time-varying or random signal con-
stellations is considered in some studies such as [26]-[31].
In [26], the author proposes (pseudo)randomly rotating the
signal constellation for each transmitted vector in order to
improve the coded frame-error-rate of spatial multiplexing in
block fading. The advantages of this approach in reducing the
outage probability are investigated in [27]. Although a form
of constellation randomization is performed in [26], [27], they
are different from the current work since a (pseudo)random
rotation of the signal constellation is proposed for a single
user system in those studies, whereas we obtain optimal
randomization of signal constellations for a multiuser system
in this work. In addition, the studies in [28]-[31] consider
random signal mapping, random rotations, or time-varying
phase shifts to transmitted signals in order to achieve diversity.

Motivated by the recent results that illustrate the improve-
ments obtained via randomization [15]-[26], the aim of this
study is to formulate a generic power control problem with
signal constellation randomization for the downlink of a mul-
tiuser communications system in which the signal amplitude
for each bit of a user is modeled as a random variable. In other
words, by adopting the approach in [15], the aim is to jointly
design the optimal randomization of signal constellations for
all users in the downlink of a direct sequence code division
multiple access (DS-CDMA) system in order to optimize error
performance for given receiver structures. The main challenge
in the joint design of signal constellation randomization is
that signal amplitudes of each user affect not only its own
error performance but also the performance of all other users
via interference. The main contributions of this study can be
summarized as follows:

• The joint design of optimal randomization of signal
constellations is performed in the downlink of a multiuser
system for given receiver structures.

• It is shown that the optimal power control with signal
constellation randomization results in a randomization
among up to (K + 1) different signal constellations for
each user, where K is the number of users.

• An approximate convex solution is obtained based on
convex relaxation.

• Although the theoretical results are obtained for generic
detector structures at the receivers (Section III), specific
results are obtained for sign detectors (Section IV).
Namely, it is shown that, in the absence of noise, the
ratio between the maximum error probabilities of the op-
timal fixed signal constellations approach and the optimal
power control with signal constellation randomization
approach can be as high as the number of users.

In addition, numerical examples are provided to illustrate the
improvements obtained via the proposed power control with
signal constellation randomization approach (Section V).

II. SYSTEM MODEL

Consider the downlink of a multiuser DS-CDMA binary
communications system, in which the baseband model for the
transmitted signal is given by

p(t) =
K∑

k=1

S
(ik)
k ck(t) , (1)

where K is the number of users, S(ik)
k denotes the amplitude

of the kth user’s signal corresponding to bit ik, with ik ∈
{0, 1}, and ck(t) is the real pseudo-noise signal for user k. The
pseudo-noise signals spread the spectra of users’ signals and
provide multiple-access capability [1]. Information intended
for user k is carried by S

(ik)
k , which corresponds to bit 0 for

ik = 0 and bit 1 for ik = 1. S
(ik)
k ’s are modeled as real

numbers, and they scale the amplitudes of the pseudo-noise
signals, ck(t)’s. It is assumed that bit 0 and bit 1 are equally
likely (i.e., the prior probabilities of the bits are equal to 0.5)
for all users, and the information bits for different users are
independent.

The signal in (1) is transmitted to K users, and the received
signal at user k is represented by

rk(t) =

K∑
l=1

S
(il)
l cl(t) + nk(t) , (2)

for k = 1, . . . ,K, where nk(t) denotes the noise at the
receiver of user k, which is modeled as a zero-mean white
Gaussian process with spectral density σ2

k. It is assumed that
the noise processes at different receivers are independent.
Although a simple additive noise model is employed in (2),
multipath channels with slow frequency-flat fading can also be
covered by the considered model if perfect channel estimation
is assumed at the receivers [15]. (In that case, the average
powers of the noise components in (2), equivalently, σ2

k terms,
can be adjusted according to channel power gains in order to
take the channel conditions into account.)

The receiver for user k processes the signal in (2) as
shown in Fig. 1. Specifically, the received signal rk(t) is
correlated with the pseudo-noise signal for user k, ck(t), which
effectively corresponds to a despreading operation, and then
the correlator output is used by a generic detector in order



Fig. 1. Receiver structure for user k.

to estimate the transmitted bit for user k. Based on (2), the
correlator output for user k can be expressed as

Yk = S
(ik)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk , (3)

for k = 1, . . . ,K, where ρk,l ,
∫
ck(t)cl(t)dt denotes the

crosscorrelation between the pseudo-noise signals for user k
and l (it is assumed without loss of generality that ρk,k = 1
for k = 1, . . . ,K ), and Nk ,

∫
nk(t)ck(t)dt is the noise

component. It can be shown that N1, . . . , NK form a se-
quence of independent zero-mean Gaussian random variables
with variances, σ2

1 . . . , σ
2
K , respectively. In (3), the first term

corresponds to the desired signal component, the second term
represents the multiple-access interference (MAI), and the last
term is the noise component.

The correlator output in (3) is used by a generic detector
(decision rule) ϕk to generate an estimate of the transmitted
information bit, as shown in Fig. 1. Specifically, for a given
correlator output Yk = yk, the bit estimate is denoted as

îk = ϕk(yk) =

{
0 , yk ∈ Γk,0

1 , yk ∈ Γk,1
(4)

for k = 1, . . . ,K, where Γk,0 and Γk,1 denote the decision
regions for bit 0 and bit 1, respectively, and they form a
partition of the observation space [32]. In the next section,
theoretical results are obtained for generic detectors at the
receivers; that is, ϕk’s can be arbitrary decision rules.

III. POWER CONTROL WITH SIGNAL CONSTELLATION
RANDOMIZATION FOR MULTIUSER SYSTEMS

A. Optimal Power Control with Signal Constellation Random-
ization

In conventional systems, S(ik)
k in (1) corresponds to a fixed

value for each bit of a given user; in other words, a signal
constellation is selected for each user, and it is employed
for all the bits in the multiuser system (for given channel
conditions and noise power). For example, consider a two-user
system, in which bit 0 and bit 1 are represented by −1 and 1,
respectively, for user 1, and by −0.5 and 0.5, respectively, for
user 2. Then, the joint signal constellation for the two users
is represented by

(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−1, 1,−0.5, 0.5).

In this case, there is no randomization or time-sharing among
multiple signal constellations, and a fixed signal constellation
is employed for all the bits of each user in the system for
given channel conditions and noise power. A specific example
is illustrated in Table I-(A) when 12 bits are transmitted for
each user.

Unlike conventional systems, we consider power control
with signal constellation randomization in this study and

model S(ik)
k in (1) as generic random variables [15]. In this

case, it is possible to employ different signal constellations
for different bits in the system (for given channel conditions
and noise power). In other words, randomization/time-sharing
among multiple signal constellations is possible. For example,
in a two-user system, one can time-share between joint signal
constellations

(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−0.7, 0.7,−0.4, 0.4)

and
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−1.1, 1.1,−0.8, 0.8). Specif-

ically, if half of the bits are sent according to the first
set of signal constellations and the remaining half are sent
according to the second one, the overall joint signal constella-
tion,

(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
, can be represented by a discrete

random variable which is equal to (−0.7, 0.7,−0.4, 0.4) or
(−1.1, 1.1,−0.8, 0.8) with equal probabilities. In Table I-
(B), this example of power control with signal constellation
randomization is illustrated when 12 bit are transmitted for
each user. As observed from the table, for user 1 (user 2), half
of bits 0 are represented by −0.7 (−0.4) and the remaining
half are represented by −1.1 (−0.8); similarly, half of bits
1 are represented by 0.7 (0.4) and the remaining half are
represented by 1.1 (0.8) in order to implement the desired
signal constellation randomization.

In order to provide a generic formulation of the proposed
power control with signal constellation randomization ap-
proach in multiuser systems, let S denote the vector of random
variables corresponding to the amplitudes of all users’ signals
for bit 0 and bit 1; that is,

S =
(
S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2 , · · · , S(0)

K , S
(1)
K

)
, (5)

where S
(ik)
k is as in (1). In other words, S is the joint signal

constellation, which is a 2K dimensional vector consisting
of signal constellations for all users (as exemplified in the
previous paragraphs), and it is modeled as a generic random
vector in order to facilitate any type of signal constellation
randomization. In addition, let pS represent the probability
density function (PDF) of S. According to this definition, the
conventional approach of no constellation randomization (or,
fixed signal constellations) corresponds to a PDF in the form
of pS(s) = δ(s − s0), where δ(·) represents the Dirac delta
function. (For instance, pS(s) = δ (s− (−1, 1,−0.5, 0.5))
for the example in Table I-(A).) On the other hand, any
generic PDF can be employed in the power control with signal
constellation randomization approach considered in this study.
(For instance, pS(s) = 0.5 δ(s − (−0.7, 0.7,−0.4, 0.4)) +
0.5 δ(s − (−1.1, 1.1,−0.8, 0.8)) for the example in Table I-
(B).)

Based on the definition in (5), the aim is to find the
optimal PDF of S, i.e., the optimal randomization of signal
constellations, in a given multiuser system. Considering a
generic approach in the sense that the PDF of S, pS , can be
in any form (corresponding to discrete, continuous, or mixed
random variables), we formulate the following power control
with signal constellation randomization problem:

min
pS

max
k∈{1,...,K}

Pk (6)

subject to E

{∫
|p(t)|2dt

}
≤ A (7)

where Pk denotes the average probability of error for user k,
p(t) is as in (1), and A is a constraint on the average power



TABLE I
(A) EXAMPLE OF A CONVENTIONAL SYSTEM IN WHICH NO SIGNAL CONSTELLATION RANDOMIZATION IS EMPLOYED. JOINT SIGNAL CONSTELLATION(

S
(0)
1 , S

(1)
1 , S

(0)
2 , S

(1)
2

)
= (−1, 1,−0.5, 0.5) IS USED FOR ALL THE BITS. (B) EXAMPLE OF POWER CONTROL WITH SIGNAL CONSTELLATION

RANDOMIZATION IN WHICH HALF OF THE BITS ARE TRANSMITTED ACCORDING TO JOINT SIGNAL CONSTELLATION (−0.7, 0.7,−0.4, 0.4) AND THE

REMAINING HALF ARE TRANSMITTED ACCORDING TO (−1.1, 1.1,−0.8, 0.8).

(A)

Bit of User 1 (i1) 0 1 0 0 1 0 1 1 0 0 1 1
Amplitude of User 1’s Signal

(
S

(i1)
1

)
-1 1 -1 -1 1 -1 1 1 -1 -1 1 1

Bit of User 2 (i2) 1 0 1 0 0 1 1 0 1 0 0 1
Amplitude of User 2’s Signal

(
S

(i2)
2

)
0.5 -0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 -0.5 0.5

(B)

Bit of User 1 (i1) 0 1 0 0 1 0 1 1 0 0 1 1
Amplitude of User 1’s Signal

(
S

(i1)
1

)
-0.7 0.7 -1.1 -0.7 1.1 -1.1 0.7 1.1 -0.7 -1.1 0.7 1.1

Bit of User 2 (i2) 1 0 1 0 0 1 1 0 1 0 0 1
Amplitude of User 2’s Signal

(
S

(i2)
2

)
0.4 -0.4 0.8 -0.4 -0.8 0.8 0.4 -0.8 0.4 -0.8 -0.4 0.8

of the transmitted signal. In other words, the aim is to find the
optimal PDF for the joint signal constellation that minimizes
the maximum of the average probabilities of error under a
constraint on the average transmitted power. The minimax
approach is adopted for fairness [33]-[38]; that is, for prevent-
ing scenarios in which the average probabilities of error are
very low for some users whereas they are (unacceptably) high
for others. Extensions to cases in which different users have
different levels of importance are also possible as discussed
in Section VI. It is noted that the formulation in (6)-(7) is
similar to a max-min SINR problem [34]. However, the main
differences are that the optimization in (6)-(7) is performed
over the set of possible PDFs for the joint signal constellation,
and that the considered probability of error metric leads to
different solutions than the max-min SINR problem in general.

In order to express the optimization problem in (6)-(7) more
explicitly, we first manipulate the average power expression in
(7) based on (1) as follows:

E

{∫
|p(t)|2dt

}
=

K∑
k=1

K∑
l=1

ρk,l E
{
S
(ik)
k S

(il)
l

}
= E{H(S)}

(8)

where H(S) is defined as

H(S) ,
K∑

k=1

K∑
l=1

ρk,lS
(ik)
k S

(il)
l . (9)

In some scenarios, symmetric signaling is used, that is, the
amplitudes of users’ signals corresponding to bit 0 and bit 1
are selected as S

(0)
k = −S

(1)
k for k = 1, . . . ,K.4 In that case,

E
{
S
(ik)
k S

(il)
l

}
= E

{∣∣S(1)
k

∣∣2} if k = l and E
{
S
(ik)
k S

(il)
l

}
= 0

if k ̸= l since information bits are equally likely. Then, H(S)

in (9) becomes H(S) =
∑K

k=1

∣∣S(1)
k

∣∣2.
Next, the average probability of error for user k, Pk, is

obtained as follows (please see Appendix A for details):

Pk = E{Gk(S)} , (10)

where the expectation is over the random vector S in (5), and

4For the example in Table I, symmetric signaling is employed.

Gk(S) is defined as

Gk(S) ,
1

2K

∑
m∈{0,1}

∑
ik∈{0,1}K−1

P

{(
Nk + S

(m)
k

+
K∑
l=1
l ̸=k

ρk,lS
(il)
l

)
∈ Γk,1−m

∣∣∣S} . (11)

The probabilities in (11) are calculated with respect to the
PDF of Nk for given values of S

(ik)
k ’s, and ik is defined as

ik , [i1 · · · ik−1 ik+1 · · · iK ]; i.e., the vector of all the bit
indices except for the kth one. In (11), we consider fixed
(given) decision rules at the receivers; that is, the decision
regions, Γk,1−m’s, are independent of pS .

Based on (8) and (10), the optimization problem in (6)-(7)
can be stated as

min
pS

max
k∈{1,...,K}

E{Gk(S)} (12)

subject to E {H(S)} ≤ A . (13)

The optimization problem in (12)-(13) can be quite complex in
its current form since it requires optimization over all possible
PDFs for a random vector of size 2K (see (5)).5 However,
various approaches can be taken in order to provide a simpler
formulation of the optimization problem. To that end, the
following proposition is presented first.

Proposition 1: Suppose Gk’s are continuous functions and
the elements of S take values from finite closed intervals. Then,
an optimal solution to (12)-(13) can be expressed as

pS(s) =
K+1∑
j=1

λj δ(s− sj) , (14)

where
∑K+1

j=1 λj = 1 and λj ≥ 0 for j = 1, . . . ,K + 1.
Proof: Please see Appendix B. �
Proposition 1 states that an optimal joint signal constellation

S can be represented as a discrete random variable which
corresponds to a randomization of (K + 1) or fewer distinct
signal constellations for each user. In other words, for each
information bit of each user, an optimal solution can be

5The dimension of vector S can be reduced to K if symmetric signaling
is employed.



obtained by performing randomization among up to (K + 1)
different signal amplitudes. This is unlike the conventional
case in which a fixed amplitude value is transmitted for each
information bit of a user.

Another implication of Proposition 1 can be provided as
follows. Since a generic formulation is considered, the set
of Gk’s and H corresponding to all possible joint signal
constellations is not a convex set in general. Hence, the
optimal solution of (12)-(13) can require randomization (time-
sharing), as expressed in (14), in order to achieve the points
on the convex hull of this set. (Please see the proof of the
proposition in Appendix B for a mathematical statement of
this observation.)

In practice, randomization of signal constellations can be
performed, for example, via time-sharing by employing each
signal constellation for a certain number of information bits
in proportion to the probability of that constellation. A simple
example was provided in the second paragraph of this section
and in Table I-(B). More generally, if NI information bits
are to be transmitted to each user, λ1NI bits are generated
according to s1, λ2NI bits are generated according to s2, . . . ,
and λK+1NI bits are generated according to sK+1 in order
to realize the PDF of the joint signal constellation in (14). It
should be emphasized that the receivers do not need to know
this randomization structure since the signal constellation
randomization is optimized by the transmitter for fixed (given)
detectors at the receivers of different users (see (4)) based on
the optimization problem in (6)-(7). (In particular, the average
probability of error for user k, Pk, in (6) is given by (10) and
(11), which indicate that the decision regions Γk,0 and Γk,1

(equivalently, the detector) for each user are independent of
the probability distribution of the joint signal constellation, S;
hence, the receiver implements its detector without knowing
the randomization structure.)

Proposition 1 implies that it is not necessary to search over
all PDFs in (12)-(13). Instead, only the PDFs in the form of
(14) can be considered, and the problem in (12)-(13) can be
reduced to

min
{λj ,sj}K+1

j=1

max
k∈{1,...,K}

K+1∑
j=1

λj Gk(sj) (15)

subject to
K+1∑
j=1

λj H(sj) ≤ A ,
K+1∑
j=1

λj = 1 ,

λj ≥ 0 , j = 1, . . . ,K + 1 . (16)

Since this optimization problem is over a number of variables
instead of functions, it provides a significant simplification
over the problem in (12)-(13). However, it can still be a
nonconvex optimization problem in general. The structure
of the optimization problem in (15)-(16) can be utilized in
order to obtain close-to-optimal solutions with low complexity.
Namely, as discussed in the next subsection, a convex relax-
ation approach can be employed to provide an approximate
solution of (15)-(16).

Remark: In order to realize the proposed approach of power
control with signal constellation randomization in practice, the
transmitter needs to know the noise powers at the receivers (or,
the signal-to-noise ratios (SNRs) at the receivers, considering a
flat-fading scenario, as discussed after (2)), which can be sent
via feedback to the transmitter. Such a feedback is commonly

available in multiuser systems for power control purposes [8].
In addition, if the randomization is implemented via time-
sharing, the channel conditions should be (almost) constant
for a number of bit durations; hence, slowly fading channels
are well-suited for the power control with signal constellation
randomization approach. �

1) Power Control with Constellation Randomization ver-
sus Conventional Power Control: The main difference of
the proposed power control with constellation randomization
approach from conventional power control algorithms is that
the former is employed for each state of the channel whereas
the latter is used with respect to varying channel conditions. In
other words, the power control strategies in the literature adapt
the power as the channel state changes, whereas the proposed
approach performs constellation (power) randomization for a
given (fixed) channel state. Therefore, these two approaches
are different in the sense that they are employed in different
scenarios. In addition, it is possible to employ these two
approaches jointly: conventional power control as the chan-
nel conditions change, and power control with constellation
randomization for each channel state. In such a scenario, the
conventional power control strategy will determine the power
that is allocated for each channel state, which in effect sets
the value of A in (7), and the proposed approach will employ
the optimal constellation randomization under the power limit
based on the optimization problem in (6)-(7). Therefore,
the proposed power control with constellation randomization
approach is well-suited for slow fading channels, where the
channel state is (almost) constant for a certain number of bit
durations and then changes to a different value after a certain
amount of time (i.e., block fading scenarios).

B. Approximate Solution Based on Convex Relaxation

Although the optimization problem in (15)-(16) can be
solved via global optimization techniques in general, it be-
comes challenging for an optimization technique to achieve
the global optimum as the number K of users increases.6
Therefore, it is desirable to obtain a convex version of the
problem, which always converges to its global optimum. In
the following, an approximate formulation of the problem is
provided based on convex relaxation [39].

First, consider a set of possible joint signal constellations
for S in (5) and denote them as s̃1, . . . , s̃Nm . Then, the PDF
of the joint signal constellation is approximately modeled as

pS(s) ≈
Nm∑
j=1

λ̃j δ(s− s̃j) , (17)

where
∑Nm

j=1 λ̃j = 1, λ̃j ≥ 0 for j = 1, . . . , Nm, and
s̃1, . . . , s̃Nm are known joint signal constellations. Then, the
approximate version of (12)-(13) can be formulated as follows:

min
λ̃

max
k∈{1,...,K}

λ̃
T
gk (18)

subject to λ̃
T
h ≤ A , λ̃

T
1 = 1 , λ̃ ≽ 0 , (19)

where λ̃ ,
[
λ̃1 · · · λ̃Nm

]
, gk , [Gk(s̃1) · · ·Gk(s̃Nm)], h ,

[H(s̃1) · · ·H(s̃Nm)], ‘≽’ represents the componentwise larger

6Specifically, there are a total of (2K + 1)(K + 1) unknown variables in
(15)-(16) (which reduces to (K + 1)2 for symmetric signaling).



than or equal to sign, and 0 and 1 denote vectors of zeros and
ones, respectively. In other words, instead of considering all
possible PDFs as in (15)-(16), a number of known joint signal
constellations are considered, and the optimal weights, λ̃, cor-
responding to those joint signal constellations are searched for.
In general, the solution of (18)-(19) provides an approximation
to the optimal solution that is obtained from (15)-(16). The
approximation accuracy can be improved by increasing Nm,
i.e., by considering a larger number of elements in the set
of possible signal values, s̃1, . . . , s̃Nm , in (17). In addition, if
s̃1, . . . , s̃Nm contain all the possible joint signal constellations
(e.g., for a digital system), then the solution of (18)-(19)
becomes exact.

By defining an auxiliary variable t, an equivalent form of
(18)-(19) can be obtained as follows:

min
t , λ̃

t (20)

subject to λ̃
T
gk ≤ t , k = 1, . . . ,K (21)

λ̃
T
h ≤ A , λ̃

T
1 = 1 , λ̃ ≽ 0 . (22)

It is noted that (20)-(22) corresponds to linearly constrained
linear programming (LCLP). Therefore, it can be solved
efficiently in polynomial time [39].

C. Optimal Selection of Fixed Signal Constellations as a Spe-
cial Case of Optimal Power Control with Signal Constellation
Randomization

Conventionally, a fixed signal constellation is employed for
each user in a multiuser system [1], [8]. This conventional
scenario can be considered as a special case of power control
with signal constellation randomization in which the PDF
of S in (5), pS , is modeled as pS(x) = δ(x − s). Then,
the optimization problem in (12)-(13) reduces to the optimal
selection of fixed signal constellations problem, which is
expressed as

min
s

max
k∈{1,...,K}

Gk(s) subject to H(s) ≤ A . (23)

In other words, the optimal fixed signal constellations that
minimize the maximum probability of error are obtained under
the average power constraint. As investigated in Section V,
the optimal fixed signal constellations approach can result in
degraded performance in certain scenarios compared to the
optimal power control with signal constellation randomization
However, it has lower computational complexity, which can
be desirable in certain applications.

IV. SPECIAL CASE: SIGN DETECTORS

In this section, optimal power control with signal con-
stellation randomization is studied in detail for symmetric
signaling when sign detectors are employed at the receivers.
In addition to the statistical characterization of the optimal
solution, performance improvements that can be achieved
via constellation randomization are quantified for interference
limited scenarios.

Although sign detectors may not be optimal in the presence
of interference [40], they facilitate simple implementation
as they have low complexity and do not need any prior
information about the interference. The use of sign detectors
is justified also by the zero mean nature of the noise and

interference (see (3)). It should be noted that the interference
has zero mean since symmetric signaling and equally likely
information bits are assumed. For these reasons, sign detectors
are employed in many binary communications systems, such
as in various wireless sensor network applications due to their
low complexity and practicality [41].

For sign detectors, the decision rules at the receivers (see
(4)) become

îk = ϕk(yk) =

{
0 , yk < 0

1 , yk > 0
(24)

for k = 1, . . . ,K. In the case of yk = 0, the detector decides
for bit 0 or bit 1 with equal probabilities. Then, for symmetric
signaling (i.e., S(1)

k = −S
(0)
k for k = 1, . . . ,K), Gk(S) in

(11) can be expressed, after some manipulation, as

Gk(S) =
1

2K−1

∑
ik∈{0,1}K−1

Q

(
S
(1)
k +

∑K
l=1,l ̸=k ρk,lS

(il)
l

σk

)
.

(25)

In order to provide intuitions about the performance of
constellation randomization in MAI limited scenarios, an
asymptotical analysis is performed as σk → 0 for i =
1, . . . ,K. In this case, Gk(S) in (25) can be expressed as

Gk(S) =
1

2K−1

∑
ik∈{0,1}K−1

u

(
− S

(1)
k −

K∑
l=1, l ̸=k

ρk,lS
(il)
l

)
(26)

where u(·) represents the unit step function defined as u(x) =
1 for x > 0, u(x) = 0.5 for x = 0 and u(x) = 0 for x < 0.

First, the following corollary to Proposition 1 is presented
related to the probability distribution of the optimal joint signal
constellation when sign detectors are employed.

Corollary 1: Assume that signal amplitudes take values
from finite closed intervals, and σk → 0 for k = 1, . . . ,K.
Then, an optimal solution to (12)-(13) can be expressed, for
sign detectors and symmetric signaling, as

pS(s) =
K∑
j=1

λj δ(s− sj) , (27)

where
∑K

j=1 λj = 1 and λj ≥ 0 for j = 1, . . . ,K.
Proof: Please see Appendix C. �
In other words, instead of the generic solution in (14), which

specifies a randomization among up to (K+1) different signal
constellations for each user, a randomization among up to K
different signal constellations is sufficient in this scenario. This
is mainly due to the fact that, as σk → 0 for k = 1, . . . ,K,
Gk(S) in (26) depends only on the relative signal amplitudes,
which makes the average power constraint in (13) ineffective
(i.e., signal amplitudes can be scaled by the same positive
number without affecting Gk(S)’s and H(S) in (9) can be
adjusted appropriately).

Next, the aim is to compare the performance of the power
control with signal constellation randomization and fixed
signal constellations approaches for sign detectors in the
absence of noise. Assume without loss of generality that S(1)

k ’s
are positive. Then, it is observed that both approaches can



achieve zero probability of error if there exists a joint signal
constellation S such that7

S
(1)
k >

K∑
l=1, l ̸=k

|ρk,l|S(1)
l , ∀k ∈ {1, . . . ,K} . (28)

This simple condition follows from (26) since it guarantees
that the argument of the unit step function is negative for all
bit combinations (recalling that S

(0)
l = −S

(1)
l as symmetric

signaling is considered). This is similar to the no error floor
condition in classical multiuser systems [1]. (However, we still
state it explicitly in order to employ it in Proposition 2 and
Proposition 3 below.)

The condition in (28) corresponds to scenarios in which
MAI is not significant and no error floor occurs due to
interference. However, this condition may not be satisfied in
certain cases and the MAI can be significant. For those cases, it
is important to quantify the maximum amount of improvement
(in terms of the minimum value of the maximum probability
of error) that can be achieved via the power control with signal
constellation randomization approach over the fixed signal
constellations approach. Let Prnd denote the minimum value
of the maximum probability of error corresponding to the
optimal power control with signal constellation randomization,
which is obtained as the solution of (12)-(13). In addition, let
Pfix denote the minimum value of the maximum probability
of error for the optimal fixed signal constellations approach,
which is obtained from (23). Then, the following proposition
specifies the maximum asymptotical improvement due to
signal constellation randomization.

Proposition 2: Suppose there exist no signal amplitudes that
satisfy (28). Then, for sign detectors and symmetric signaling,
the maximum asymptotical improvement ratio is equal to the
number of users. In other words,

1 ≤ lim
σ1,...,σK→0

Pfix

Prnd
≤ K . (29)

Also, the maximum asymptotical improvement ratio, K, is
achieved if there exist signal amplitudes such that

S
(1)
k >

K∑
l=1, l ̸=k

|ρk,l|S(1)
l , ∀k ∈ {1, . . . ,K} \ {k∗} (30)

and

−2 min
l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}
< S

(1)
k∗ −

K∑
l=1, l ̸=k∗

|ρk∗,l|S(1)
l < 0 (31)

for any k∗ ∈ {1, . . . ,K}.
Proof: In order to prove the inequality in (29), it is first

observed that Pfix/Prnd ≥ 1 is satisfied in all cases (even for
finite σk’s) since the fixed signal constellations approach is
a special case of the power control with signal constellation
randomization approach, as discussed in Section III-C. To
prove the upper bound in (29), consider the case in which there
exist signal amplitudes that satisfy the conditions in (30)-(31).

7It can be assumed without loss of generality that S satisfies the power
constraint in (13) since scaling the joint signal constellation S by any positive
number does not affect the inequalities in (28).

For fixed signal constellations, the average probability of
error for user k is given by Pk = Gk (s) for k = 1, . . . ,K (see
(10)). Let s(1)k∗ denote a joint signal constellation that satisfies
the conditions in (30)-(31) for k∗ ∈ {1, . . . ,K}. Based on the
expression for Gk in (26), it is obtained that Gk

(
s
(1)
k∗

)
= 0,

∀k ∈ {1, . . . ,K} \ {k∗} since the argument of the unit step
function, −S

(1)
k −

∑K
l=1, l ̸=k ρk,lS

(il)
l , is always negative due

to the conditions in (30).8 On the other hand, the value of
Gk∗

(
s
(1)
k∗

)
is obtained as follows. The condition in (31) can

be expressed as
K∑

l=1, l ̸=k∗

|ρk∗,l|S(il)
l − 2 min

l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}

< S
(1)
k∗ <

K∑
l=1, l ̸=k∗

|ρk∗,l|S(il)
l . (32)

Due to symmetric signaling,
∑K

l=1, l ̸=k∗ |ρk∗,l|S(il)
l corre-

sponds to the maximum value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l for

ik∗ ∈ {0, 1}K−1 (see (26)). Similarly,
∑K

l=1, l ̸=k∗ |ρk∗,l|S(il)
l −

2 min
l∈{1,...,K}\{k∗}

{
|ρk∗,l|S(1)

l

}
is equal to the second largest

value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l since that value is achieved

when all the −ρk∗,l S
(il)
l terms are taken to be positive except

for the one with the smallest absolute value. Therefore, under
the condition in (32), S

(1)
k∗ is between the maximum and

the second largest value of −
∑K

l=1, l ̸=k∗ ρk∗,lS
(il)
l , which

implies that the argument of the unit step function in (26),
−S

(1)
k∗ −

∑K
l=1, l ̸=k∗ ρk∗,lS

(il)
l , is negative for all possible

signal combinations except for one of them. Hence, the unit
step function in (26) becomes zero for (2K−1 − 1) combi-
nations and becomes one only for one combination, which
results in Gk∗

(
s
(1)
k∗

)
= 1/2K−1. Overall, the maximum value

of the average probability of error is given by max
k

Pk =

max
k

Gk

(
s
(1)
k∗

)
= 1/2K−1 for the fixed signal constellations

approach when a joint signal constellation that satisfies the
conditions in (30)-(31) is employed. Since it is impossible to
set all Gk’s to zero simultaneously due to the assumption in
the proposition, 1/2K−1 presents the minimum value for the
maximum average probability of error. Therefore, the solution
of (23) is given by Pfix = 1/2K−1 under the conditions in
(30)-(31).

For the power control with signal constellation random-
ization approach, the average probability of error for user
k is given by Pk = E {Gk (S)} for k = 1, . . . ,K (see
(10)). Due to the assumption in the proposition, there does
not exist any signal amplitudes that set all Gk’s to zero
simultaneously. Therefore, it is impossible to set all the Pk

values to zero even in the signal constellation randomization
approach. However, signal constellation randomization can be
used to reduce the maximum average probability of error by
means of randomization/time-sharing. To explain this point,
consider joint signal constellations s

(1)
k∗ that satisfy the con-

ditions in (30)-(31). As discussed in the previous paragraph,
these vectors result in Gk

(
s
(1)
k∗

)
= 0, ∀k ∈ {1, . . . ,K} \ {k∗}

8It is recalled that S
(1)
l ’s are assumed to be positive without loss of

generality and S
(0)
l = −S

(1)
l due to symmetric signaling.



and Gk∗
(
s
(1)
k∗

)
= 1/2K−1 for k∗ ∈ {1, . . . ,K}. Since the aim

is to minimize max
k

E{Gk(S)} over all possible PDFs for the
joint signal constellation, the optimal solution is obtained by
an equalizer rule [32], which sets E{G1(S)} = E{G2(S)} =
· · · = E{GK(S)}. For this equalizer rule, the optimal PDF
for the joint signal constellation can be expressed as

pS(s) =
1

K

K∑
k∗=1

δ
(
s− s

(1)
k∗

)
. (33)

Therefore,

E{Gk(S)} =
1

K

K∑
k∗=1

Gk

(
s
(1)
k∗

)
=

1

K2K−1
(34)

is obtained for all k ∈ {1, . . . ,K}. Hence, max
k

Pk =

max
k

E {Gk (S)} = 1/(K2K−1). Since it is impossible to set
all Gk (s)’s to zero for a given s due to the assumption in
the proposition and setting (K − 1) of them to zero and one
of them to 1/2K−1 corresponds to the optimal scenario for a
given s, the solution in (33) presents the optimal solution of
min
pS

max
k

Pk, which is equal to 1/(K2K−1). Hence, Prnd =

1/(K2K−1) is obtained.
Overall, an improvement ratio of Pfix/Prnd =

K2K−1/2K−1 = K is achieved under the conditions
in the proposition. Finally, it is shown that K presents an
upper limit on the asymptotical improvement ratio for the
scenario in the proposition. To that aim, let the probability
distribution of the joint signal constellation corresponding
to the optimal power control with signal constellation
randomization approach be expressed as in (27). Then, the
minimum value of the maximum probability of error in
the power control with signal constellation randomization
approach is given by Prnd = max

k

∑K
j=1 λj Gk(sj), where∑K

j=1 λj = 1. Next, the following inequalities are obtained:

Prnd = max
k

K∑
j=1

λj Gk(sj) ≥
1

K

K∑
k=1

K∑
j=1

λj Gk(sj) (35)

≥ 1

K

K∑
j=1

λj

(
min
s

K∑
k=1

Gk(s)

)
=

1

K
min
s

K∑
k=1

Gk(s) (36)

≥ 1

K
min
s

max
k

Gk(s) =
1

K
Pfix (37)

The inequalities in (35) and (37) follow from the fact that
Kmax

k
yk ≥

∑K
k=1 yk ≥ max

k
yk for yk ≥ 0 ∀k, and the

inequality in (36) is obtained by performing an additional
minimum operation. Based on (35)-(37), Pfix/Prnd ≤ K is
obtained. �

Proposition 2 states that in interference-limited scenarios,
the maximum average probability of error can be reduced by
a factor of up to K via signal constellation randomization.
This improvement ratio is related to the result in Corollary
1, which states that a randomization among up to K joint
signal constellations can be employed to reduce the maximum
average probability of error compared to the fixed signal con-
stellations case. By employing randomization among multiple
different joint signal constellations, the average probabilities
of error for different users can be equalized to a certain

extent, which can reduce the maximum value of the average
probabilities of error. In practice, the randomization operation
can be implemented in the time domain via time-sharing (or in
the frequency domain for multichannel systems) by employing
each joint signal constellation for a certain fraction of time.

In Proposition 2, the upper and lower bounds on the
asymptotical improvements that can be achieved via signal
constellation randomization are presented, and the conditions
under which the upper bound is achieved are specified. In
the following proposition, conditions are obtained to specify
when the lower bound in (29) is achieved; that is, when the
use of signal constellation randomization does not provide
any performance improvements over the use of fixed signal
constellations.

Proposition 3: Consider sign detectors and symmetric
signaling, and assume that there exist no signal amplitudes
that satisfy (28). In addition, define s∗ as a joint signal constel-
lation that minimizes the sum of the average error probabilities
of the users. Then, if G1(s

∗) = G2(s
∗) = · · · = GK(s∗),

s∗ is a solution of the optimal power control with signal
constellation randomization problem, and the asymptotical
improvement ratio is equal to one; that is,

lim
σ1,...,σK→0

Pfix

Prnd
= 1 . (38)

Proof: The joint signal constellation s∗ defined in the
proposition can be expressed as

s∗ = argmin
s

K∑
k=1

Gk(s) .

Also, by definition, Pfix = min
s

max
k

Gk(s), which can be
bounded from below as follows:

Pfix = min
s

max
k

Gk(s) ≥
1

K
min
s

K∑
k=1

Gk(s) = G1(s
∗) (39)

where the condition in the proposition, G1(s
∗) = G2(s

∗) =
· · · = GK(s∗), is used to obtain the last equality in (39).
Since min

s
max

k
Gk(s) is lower bounded by G1(s

∗) as stated
in (39) and this lower bound can be achieved for s = s∗,
Pfix = G1(s

∗) is obtained. Therefore, s∗ is a solution for
the optimal selection of fixed signal constellations problem,
as claimed in the proposition. In addition, from (35) and
(36), Prnd ≥ 1

K min
s

∑K
k=1 Gk(s), which becomes Prnd ≥

G1(s
∗) = Pfix under the conditions in the proposition. Since

Prnd ≤ Pfix is also satisfied by definition (as the fixed signal
constellations approach is a special case of power control with
signal constellation randomization), Prnd = Pfix is obtained.
�

Proposition 3 implies that if a joint signal constellation
that minimizes the sum of the average error probabilities of
the users also equalizes the average error probabilities of the
users, then it is a solution of both the optimal selection of
fixed signal constellations and the optimal power control with
signal constellation randomization problems for the scenario
in the proposition. In other words, the signal constellation
randomization approach cannot provide any performance im-
provements over the fixed signal constellations approach, and
the two approaches yield the same solution, namely, ps(s) =
δ(s− s∗).



V. PERFORMANCE EVALUATION

In this section, simulations are performed in order to com-
pare the performance of the power control with signal con-
stellation randomization approach against various approaches
that employ fixed signal constellations. Namely, the following
techniques are investigated in the simulations.

Power Control with Signal Constellation Randomiza-
tion: Randomization of signal constellations is performed in
an optimal or suboptimal manner based on the formulations
in (15)-(16) or (20)-(22), respectively. In the following, the
former approach is called optimal randomization of signal
constellations, whereas the latter is named constellation ran-
domization with relaxation. Optimal randomization of signal
constellations can have prohibitive computational complexity
when the number of users is high. Therefore, constellation
randomization with relaxation is employed for large numbers
of users in order to reduce the computational complexity.

Optimal Fixed Signal Constellations: In this case, fixed
signal constellations are considered for all users, and the opti-
mal solution is obtained from (23), as discussed in Section III-
C.

Fixed Signal Constellations at Power Limit: Instead of
obtaining the optimal fixed signal constellations from (23),
one can also consider a fixed signal constellations scheme
that equalizes signal-to-interference-plus-noise ratios (SINRs)
at different receivers, and utilizes all the available power at the
transmitter [9]. The SINR at the receiver of user k is calculated
from (3) as SINRk = E

{∣∣S(ik)
k

∣∣2}/(E{∣∣∑l ̸=k ρk,lS
(il)
l

∣∣2}+
σ2
k

)
, which becomes SINRk =

∣∣S(1)
k

∣∣2/(∑l ̸=k ρ
2
k,l

∣∣S(1)
l

∣∣2 +
σ2
k

)
for symmetric signaling and fixed signal constellations.

In the fixed signal constellations at the power limit approach,
S
(1)
1 , . . . , S

(K)
k are chosen such that SINR1 = · · · = SINRK

and
∑K

k=1

∣∣S(1)
k

∣∣2 = A. Although this approach can provide
very low complexity solutions, its performance is inferior
to both the optimal fixed signal constellations and optimal
randomization of signal constellations approaches in general,
as investigated below.

In the simulations, equally likely information bits are
assumed, and symmetric signaling is considered. Also, the
users employ sign detectors at the receivers, and the standard
deviations of the noise at the receivers are taken to be equal,
that is, σk = σ, k = 1, . . . ,K. In addition, as stated after
(3), ρk,l’s are set to one for k = l; that is, ρk,k = 1 for
k = 1, . . . ,K.

First, a 3-user scenario is considered, that is, K = 3,
and the crosscorrelations between the pseudo-noise signals
for different users are set to ρ1,2 = 0.1, ρ1,3 = 0.2, and
ρ2,3 = 0.3. Also, the average power constraint A in (7) is
taken as 3. In Fig. 2, the maximum probabilities of error
are plotted versus 1/σ2 for the optimal randomization of
signal constellations, constellation randomization with relax-
ation, optimal fixed signal constellations, and fixed signal
constellations at the power limit approaches. For the optimal
randomization of signal constellations approach, the PSO
algorithm is employed with 2000 iterations and 50 particles
in order to obtain the solution of (15)-(16) (please refer to
[42] for details of the PSO algorithms). For the constellation
randomization with relaxation approach, the possible signal
values for bit 1 are selected as 32 different amplitudes equally
spaced between 0 and 1.4, and the negatives of these possible
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Fig. 2. Maximum probabilities of error versus 1/σ2 for the optimal ran-
domization of signal constellations (“Optimal Randomization”), constellation
randomization with relaxation (“Randomization with Relaxation”), optimal
fixed signal constellations (“Optimal Fixed”), and fixed signal constellations
at the power limit (“Fixed at Power Limit”) approaches, where K = 3,
ρ1,2 = 0.1, ρ1,3 = 0.2, ρ2,3 = 0.3, and A = 3.
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Fig. 3. Maximum probabilities of error versus 1/σ2 for the constellation
randomization with relaxation, optimal fixed signal constellations, and fixed
signal constellations at the power limit approaches, where K = 6, ρk,l =
0.21 for all k ̸= l, and A = 6.

values are employed for bit 0. From the figure, it is observed
that the optimal randomization of signal constellations, the
constellation randomization with relaxation, and the optimal
fixed signal constellations approaches have almost the same
performance, and the fixed signal constellations at the power
limit approach has higher maximum error probabilities for
small values of σ2, i.e., for low noise powers. On the other
hand, all the approaches have similar performance in the noise
limited scenarios. It is concluded that it is not optimal in
general to employ fixed signal constellations that equate the
SINRs of different users.

Next, a 6-user scenario is considered, that is, K = 6,
and the crosscorrelations between the pseudo-noise signals for
different users are set to 0.21; i.e., ρk,l = 0.21 for k ̸= l.
Also, the average power constraint A in (7) is taken as 6.
In Fig. 3, the maximum probabilities of error are illustrated



for the constellation randomization with relaxation, optimal
fixed signal constellations, and fixed signal constellations at
the power limit approaches. Since the solution of (15)-(16) re-
quires a search over a (K+1)2 = 49 dimensional space, global
optimization techniques may not be employed to obtain the
optimal randomization of signal constellations solution in this
scenario. Therefore, randomization of signal constellations is
performed only via the constellation randomization with relax-
ation approach, which is based on (20)-(22). In obtaining the
solution for this approach, the signal amplitude for information
bit 1 of each user is modeled to take values from 0 to 1.4 with
an increment of 0.2.9 Then, the optimal weights for these
possible signal amplitudes are obtained from (20)-(22) via
CVX: Matlab Software for Disciplined Convex Programming
[43]. The use of a finite set of signal amplitudes can be justified
by considering a digital system in which a number of bits are
used to represent each signal amplitude. In this scenario, a 4-
bit representation is considered as there are 8 possible signal
values, {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}, for information bit 1
and the negative of these values for information bit 0. From
Fig. 3, it is observed that the constellation randomization with
relaxation approach outperforms the approaches that employ
fixed signal constellations for small noise variances; that is,
for MAI limited scenarios. In addition, the optimal fixed signal
constellations approach achieves lower maximum probabilities
of error than the fixed signal constellations at the power limit
approach for medium range of σ values.10 Another important
observation from the figure is that, for small values of σ,
the constellation randomization approach achieves a 6 times
improvement in the maximum probability of error compared
to the optimal fixed signal constellations approach, as claimed
in Proposition 2. In fact, it can be shown that the assumptions
in the proposition are satisfied in this scenario. Namely, there
exist no signal amplitudes that satisfy (28), and the conditions
in (30)-(31) are satisfied, for example, when all S(1)

k ’s are 1.2
except for one of them, which is equal to 0.8.

In addition, consider the same scenario as for Fig. 3, but
assume that ρk,l = 0.15 for k ̸= l. In this case, the conditions
in (28) are satisfied. Therefore, no error floors are expected and
the MAI does not become a limiting factor. The error perfor-
mances are illustrated in Fig. 4 for this scenario. It is observed
that the maximum probabilities of error decrease towards zero
as the noise variance is reduced, and all the algorithms have
almost the same error performance. As another example, the
results in Fig. 5 are presented when ρk,l = 0.25 for k ̸= l. In
this case, since the crosscorrelation is high, the MAI is very
effective and very high error probabilities are encountered.
Also, it can be shown that the conditions in (28) and those
in (30)-(31) are not satisfied for this scenario. In Fig. 5, the
constellation randomization approach provides improvements
over the approaches with fixed signal constellations, which
have the same performance. However, the improvement ratio
is smaller than 6 in this scenario, which is about 1.4 at low σ
values.

In Fig. 6, the error probabilities of the different approaches

9Since symmetric signaling is considered, the possible signal amplitudes
for bit 0 are from −1.4 to 0 with an increment of 0.2.

10It is also observed that the error probabilities of the approaches that
employ fixed constellations can increase in some cases even when the noise
variance decreases. This is mainly because of the multi-modal nature of the
overall noise, which is the sum of zero-mean Gaussian background noise and
MAI. Please see [16] for a detailed discussion.
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Fig. 4. Maximum probabilities of error versus 1/σ2 for the constellation
randomization with relaxation, optimal fixed signal constellations, and fixed
signal constellations at the power limit approaches, where K = 6, ρk,l =
0.15 for all k ̸= l, and A = 6.
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Fig. 5. Maximum probabilities of error versus 1/σ2 for the constellation
randomization with relaxation, optimal fixed signal constellations, and fixed
signal constellations at the power limit approaches, where K = 6, ρk,l =
0.25 for all k ̸= l, and A = 6.

are plotted versus ρ, where ρk,l = ρ for k ̸= l. In addition, the
other parameters are set to A = 6, K = 6, and σ = 10−3. It
is observed that the constellation randomization approach has
lower error probabilities than the other approaches for ρ ∈
[0.2, 0.29] and ρ ∈ [0.33, 0.57]. The improvement region and
the amount of improvement depend on the relation among the
system parameters. For example, as investigated in Section IV,
an improvement ratio of K is achieved for ρ ∈ [0.2, 0.215]
(which can be obtained from the conditions in (30)-(31)), and
lower improvement ratios are observed in other regions. Also,
the optimal fixed signal constellations approach outperforms
the fixed signal constellations at the power limit approach
for certain range of ρ values. However, it does not provide
significant improvements in general.

In order to compare the error performance of the three
approaches for different numbers of users, Fig. 7 is presented,
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Fig. 6. Maximum probabilities of error versus ρ for the constellation
randomization with relaxation, optimal fixed signal constellations, and fixed
signal constellations at the power limit approaches, where K = 6, A = 6,
and σ = 10−3.

where A = 6, σ = 10−3, and ρk,l = 0.35 for k ̸= l. It is
observed that the constellation randomization with relaxation
approach provides improvements over the approaches that
employ fixed signal constellations when the number of users
is larger than three, in which case the MAI becomes a
dominating factor. Also, the approaches that employ fixed
signal constellations achieve similar maximum probabilities
of error in most cases. In addition, their error performance is
observed to be a non-monotonic function of the number of
users. For example, the errors are lower for K = 5 than those
for K = 4. The reason for this seemingly counterintuitive
behavior can be explained from the expression in (25), or more
simply from (26) since σ is sufficiently small. Considering
the fixed signal constellations at the power limit approach,
the signal amplitudes are set to S

(1)
k = −S

(0)
k =

√
A/K for

k = 1, . . . ,K. Since ρk,l = 0.35 for k ̸= l, it can be shown for
K = 4 and K = 5 that there is only one combination of the
information bits of interfering users for which the argument of
the unit step function in (26) becomes positive. Namely, when
all the interfering signals are −

√
A/K, the argument of the

unit step function becomes −
√

A/K + 0.35(K − 1)
√
A/K,

which is positive for K ≥ 4. On the other hand, when
one of the interfering signals is set to

√
A/K, the argument

becomes −
√
A/K + 0.35(K − 3)

√
A/K, which is negative

for K ≤ 5. (Of course, the result is still negative when more
than one interfering signals are set to

√
A/K .) Therefore, for

K = 4 and K = 5, Gk(S) in (26) is equal to 1/2K−1 for
k = 1, . . . ,K since the unit step function is 1 only for one
combination and 0 otherwise. Hence, the maximum probability
of error for K = 5, is lower than that for K = 4, as observed
in Fig. 7. However, for K = 6, there are multiple combinations
of interfering signals for which the unit step function in (26)
equal to one. Therefore, larger errors are observed in that case.

Finally, a scenario with K = 7 users is considered, where
ρk,l = 0.17 for k ̸= l, and A = 7. In Fig. 8, the maximum
probabilities of error are illustrated for the constellation ran-
domization with relaxation, optimal fixed signal constellations,
and fixed signal constellations at the power limit approaches.
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Fig. 7. Maximum probabilities of error versus the number of users, K,
for the constellation randomization with relaxation, optimal fixed signal
constellations, and fixed signal constellations at the power limit approaches,
where σ = 10−3, ρk,l = 0.35 for all k ̸= l, and A = 6.
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Fig. 8. Maximum probabilities of error versus 1/σ2 for the constellation
randomization with relaxation, optimal fixed signal constellations, and fixed
signal constellations at the power limit approaches, where K = 7, ρk,l =
0.17 for all k ̸= l, and A = 7.

Similar observations to those for Fig. 3 can be made. In
particular, it is observed that an improvement ratio of 7
is achieved at low noise variances; that is, the maximum
probability of error is reduced by 7 times via the randomization
of signal constellations, as claimed in Proposition 2.

The main observations from the simulation results can be
summarized as follows: (i) Signal constellation randomization
can provide performance improvements over the approaches
that employ fixed signal constellations and the amount of
improvement depends mainly on the noise level, the number
of users, and the crosscorrelations between the pseudo-noise
signals. (ii) The worst-case error rate of the optimal fixed
signal constellations approach can be reduced by up to K
times via the optimal randomization of signal constellation
approach. (iii) The fixed signal constellation approach that
equalizes the SINRs of the users and utilizes all the available



power has the worst performance among all the considered
approaches.

VI. CONCLUDING REMARKS AND EXTENSIONS

The optimal power control with signal constellation ran-
domization has been proposed for the downlink of a multiuser
DS-CDMA system. After presenting a formulation for the
optimal power control with signal constellation randomization
problem, it has been shown that an optimal joint signal
constellation can be obtained by a randomization of (K+1) or
fewer distinct joint signal constellations, where K denotes the
number of users. In addition to the original nonconvex formu-
lation, an approximate solution based on convex relaxation has
been obtained. Then, detailed performance analysis has been
performed when the receivers employ symmetric signaling
and sign detectors. Specifically, the maximum asymptotical
improvement ratio has been shown to be equal to the number
of users, and the conditions under which the maximum and
minimum asymptotical improvement ratios are achieved have
been derived. Numerical examples have been presented to
investigate the theoretical results.

Although the problem formulation is based on the minimax
approach in (6), the results in this study can directly be
extended to cover cases in which the users have different
levels of importance. In that case, the expression in (6)
can be replaced with min

pS

max
k∈{1,...,K}

wkPk, where wk’s are

non-negative weighting factors that are set according to the
importance levels. Then, the definition of Gk in (11) can be
updated by multiplying the expression by wk, and all the
theoretical results in the remaining parts can be extended
accordingly.

Finally, the theoretical approach employed for the binary
multiuser systems in this work can also be utilized for M−ary
systems with M > 2. In that case, the definitions of the joint
signal constellation in (5), and the auxiliary functions in (9)
and (11) should be updated. Then, the results in Section III
can be extended to M -ary systems as well.

APPENDIX

A. Derivation of (10)
For the generic decision rule in (4), the average probability

of error for user k can be expressed as Pk = 0.5P{Yk ∈
Γk,0 | ik = 1} + 0.5P{Yk ∈ Γk,1 | ik = 0}, which, based on
(3), becomes

Pk = 0.5P

{
S
(1)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,0

}

+ 0.5P

{
S
(0)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,1

}
. (40)

Since bits are equally likely, (40) can be expressed, by defining
ik , [i1 · · · ik−1 ik+1 · · · iK ], as

Pk =
1

2K

∑
m∈{0,1}

∑
ik∈{0,1}K−1

P

{
S
(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l

+Nk ∈ Γk,1−m

}
(41)

In the signal constellation randomization approach, S(ik)
k ’s are

random variables. Hence, the probability expression in (41)
can be calculated by first conditioning on given values of
S
(ik)
k ’s and then taking the expectation with respect to the

PDF of S; that is,

P

{
S
(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l +Nk ∈ Γk,1−m

}
=

E

{
P

{
Nk + S

(m)
k +

K∑
l=1
l ̸=k

ρk,lS
(il)
l ∈ Γk,1−m

∣∣∣S}}. (42)

It is noted that the probability in (42) is calculated according
to the PDF of Nk. By defining the expression inside the
expectation in (42) as Gk(S), (10) and (11) are obtained from
(41) and (42). �

B. Proof of Proposition 1
The proof can be obtained based on Carathéodory’s the-

orem [44], [45] similarly to the proofs in [15], [19], [46].
First, define the following set: U = {(u0, u1, . . . , uK) :
u0 = H(s), u1 = G1(s), . . . , uK = GK(s) for s ∈ S} ,
where S , [smin , smax]

2K , with smin and smax denoting
the minimum and maximum signal amplitude values, re-
spectively. Since the functions are continuous and S is a
closed set, U is closed and bounded; hence, it is a com-
pact set. Therefore, the convex hull of U , denoted by V ,
is a closed subset of RK+1 [47]. Next, define set W as
follows: W =

{
(w0, w1, . . . , wK) : w0 = E{H(S)}, w1 =

E{G1(S)}, . . . , wK = E{GK(S)}, ∀pS(s), s ∈ S
}

. Similar
arguments as in [15], [19], [46], [48] can be used to conclude
that set W is equal to the convex hull of U ; that is, W = V .
Therefore, due to Carathéodory’s theorem [44], [45], any
point in V (equivalently, in W ) can be expressed as the
convex combination of (K + 2) or fewer points in U since
the dimension of U is smaller than or equal to (K + 1).
Since the optimization problem in (12)-(13) aims to minimize
the maximum of E{Gk(S)}’s, the optimal solution must
correspond to the boundary of W . (Note that W contains its
boundary as it is a closed set.) Since any point at the boundary
of W can be expressed as the convex combination of at most
(K+1) elements in U [44], an optimal PDF can be represented
as in (14). �

C. Proof of Corollary 1
As σk → 0 for k = 1, . . . ,K, Gk(S)’s are expressed as in

(26). Due to the unit step function in (26), scaling a joint signal
constellation by a positive value does not affect the probabili-
ties of error; that is, Gk(s) = Gk(c s) for all c > 0. Therefore,
for each s, there exists a positive constant c for which Gk’s
are unchanged but H(c s) = c2H(s) ≤ A (see (9)). Hence, the
average power constraint in (13) becomes ineffective in this
scenario. Therefore, the proof of Proposition 1 in Appendix B
can be applied in this case by redefining sets U and W
as U = {(u0, u1, . . . , uK−1) : u0 = G1(s), . . . , uK−1 =
GK(s) for s ∈ S} and W = {(w0, w1, . . . , wK−1) :
w0 = E{G1(S)}, . . . , wK−1 = E{GK(S)}, ∀pS(s), s ∈ S},
respectively. Since the dimension of W reduces to K in this
case, the optimal PDF can be obtained as in (27) in this



scenario based on similar arguments to those in Appendix B.
�
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