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Optimal Channel Switching over Gaussian Channels
under Average Power and Cost Constraints

Mehmet Emin Tutay, Sinan Gezici, Hamza Soganci, and Orhan Arikan

Abstract— Optimal channel switching that provides the highest
performance over a set of Gaussian channels with variable
utilization costs is investigated in the presence of average power
and average cost constraints. First, generic cost functions are
considered, and it is shown that the optimal channel switching
strategy performs channel switching (time sharing) amongat most
three different channels and always operates at the average power
and average cost limits. Also, for channel switching between two
channels, relations between the optimal power levels are obtained
depending on the average power limit, and it is proved that the
ratio of the optimal power levels is upper bounded by the ratio
of the larger noise variance to the smaller one. In addition,for
logarithmic cost functions, the convexity properties of the error
probability are investigated as a function of power and cost, and
the optimal channel switching strategy is shown to employ at
most two channels, which can easily be determined based on
specific formulas, when the average power limit is larger than a
certain threshold. Numerical examples are presented to provide
illustrations of the theoretical results.

Index Terms– Channel switching, Gaussian channel, time
sharing, probability of error.

I. I NTRODUCTION

Time sharing among different power levels, detectors, or
channels can provide performance improvements for commu-
nication systems that operate under average power constraints
and in the presence of additive time-invariant noise [1]-
[12]. For example, the average probability of error for some
communication systems that are subject to multimodal noise
can be reduced by performing time sharing between two
different signal levels for each information symbol [2]. In
other words, instead of transmitting a constant signal value
for each information symbol, performing “randomization”
(time sharing) among multiple signal values can result in
performance improvements in certain cases [2], [13], [14].
Similarly, jammer systems can achieve improved jamming
performance by time sharing among multiple power levels
[1], [4], [5]. In [1], it is shown that a weak jammer should
employ on-off time sharing in order to maximize the average
probability of error of a receiver that operates in the presence
of zero-mean symmetric noise, such as Gaussian noise. The
study in [5] investigates the optimum power allocation policy
for an average power constrained jammer operating over an
arbitrary additive noise channel, where the aim is to mini-
mize the detection probability of an instantaneously and fully
adaptive receiver that employs the Neyman-Pearson criterion.
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It is shown that the optimum jamming performance can be
achieved via time sharing between at most two different power
levels, and a necessary and sufficient condition is providedfor
the improvability of the jamming performance via time sharing
of the power compared to fixed power jamming schemes.

Time sharing among multiple detectors, which is also
called detector randomization, presents another approach for
improving error performance of average power constrained
communication systems that operate over an additive time-
invariant noise channel [6]-[9], [15], [16]. In this approach, a
receiver has multiple detectors and employs one of them at
any given time according to a certain time sharing strategy.
In [6], an average power constrained binary communication
system is considered, and the optimal time sharing between
two antipodal signal pairs and the corresponding maximuma
posterioriprobability (MAP) detectors is investigated. Signifi-
cant performance improvements can be achieved as a result of
the proposed approach in the presence of symmetric Gaussian
mixture noise for a certain range of average power limits. In
[7], the results in [2] and [6] are generalized by considering
an average power constrainedM -ary communication system
that can employ time sharing among both signal levels and
detectors over an additive noise channel with some known
distribution. It is proved that the joint optimization of the
transmitted signals and the detectors at the receiver results in
time sharing between at most two MAP detectors correspond-
ing to two deterministic signal constellations. [9] investigates
the benefits of time sharing among multiple detectors for the
downlink of a multiuser communication system and charac-
terizes the optimal time sharing strategy. In a related study,
the form of the optimal additive noise is obtained for variable
detectors in the context of noise enhanced detection under both
Neyman-Pearson and Bayesian frameworks [8].

In the presence of multiple channels between a transmit-
ter and a receiver, performing time sharing among different
channels, which is calledchannel switching, can provide
certain performance improvements [1], [10], [11], [12], [17].
In the channel switching approach, communication occurs
over one channel for a certain fraction of time, and then it
switches to another channel during the next transmission. In
[1], the channel switching problem is studied under an average
power constraint for the optimal detection of binary antipodal
signals over a number of channels that are subject to additive
unimodal noise. It is shown that the optimal solution is either
to communicate over one channel exclusively, or to switch
between two channels with a certain time sharing factor. In
[12], the channel switching problem is investigated forM -
ary communication systems in the presence of additive noise
channels with arbitrary probability distributions and by facili-
tating time sharing among multiple signal constellations over
each channel. Under an average power constraint, the optimal
solution that minimizes the average probability of error is
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obtained as one of the following strategies: deterministicsig-
naling (i.e., use of one signal constellation) over a singlechan-
nel; time sharing between two different signal constellations
over a single channel; or switching (time sharing) between
two channels with deterministic signaling over each channel
[12]. In a different context, the concept of channel switching
is employed for cognitive radio systems with opportunistic
spectrum access, where a number of secondary users try to
access the available frequency bands in the spectrum [18]-
[20].

Although the channel switching problem has been inves-
tigated thoroughly under an average power constraint (e.g.,
[1], [12]), no studies have considered the cost of communica-
tions over different channels in obtaining the optimal channel
switching strategy. In practical systems, each channel canbe
associated with a certain cost depending on its quality [21]-
[26]. For example, a channel that presents high signal-to-noise
ratio (SNR) conditions has a high cost (price) compared to
channels with low SNRs [22], [25]. Therefore, it is important
to consider costs of different channels while designing a
channel switching strategy. In this study, the optimal channel
switching problem is formulated for Gaussian channels in
the presence of average power and average cost constraints.
First, generic cost values are considered for the channels and
the optimal channel switching strategy is characterized. Then,
logarithmic cost functions are employed in order to relate
the cost of a channel to its average noise power [26], and
specific results are obtained about the optimality of channel
switching between two channels or among three channels.
Finally, numerical examples are presented to explain the
theoretical results. The main contributions of this study can
be summarized as follows:

• The optimal channel switching problem over Gaussian
channels is investigated under an average cost and aver-
age power constraint for the first time.

• For generic cost functions, it is shown that the optimal
channel switching strategy is to switch amongat most
three different channels (Proposition 2), and that the
optimal strategy must operate at the average costand
average power limits (Proposition 1).

• For channel switching between two channels, relations
between the optimal power levels are obtained depending
on the average power constraint, and it is proved that the
ratio of the optimal power levels is upper bounded by the
ratio of the larger noise variance to the smaller one under
certain conditions (Proposition 3).

• When cost values are related to average noise powers
according to a specific logarithmic relation [26], it is
shown for sufficiently high power limits that the optimal
channel switching strategy involves at most two channels
(Proposition 5) and that the optimal channel switching
between two channels can easily be specified based on
the average cost limit (Proposition 4).

A motivating application scenario for the proposed problem
is a cognitive radio system in which primary users are the main
owners of the spectrum, and secondary users can utilize the
frequency bands of primary users under certain conditions.As
discussed in [21], the frequency owners (primary users) can
sell certain part of their spectrum to secondary users for the
aim of maximizing their revenue. From the perspective of a
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Fig. 1. A communication system that employs channel switching amongK
additive Gaussian noise channels, whereCi denotes the cost of using channel
i, andN i is the noise component at theith channel.

secondary user, there can exist multiple available frequency
bands (channels) with different costs in this framework (see
Fig. 1). Then, the aim of a secondary user is to optimize its
performance under a certain cost constraint (budget). More
specifically, among the available channels in the spectrum
(which have certain cost values), a secondary user can perform
optimal channel switching in order to minimize its average
probability of error under an average cost constraint (together
with power constraints that are related to hardware constraints
and/or battery life). Hence, the proposed problem formula-
tion is important for cognitive radio systems in terms of
performance optimization of secondary users under realistic
constraints. In addition, the formulation also carries theoretical
significance since the costs of different channels have not been
considered in the previous studies on channel switching [1],
[10], [11], [12], [17].

The remainder of the manuscript is organized as follows:
The system model and problem formulation are introduced
in Section II, and the optimal channel switching problem is
studied for generic cost functions in Section III. In Section IV,
logarithmic functions are considered for the optimal channel
switching problem, and numerical examples are presented in
Section V. Finally, various extensions and some concluding
remarks are provided in Section VI and Section VII, respec-
tively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a communication system in whichK additive
noise channels are available between the transmitter and the
receiver, as shown in Fig. 1. The transmitter-receiver paircan
synchronously switch among thoseK channels over time; i.e.,
they can perform time sharing among different channels by
employing only one channel at a given time [1], [12]. The
channels are corrupted by independent zero-mean Gaussian
noise components, denoted byN i for i ∈ {1, . . . ,K}.
For channeli, the components ofN i are independent and
identically distributed with a variance ofσ2

i . In addition, there
is a cost associated with the usage of each channel, denoted
by Ci for i ∈ {1, . . . ,K}. The cost values are specified by
nonnegative numbers and they satisfyCi > Cj if σ2

i < σ2
j for

all i 6= j. In other words, if a channel has a smaller (larger)
average noise power, it has a higher (lower) cost. Assigning
costs to different channels or measurement devices has various
motivations and implications, as discussed for example in [21]-
[26].
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A generic M -ary communication system is considered,
where the received signal corresponding to theith channel
is expressed as

Y =
√

Pi s
(j)
i +N i , j ∈ {0, 1, . . . ,M − 1} , i ∈ {1 . . .K} ,

(1)
wheres(0)i , s

(1)
i , . . . , s

(M−1)
i represent the signal constellation

employed for communication over channeli, Pi denotes the
average power of the transmitted signal (assuming normaliza-
tion for the average energy of the signal constellation), andN i

is the Gaussian noise over channeli, which is independent of
s
(j)
i . It is assumed that the symbols are equally likely; that

is, the prior probabilities of the signals are equal to1/M for
each channel.

Let λi denote the fraction of time during which channel
i is employed for transmission, which is called thechannel
switching factorfor channeli. The channel switching factors
satisfy

∑K
i=1 λi = 1 andλi ≥ 0 ∀ i ∈ {1 . . .K}. In practice,

channel switching is performed by utilizing theith channel for
100λi percent of time fori = 1, . . . ,K. The aim of this study
is to jointly optimize the channel switching factors and signal
powers in order to minimize the average probability of error
(symbol error rate) under average power and cost constraints.
The error probability of channeli for a transmit power ofP
is represented bygi(P ), and the following assumptions are
employed.

Assumption 1: The error probability over channeli, de-
noted by gi(P ), is a convex and a monotone decreasing
function ofP .

Assumption 2: For Ci > Cj (equivalently, forσ2
i < σ2

j ),
gi(P ) < gj(P ), ∀P > 0 .

As studied in [3], for maximum likelihood (ML) detection
over additive Gaussian channels, the error probability is a
convex function of the signal power for all1-dimensional and
2-dimensional constellations (such as BPSK, PAM, QPSK,
and QAM, which are commonly employed in practice), and
it is convex also for higher dimensional constellations at high
SNRs. In addition, for Gaussian channels, the error probability
is a monotone decreasing function of the signal power and a
monotone increasing function of the noise power. Therefore,
Assumption 1 and Assumption 2 are applicable in practical
scenarios.

When powerPi is allocated to channeli, the average
probability of error is expressed as

∑K
i=1 λi gi(Pi), whereλi’s

are the channel switching factors. In practical systems, there
exist an average power constraint and a peak power constraint,
which can be expressed as

∑K
i=1 λi Pi ≤ Ap and Pi ∈

[0, Pmax], whereAp and Pmax represent the average power
limit and the peak power limit, respectively. It is assumed
that Pmax > Ap > 0. In addition, an average transmission
cost constraint can be stated as

∑K
i=1 λi Ci ≤ Ac, whereAc

denotes the average cost limit (budget). Then, the proposed

optimization problem can be expressed as

min
{λi,Pi}

K
i=1

K
∑

i=1

λi gi(Pi)

subject to
K
∑

i=1

λi Pi ≤ Ap ,

K
∑

i=1

λiCi ≤ Ac , (2)

K
∑

i=1

λi = 1, λi ≥ 0, Pi ∈ [0, Pmax], ∀ i ∈ {1 . . .K}

In other words, the aim is to obtain the optimal channel
switching strategy that minimizes the average probabilityof
error under constraints on the average power, average cost,
and peak power.

In the remainder of the manuscript, it is assumed that the
noise variancesσ2

i ’s of the channels are distinct without loss of
generality. This is mainly because of the fact that if there are
multiple channels with the same noise variances, it is always
better to employ only one of them due to the convexity of
the error probability.1 Hence, the problem formulation that
considers only the channels with distinct noise variances is
sufficient to achieve the overall optimal solution.

In the proposed problem formulation in (2), stochastic sig-
naling [12], [13] is not considered and the power levels,Pi’s,
are modeled as deterministic quantities for each channel. This
is mainly due to the convexity of the error probabilitygi(P )
with respect toP , which implies that stochastic signaling
(i.e., time sharing among different power levels) over a given
channel increases the error probability under an average power
constraint. For example, instead of performing stochasticsig-
naling over channeli via time sharing between power levels
Pi,1 and Pi,2 and time sharing factorsλi and (1 − λi),
respectively, performing deterministic signaling with power
λiPi,1 + (1 − λi)Pi,2 yields a lower error probability since
λigi(Pi,1) + (1 − λi)gi(Pi,2) > gi (λiPi,1 + (1− λi)Pi,2).
Based on this argument for each channel, it is concluded
that the proposed formulation in (2) covers the scenarios in
the presence of stochastic signaling as well since the joint
optimization of channel switching and stochastic signaling
results in channel switching with deterministic signalingin
the considered scenario.

Finally, it is worth mentioning that the results in this
study can also be applied to multipath channels with block
frequency-flatfading under the assumption of perfect channel
estimation at the receiver. In that case, the proposed channel
switching approach can be employed for each fading state.

III. O PTIMAL CHANNEL SWITCHING

In this section, a detailed theoretical investigation of the
optimal channel switching problem in (2) is presented. In the
following analysis, it is assumed without loss of generality

1In order to verify this statement, let channeli and channelj have the
same noise variances specified byσ2

i = σ2
j = σ2 , and letg(P ) denote their

error probability expression. Then, it can be shown that instead of employing
channeli and channelj with powersPi andPj and channel switching (time
sharing) factors ofλi andλj , respectively, it is always better to employ only
one of these channels with power(λiPi+λjPj)/(λi+λj) and a time sharing
factor of(λi+λj). This is because of the convexity ofg(P ) for P > 0, which
implies thatλig(Pi) + λjg(Pj) > (λi + λj)g((λiPi + λjPj)/(λi + λj))
for all λi, λj ∈ (0, 1) andPi, Pj > 0.
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that the noise variances of the channels satisfyσ2
1 < σ2

2 <
· · · < σ2

K , which implies that the cost values are ordered as
C1 > C2 > · · · > CK . In addition, the average cost limitAc in
(2) is assumed to be larger than or equal to the minimum of the
cost values; i.e.,Ac ≥ CK , since (2) would yield no solution
otherwise. Then, the following remark, which specifies two
simple cases, is presented first.

Remark 1: (i) If Ac = CK , the optimal solution of(2) is
to transmit over channelK exclusively with powerAp.

(ii) If Ac ≥ C1, the optimal solution of(2) is to transmit
over channel1 exclusively with powerAp.

Proof: The first part is obvious since the use of another
channel apart from channelK would violate the average cost
constraint in (2) asC1 > C2 > · · · > CK = Ac. Also, since
gi(P ) is a monotone decreasing function ofP , the optimal
strategy operates at the average power limitAp in (2).

To prove the second part, consider a generic strategy that
employs channel switching with powerPi and channel switch-
ing factorλi for channeli, which achieves an average prob-
ability of error given by

∑K
i=1 λi gi(Pi). Then, the following

inequalities can be obtained:

K
∑

i=1

λi gi(Pi) >

K
∑

i=1

λi g1(Pi) > g1

(

K
∑

i=1

λi Pi

)

(3)

The first inequality follows from the fact thatg1(P ) < gi(P )
for all P ≥ 0 and i ∈ {2, . . . ,K} since channel1 has the
smallest noise variance (the largest cost). On the other hand,
the second inequality follows from the strict convexity ofg1
for positive arguments. It is noted that the expression on the
right-hand-side of (3) is the probability of error that is achieved
by employing channel1 exclusively with power

∑K
i=1 λi Pi.

Therefore, it is concluded from (3) that employing channel1
exclusively always achieves a smaller average probabilityof
error than any strategy that employs channel switching. (Since
Ac ≥ C1, it is possible to employ channel1 exclusively.) In
addition, sinceg1(P ) is a monotone decreasing function ofP ,
the optimal strategy operates at the average power limitAp.�

Remark 1 presents intuitive results for two simple cases,
which can be summarized as follows: If the budget (average
cost limit) allows the use of the worst (cheapest) channel only,
then the only feasible approach is to employ that channel
exclusively, which becomes the optimal solution of (2). On the
other hand, if the budget allows the use of any channel with
any switching factors, then the optimal solution is to employ
the best channel all the time by using all the available power;
that is, channel switching can only degrade the performancein
this scenario. Since the solutions in these two special cases are
obtained in a simple manner, we focus on the other scenarios
for which the average cost limit satisfiesCK < Ac < C1 in
the remainder of this study.

Instead of trying to solve the problem in (2) directly for ob-
taining the optimal channel switching strategy, the properties
of the optimal solution are investigated first in order to propose
alternative approaches that yield the optimal channel switching
strategy with reduced computational complexity. To that aim,
the following proposition states that the optimal solutionof (2)
always satisfies the average power and average cost constraints
with equality.

Proposition 1: Assume thatCK < Ac < C1 and let

{λ∗
i , P

∗
i }Ki=1 denote the solution of the optimization problem

in (2). Then,
∑K

i=1 λ
∗
iP

∗
i = Ap and

∑K
i=1 λ

∗
iCi = Ac ; that is,

the optimal channel switching strategy utilizes the maximum
average power and the maximum average cost.

Proof: The claims in the proposition can be proved via
contradiction. In order to prove the claim about the utilization
of the maximum average power, suppose that{λl, Pl}Kl=1 is an
optimal solution of (2) with

∑K
l=1 λlPl < Ap and channeli is

one of the employed channels (i.e.,λi > 0) with Pi < Pmax.
Note that such a channel must exist sinceAp < Pmax. Next,
define another solution as{λl, P

′

l }Kl=1, whereP
′

l = Pl, ∀ l 6= i

andP
′

i = min
{

Pi+
(

Ap−
∑K

l=1 λlPl

)

/λi, Pmax

}

. It is noted
thatP

′

i > Pi. Then, the following relation can be derived:

K
∑

l=1

λl gl(Pl) = λi gi(Pi) +

K
∑

l=1
l 6=i

λl gl(Pl)

> λi gi(P
′

i ) +

K
∑

l=1
l 6=i

λl gl(P
′

l ) =

K
∑

l=1

λl gl(P
′

l ) (4)

where the inequality is obtained due to the facts thatgi is
monotone decreasing,P

′

l = Pl, ∀ l 6= i, and P
′

i > Pi.
From (4), it is concluded that the solution{λl, Pl}Kl=1, which
operates at an average power belowAp, has a higher average
probability of error than{λl, P

′

l }Kl=1. This leads to a contradic-
tion since{λl, Pl}Kl=1 was assumed to be an optimal solution
of (2). Therefore, a solution that operates at an average power
below Ap cannot be optimal. In other words, an optimal
solution must utilize all the available power; i.e., operate at
the average power limit,Ap.

In order to prove the claim about the operation at the
maximum average cost, first suppose that the optimal solution
employs at least two different channels, say channeli and
channelj with powersPi andPj and channel switching factors
λi andλj , respectively, wherei < j (hence,Ci > Cj), and
it operates at an average cost ofA

′

c, which is strictly less
thanAc; that is,A

′

c < Ac. For notational convenience, define
Pij , λiPi + λjPj andCλ , λiCi + λjCj . Then, consider
an alternative solution which employs a similar strategy tothe
optimal solution except that it uses channeli with powerP

′

i

and channel switching factorγ, and channelj with power
Pj and channel switching factorλi + λj − γ, whereλi <
γ < λi + λj with γP

′

i + (λi + λj − γ)Pj = Pij (the
same average power as the optimal one) andγCi + (λi +
λj − γ)Cj = Cλ + Ac − A

′

c (larger average cost than the
optimal one). By equating the average power terms (that is,
γP

′

i + (λi + λj − γ)Pj = λiPi + λjPj ), P
′

i can be obtained
asP

′

i = λiPi/γ+(1−λi/γ)Pj . Then, the following relations
can be obtained:

γ gi(P
′

i ) + (λi + λj − γ)gj(Pj)

= γ gi(λiPi/γ + (1− λi/γ)Pj) + (λi + λj − γ)gj(Pj) (5)

< λi gi(Pi) + (γ − λi) gi(Pj) + (λi + λj − γ)gj(Pj) (6)

≤ λi gi(Pi) + λj gj(Pj) (7)

where the first inequality is obtained from the strict convexity
of gi and the second inequality follows from the fact that
gi(Pj) ≤ gj(Pj) since channeli has a smaller noise variance
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(higher cost) than channelj. The inequality in (5)-(7), namely,
λi gi(Pi)+λj gj(Pj) > γ gi(P

′

i )+ (λi+λj −γ)gj(Pj), leads
to a contradiction since the optimal solution results in a higher
average probability of error than the alternative solution, which
uses the same average power but operates at the maximum
average cost. Therefore, it is concluded that a solution that
employs at least two channels and operates below the average
cost limitAc cannot be optimal. In order to complete the proof,
suppose that an optimal solution employs a single channel
(say, channeli) and operates belowAc; that is, channeli is
employed exclusively with powerPi and its costCi is strictly
smaller thanAc; that is,Ci < Ac < C1. Next, consider an
alternative solution that employs channeli and channel1 with
channel switching factorsλ

′

i and1−λ
′

i, respectively, and with
the same powerPi, whereλ

′

i ∈ (0, 1). Then,

λ
′

igi(Pi) + (1 − λ
′

i)g1(Pi)

< λ
′

igi(Pi) + (1− λ
′

i)gi(Pi) = gi(Pi) (8)

where the inequality follows from the fact thatg1(P ) < gi(P ),
∀P , by definition (note thatC1 > Ci). The inequality in (8)
leads to a contradiction since the alternative solution achieves
a smaller average probability of error than the optimal one
by using the same average power. Therefore, a solution that
employs a single channel and operates below the maximum
average cost cannot be optimal. Overall, since any channel
switching strategy either uses a single channel or switches
among multiple channels, the previous arguments prove that
an optimal channel switching strategy must always operate at
the maximum average cost. �

Proposition 1 states that the optimal channel switching strat-
egy utilizes all the average power and average cost. Therefore,
the optimization problem in (2) can be solved by considering
equality constraints (instead of inequality constraints)for the
average power and average cost, which leads to an important
reduction in computational complexity. Another implication of
Proposition 1 is presented in the following corollary.

Corollary 1: Assume thatCK < Ac < C1. If Ci 6=
Ac , ∀ i ∈ {1, . . . ,K}, then the optimal solution of(2)
involves channel switching among multiple channels; that is,
transmission over a single channel is not optimal.

Proof: Let {λ∗
i , P

∗
i }Ki=1 denote the solution of the optimiza-

tion problem in (2). Proposition 1 states that
∑K

i=1 λ
∗
iCi = Ac

must hold. IfCi 6= Ac, ∀ i ∈ {1, . . . ,K}, then the condition
of
∑K

i=1 λ
∗
iCi = Ac cannot be satisfied unless at least two

of λ∗
i ’s are nonzero, which implies switching among multiple

channels. �

It should be noted that the converse of Corollary 1 is
not necessarily true. That is, whenCi = Ac for some i ∈
{1, . . . ,K}, the structure of the optimal solution depends on
the cost values and the average power constraint. In other
words, either transmission over a single channel or channel
switching can be optimal depending on the system parameters.

Although the optimization problem in (2) is formulated to
search over strategies that involve channel switching among up
to K channels, a similar approach to those in [8], [12], [13]
can be employed to restrict the optimal solution to a smaller
subset of strategies. Namely, the following proposition states
that the optimal solution of (2) can be expressed as channel
switching amongmin{K, 3} or fewer channels.

Proposition 2: The optimal channel switching strategy is to
switch among at mostmin{K, 3} channels.

Proof: If K ≤ 3, the statement in the proposition is satisfied
trivially. Assume thatK > 3 and define the following sets:

W =

{(

K
∑

i=1

λi Pi ,

K
∑

i=1

λi gi(Pi) ,

K
∑

i=1

λi Ci

)

,

∀λi ≥ 0 ,

K
∑

i=1

λi = 1 , ∀Pi ∈ [0, Pmax]

}

(9)

U = {(P, gi(P ), Ci) , ∀i ∈ {1, . . . ,K} , ∀P ∈ [0, Pmax]}
(10)

It is noted that setU is the set of all triples(P, gi(P ), Ci),
for i ∈ {1, . . . ,K} and P ∈ [0, Pmax], which consists of
infinitely many elements. Also, by definition, setW contains
the optimal solution of (2) since it consists of all possible
average power, average probability of error and average cost
triples. In addition, it is observed from (9) and (10) thatW
is a subset of the convex hull of setU ; i.e., W ⊂ hull(U).
This is because of the fact that all the triples inW can be
obtained as the convex combinations ofK elements inU
whereas some convex combinations of the elements ofU ,
which involve the use of at least one channel multiple times,2

are not included inW . SinceW is contained in the convex
hull of set U , any element ofW can be expressed as a
convex combination ofdim(U) + 1 = 4 elements inU as a
result of Carathéodory’s theorem [27], wheredim(U) denotes
the dimension of the space in whichU resides. (Note that
U ⊂ R

3.) In addition, since the aim is to achieve the minimum
average probability of error (see (2)), the optimal solution
corresponds to a point on the boundary ofhull(U), which
can be achieved by a convex combination ofdim(U) = 3
elements inU by Carathéodory’s theorem [27]. Finally, it is
noted that all such convex combinations are guaranteed to be
elements of setW due to the following reason: The difference
of hull(U) from W (that is, hull(U) \ W) consists of the
points corresponding to strategies that use at least one channel
multiple times. However, such strategies cannot be optimal
solutions since the use of a channel multiple times always
increases the average probability of error compared to the use
of that channel once with the same average power (which
can be proved by an argument similar to that in Footnote 1).
Therefore, the optimal solution cannot be inhull(U)\W ; i.e.,
it is always inW , which implies that the optimal solution can
be expressed as a convex combination of up to3 elements
in U that correspond to different channel indices (see index
i in (10)). Hence, channel switching among up to3 different
channels is optimal. �

Based on Proposition 1 and Proposition 2, the optimal
channel switching corresponds to one of the following three
strategies:

Strategy 1 – Transmission over a Single Channel:In
this case, one of the channels is employed exclusively. Based
on Corollary 1, this strategy cannot be an optimal solution
of (2) unless there exists a channel with costAc. If there
exists such a channel andi∗ denotes the index of that channel

2For example, the convex combination of(P1, g1(P1), C1) and
(P2, g1(P2), C1) is not included inW , which involves the use of channel1
twice.
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(that is, Ci∗ = Ac), then the minimum average probability
of error achieved by this strategy is given bygi∗(Ap), which
corresponds to transmission over channeli∗ exclusively by
utilizing the maximum available power (cf. (2)). Note that
this strategy may or may not be the optimal solution of the
problem in (2) depending on the system parameters.

Strategy 2 – Channel Switching between Two Channels:
In this strategy, channel switching is performed between two
different channels. Let channeli and channelj denote those
channels. Then, based on Proposition 1, the problem in (2)
can be formulated under Strategy 2 as

min
λ, Pi, Pj

λ gi(Pi) + (1 − λ) gj(Pj)

subject toλPi + (1 − λ)Pj = Ap ,

λCi + (1− λ)Cj = Ac , λ ∈ [0, 1] ,

Pi ∈ [0, Pmax] , Pj ∈ [0, Pmax] .

(11)

It is observed from the average cost constraint in (11) that,for
the optimal channel switching between two channels, one of
the channels should have a cost higher thanAc and the other
channel should have a cost lower thanAc. Therefore, in order
to obtain the optimal solution for Strategy 2, the problem in
(11) should be solved forKsKg channel pairs, whereKs (Kg)
is the number of channels the costs of which are lower (higher)
thanAc. In other words, the problem in (11) should be solved
for all channel pairs(i, j) ∈ S2, whereS2 = {(i, j) : Ci >
Ac > Cj and i, j ∈ {1, . . . ,K}}.

In order to investigate the properties of the solution of (11),
a specific expression is considered for the error probability
over each channel.

Assumption 3: The error probability for channeli is
expressed as

gi(P ) = η Q

(

κ
√
P

σi

)

(12)

where Q denotes theQ-function, P is the average symbol
energy,σ2

i is the noise variance, andη andκ are some positive
constants that depend on the modulation type and order [28].

As discussed in [28], the error probability for many coherent
modulation schemes can be represented either exactly or
approximately in the form of (12); hence, Assumption 3 pro-
vides a generic expression that can represent various different
scenarios.

Assume, without loss of generality, thatCi > Ac > Cj

for the problem in (11). Then, the optimal value ofλ can
be obtained from the average cost constraint asλ∗ = (Ac −
Cj)/(Ci−Cj). Also, suppose thatPmax is sufficiently large so
that the optimal power levels for Strategy 2 are always below
Pmax. (The condition for this assumption is specified in Propo-
sition 3 below.) Then, due to the average power constraint, the
powers are related asPj = (Ap−λ∗Pi)/(1−λ∗). From (12),
the optimization problem in (11) can then be expressed as
follows:

min
Pi∈(0, Ap/λ∗ )

λ∗η Q

(

κ
√
Pi

σi

)

+ (1− λ∗)η Q

(

κ

σj

√

Ap − λ∗Pi

1− λ∗

)

(13)

where the constraint forPi is obtained from the relation

λ∗Pi + (1 − λ∗)Pj = Ap. From (13), it is observed that the
optimal solution for Strategy 2 requires a search over a one-
dimensional space only (for each possible channel pair). In
addition, it can be shown that the objective function in (13)
is strictly convex forPi ∈

(

0, Ap/λ
∗
)

.3 Therefore, convex
optimization algorithms can be employed to obtain the result
in polynomial time [29]. In fact, as stated in the following
proposition, the structure of the objective function also leads
to additional properties, which result in further simplifications.

Proposition 3: Suppose thatCi > Ac > Cj , Pmax >

Apσ
2
j /σ

2
i , and defineAij ,

σ2
i σ

2
j

κ2(σ2
j−σ2

i )
log
(

σ2
j

σ2
i

)

, where log

denotes the natural logarithm. Then, the optimal solution
of (11), denoted by{λ∗, P ∗

i , P
∗
j }, satisfies the following

relations depending on the average power limit:
(i) If Ap = Aij , thenP ∗

i = P ∗
j = Aij .

(ii) If Ap > Aij , thenP ∗
j > Ap > P ∗

i > Aij .
(iii) If Ap < Aij , thenAij > P ∗

i > Ap > P ∗
j .

In addition, the ratio between the optimal power levels
cannot exceedσ2

j /σ
2
i ; that is,

max

{

P ∗
j

P ∗
i

,
P ∗
i

P ∗
j

}

<
σ2
j

σ2
i

. (14)

Proof: Please see Appendix A.
Under the conditions in Proposition 3, the search space for

the optimization problem in (13) can be reduced. Specifically,
for each channel pair(i, j) with Ci > Cj , the value ofAij is
calculated first, as defined in the proposition. Then, the optimal
power levels are obtained as follows:

• If Ap = Aij , the optimal solution is given byP ∗
i = P ∗

j =
Aij .

• If Ap > Aij , the optimization problem in (13) is
solved forPi ∈

(

max
{

Aij , σ
2
iAp/σ

2
j

}

, Ap

)

, which is
obtained from (14) and the relation in the second part of
the proposition.

• If Ap < Aij , the problem in (13) is solved forPi ∈
(

Ap ,min
{

Aij , Ap/λ
∗ , σ2

jAp/σ
2
i

} )

, which is obtained
from (14) and the relation in the third part of the
proposition.

Once the optimal value ofPi, denoted byP ∗
i , is ob-

tained, the optimal value ofPj is calculated asP ∗
j =

(Ap − λ∗P ∗
i )/(1− λ∗) , whereλ∗ = (Ac − Cj)/(Ci − Cj).

Strategy 3 – Channel Switching among Three Channels:
In this strategy, channel switching is performed among three
different channels. Let channeli, channelj, and channelk
denote those channels. Then, based on Proposition 1, the
problem in (2) can be formulated under Strategy 3 as

min
λi,λj ,λk,Pi,Pj ,Pk

λi gi(Pi) + λj gj(Pj) + λk gk(Pk)

subject toλi Pi + λj Pj + λk Pk = Ap ,

λi Ci + λj Cj + λk Ck = Ac , (15)

λi + λj + λk = 1 , λi, λj , λk ≥ 0 ,

Pi, Pj , Pk ∈ [0, Pmax] .

Due to the strict average cost constraint, it is required that at
least one of the channels must have a cost lower thanAc and

3The first-order derivative of the objective function is presented in (25),
which is a monotone increasing function ofPi for Pi ∈

(

0, Ap/λ∗

)

.
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at least one of the channels must have a cost higher thanAc.
Therefore, in order to obtain the optimal solution for Strategy
3, the problem in (15) should be solved forKsKg(K − 2)
channel triples, whereKs (Kg) is the number of channels
the costs of which are lower (higher) thanAc, andK is the
total number of channels. In other words, the problem in (15)
should be solved for all channel triples(i, j, k) ∈ S3, where
S3 = {(i, j, k) : Ci > Ac > Cj and i, j, k ∈ {1, . . . ,K}}. In
addition, it is observed that the solution of (15) can be obtained
via optimization over athree-dimensionalspace instead of six
by utilizing the three equality constraints.

It is noted from Proposition 2 that Strategy 3 is guaranteed
to provide the optimal solution of the channel switching prob-
lem in (2). In addition, it covers Strategy 2 and Strategy 1 as
special cases, which may be suboptimal in general. Therefore,
in order to obtain the optimal channel switching solution, it
can be necessary in general to solve the optimization problem
in (15), which is computationally more complex than obtaining
the optimal solutions under Strategy 1 and Strategy 2. How-
ever, in some cases (see Proposition 5), it is guaranteed that
Strategy 1 or Strategy 2 can provide the optimal solution of the
channel switching problem in (2); that is, it is not necessary
to solve the optimization problem in (15) for obtaining the
optimal channel switching solution. Therefore, whenever the
conditions under which Strategy 1 or Strategy 2 is optimal
are satisfied, the optimal channel switching solution can be
obtained in a low-complexity manner as follows: If there exist
no channels with costAc, then Strategy 2 provides the optimal
solution. If there exists a channel with costAc, then the
optimal solution is either to employ that channel exclusively
with the maximum power (Strategy 1), or to switch between
two channels as specified by the solution of (11) (Strategy
2). In that case, the strategy that achieves the smaller average
probability of error becomes the optimal solution of (2).

IV. OPTIMAL CHANNEL SWITCHING FOR LOGARITHMIC

COST FUNCTIONS

In this section, specific theoretical results are obtained by
considering a suitable cost function for the channels. Since
each channel can be regarded as a measurement device, a cost
function similar to that proposed in [26] can be adopted for
relating the noise power of each channel to a cost value as
follows:

Ci = log

(

1 +
b

σ2
i

)

, i ∈ {1 . . .K} , (16)

where b > 0 is a given system parameter (a constant). It
is noted that the function in (16) has the desirable property
that it assigns higher (lower) cost values to less (more) noisy
channels; that is,σ2

i < σ2
j implies Ci > Cj . In addition,

lim
σi→∞

Ci = 0 and lim
σi→0

Ci = ∞ . As in the previous section, it

is assumed without loss of generality that the noise variances
of the channels satisfyσ2

1 < σ2
2 < · · · < σ2

K , which implies
that the cost values are ordered asC1 > C2 > · · · > CK . In
addition, the error probability expression in (12) is considered.

Based on the cost function in (16), the following result is
obtained first.

Lemma 1: Consider infinitely many channels and assume
that the channels take a continuum of cost values in the inter-
val [Cmin, Cmax] based on the cost function in(16), where0 <

Cmin < Cmax < ∞ . Let g(P,C) denote the error probability
when transmission is performed by utilizing a power level of
P over a channel with costC. Then,g(P,C) is a strictly
convex function over setSc , which is a convex set defined as

Sc
△
=
{

(P,C) : P > b/(κ2(eC + 1)), C ∈ (Cmin, Cmax)
}

.
Proof: Please see Appendix B.
Lemma 1 describes the convexity properties of the error

probability, which is considered as a function of power and
cost. Based on Lemma 1, the solutions of the optimal channel
switching problem can be specified in certain scenarios. To that
aim, the following proposition presents the optimal solution
when channel switching is performed between two channels
(i.e., Strategy 2).

Proposition 4: Suppose there existK channels and each
channel has a cost value obtained from the cost function
in (16). If the power limits satisfyAp ≥ b σ4

K

κ2σ2
1(2σ

2
K
+b)

and

Pmax > Apσ
2
K/σ2

1 , then the optimal solution for Strategy 2
employs channeli and channelj, where

i = argmin
k∈{1,...,K}

Ck subject toCk > Ac , (17)

j = argmax
k∈{1,...,K}

Ck subject toCk < Ac . (18)

Proof: From Proposition 1, it is known that the optimal
channel switching solution utilizes the maximum average cost.
Therefore, for Strategy 2, the optimal pair of channels, say
(k, l), must satisfyk ≤ i and l ≥ j, where i and j are
as defined in (17) and (18), respectively. (Note that the cost
values are ordered asC1 > C2 > · · · > CK .) For simplicity
of notation, definezk , (Pk, Ck), for k = 1, . . . ,K, and
a , (Ap, Ac). In order to prove that the optimal channel
pair for Strategy 2 is(i, j), first consider channel pair(k, l),
wherek = i and l > j. The optimal solution for channel pair
(i, l) must utilize the maximum average power and cost due to
Proposition 1. In addition, consider an alternative solution that
employs channel pair(i, j) and operates at the average power
and cost limits. Then, the following inequalities are obtained:

λ zi + (1− λ) zj = a and γ zi + (1 − γ) zl = a , (19)

whereλ = (Ac−Cj)/(Ci−Cj) andγ = (Ac−Cl)/(Ci−Cl),
which are obtained from the average cost constraint. Since
Ci > Ac > Cj > Cl, it can be shown thatγ > λ. Therefore,
zj can be expressed as

zj =
γ − λ

1− λ
zi +

1− γ

1− λ
zl . (20)

Then, it is shown in the following that channel pair(i, l) can-
not be optimal since it results in a higher average probability
of error than channel(i, j):

λ g(zi) + (1− λ)g(zj)

= λ g(zi) + (1 − λ) g

(

γ − λ

1− λ
zi +

1− γ

1− λ
zl

)

(21)

< λg(zi) + (1 − λ)

(

γ − λ

1− λ
g(zi) +

1− γ

1− λ
g(zl)

)

(22)

= γ g(zi) + (1− γ) g(zl) (23)

whereg(zi) = g(Pi, Ci) denotes the average probability of
error as a function of power and cost, as defined in (31). In ob-
taining the equality in (21), the expression in (20) is employed,
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and the inequality in (22) follows from the strict convexityof
g, which is guaranteed under the conditions in the proposition,
namely,Ap ≥ b σ4

K

κ2σ2
1(2σ

2
K
+b)

andPmax > Apσ
2
K/σ2

1 . In order
to verify the convexity ofg in this scenario, Lemma 1 is
considered first, which states that the power levels should
satisfyP > b/(κ2(eC +1)) for strict convexity. Since the cost
values are ordered asC1 > C2 > · · · > CK (equivalently,
σ2
1 < σ2

2 < · · · < σ2
K ), P > b/(κ2(eCK + 1)) is required to

guarantee that functiong is strictly convex for all channels.
From Proposition 3, it is concluded that the optimal power lev-
els under Strategy 2 always satisfymin{Pk, Pl} > σ2

kAp/σ
2
l

for channel pair(k, l) with Ck > Ac > Cl.4 Therefore, if
σ2
1Ap/σ

2
K > b/(κ2(eCK +1)) holds, then it is guaranteed that

the optimal power levels for any channel pair for Strategy 2
satisfy the convexity condition in Lemma 1. Mathematically
stated,

min{Pk, Pl} >
σ2
kAp

σ2
l

>
σ2
1Ap

σ2
K

(24)

>
b

κ2(eCK + 1)
=

b

κ2(2 + b/σ2
K)

for all k ≤ i andl ≥ j, where first inequality is obtained from
Proposition 3, the second one follows from the relationσ2

1 <
σ2
2 < · · · < σ2

K , the third one is imposed in order to guarantee
that the power levels satisfy the convexity condition in Lemma
1, and the equality is obtained from (16). From (24), it is
deduced that the conditionAp > bσ2

K/(κ2(2 σ2
1 + b σ2

1/σ
2
K))

guarantees the strict convexity ofg.
Similar arguments to those in (19)-(23) can be used to prove

that channel pair(k, j) with k < i results in a larger average
probability of error than channel pair(i, j). Then, it can be
concluded that channel pair(k, l) cannot be optimal ifk < i
and/orl > j. Hence, the optimal channel pair for Strategy 2 is
shown to be the channel pair(i, j) as defined in the proposition
when the power limits are larger than the specified values.�

Proposition 4 states that if the average and peak power limits
are larger than certain values, then the optimal solution for
Strategy 2 is to switch between the two channels, one of which
has the lowest cost among the channels with costs higher than
Ac, and the other has the highest cost among the channels with
costs lower thanAc. In other words, among all the channel
pairs, where each pair has one channel with a cost higher than
Ac and another channel with a cost lower thanAc, the one that
has theminimum cost differenceis selected in order to achieve
the minimum average probability of error, which is mainly
due to the convexity of the error probability, as specified in
Lemma 1. Thanks to Proposition 4, it is not necessary to search
over all feasible channel pairs to obtain the optimal solution
for Strategy 2 under the conditions in Proposition 4.

Remark 2: Under the condition in Proposition 4, if there
exists a channel with costAc, then it outperforms the channel
pair (i, j) specified in(17)and (18); that is, Strategy 1 outper-
forms Strategy 2 in that scenario. This is due to the strict con-
vexity ofg, which results inλ g(Pi, Ci)+ (1−λ) g(Pj, Cj) >

g(Ap, Ac). In other words, ifAp ≥ b σ4
K

κ2σ2
1(2σ

2
K
+b)

andPmax >

Apσ
2
K/σ2

1 , transmission over a single channel with costAc

4This result is obtained by combining the inequality in (14) with the three
possible scenarios in Proposition 3. Note thatPmax > Apσ2

K
/σ2

1 guarantees
that the assumption in Proposition 3 holds for all channel pairs.

at the maximum power levelAp achieves a smaller average
probability of error than performing optimal channel switching
between two channels.

Based on Lemma 1, it is also possible to describe scenarios
in which Strategy 1 or Strategy 2 is the optimal solution of
the channel switching problem; that is, switching among more
than two channels is not needed. The following proposition
presents such a scenario:

Proposition 5: Consider the optimal channel switching
problem in (2) with the cost values as defined in(16), and
assume thatPmax → ∞. Then, the optimal channel switching
strategy involves at most two channels if the average power
limit satisfiesAp ≥ 2 b σ4

K

κ2σ2
1(2σ

2
K+b)

.
Proof: Please see Appendix C.
Proposition 5 states that in the absence of peak power

constraints, if the average power limit is larger than a certain
value, then the optimal channel switching strategy is to usea
single channel exclusively or to switch between two channels;
that is, Strategy 3 is not optimal. In such a scenario, the
optimal solution is either to transmit over a single channel
with costAc if such a channel exists, or to switch between
channeli and channelj as specified in Proposition 4 if there
exists no channels with costAc.

Remark 3: Based on the results in Section III and Sec-
tion IV, the following algorithm can be described for obtaining
the optimal channel switching solution:

• If Ac = CK , the optimal channel switching strategy is to
transmit over channelK exclusively with powerAp (see
Remark 1-(i)).

• If Ac ≥ C1, the optimal channel switching strategy is to
transmit over channel1 exclusively with powerAp (see
Remark 1-(ii) ).

• If CK < Ac < C1,
– if the cost function is the logarithmic cost function

in (16), Ap ≥ 2 b σ4
K

κ2σ2
1(2σ

2
K
+b)

, and no peak power
constraints exist,
∗ if there exists a channel with costAc, transmission

over that channel at the maximum power level
Ap is the optimal strategy (see Proposition 5 and
Remark 2).

∗ otherwise, the optimal strategy is to perform time
sharing between channeli and channelj specified
in (17) and (18) (see Proposition 4), and the
optimal solution can be obtained based on (11).

– otherwise, the optimal channel switching strategy is
obtained based on the optimization problem in (15).

V. NUMERICAL EXAMPLES

In this section, various numerical examples are presented
in order to provide illustrations of the theoretical results and
to investigate performance gains that can be achieved via
channel switching. The following strategies are compared in
the numerical examples:

Optimal Single Channel: In this strategy, channel switch-
ing is not allowed, and only one channel is employed exclu-
sively. The optimal solution for this approach is obtained by
using Strategy 1 in Section III.

Optimal Channel Switching: In this strategy, channel
switching is allowed, and the optimal solution of the channel
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Fig. 2. Average probability of error versusAp for the optimal single channel
and optimal channel switching strategies, whereK = 4, σ = [0.4 0.6 0.8 1],
C = [7 5 3 1], andAc = 2.

TABLE I

PARAMETERS OF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

FIG. 2.

Ap λi λj P1 P2 P3 P4

0.1 0.1667 0.8333 0.1821 – – 0.0836
0.2 0.1667 0.8333 0.2663 – – 0.1867
2 0.25 0.75 – 1.3461 – 2.2180
4 0.5 0.5 – – 3.4117 4.5883
6 0.5 0.5 – – 4.9898 7.0102
8 0.5 0.5 – – 6.5601 9.4399
10 0.5 0.5 – – 8.1270 11.873

switching problem in (2) is obtained based on Strategy 3.
(Since Strategy 3 covers Strategy 2 as a special case, Strategy
2 is not considered separately.)

A scenario withK Gaussian channels is considered, and
the standard deviations and the costs of the channels are
represented, for notational simplicity, in the vector formas
σ = [σ1 · · ·σK ] andC = [C1 · · ·CK ], respectively. For all the
examples, the peak power limit in (2) is set toPmax = 10Ap,
where Ap is the average power limit. In addition, binary
antipodal signaling is considered, which corresponds to an
error probability expression as in (12) withη = κ = 1. First,
a four-channel system is studied, whereσ = [0.4 0.6 0.8 1],
C = [7 5 3 1], and the average cost limit is equal to2 ; that
is, Ac = 2. In Fig. 2, the average probabilities of error are
plotted versus the average power limitAp for the optimal
single channel and optimal channel switching approaches.
It is observed that the optimal channel switching strategy
outperforms the optimal single channel strategy forall values
of Ap. This is an expected result since the optimal single
channel approach cannot be the optimal solution of the channel
switching problem in this scenario as there exists no channel
with a cost ofAc and Ac < C1 (Corollary 1). In order to
provide further investigations of the results in Fig. 2, the
parameters of the optimal channel switching strategy are
presented in Table I for some values ofAp. In the table, the
optimal channel switching solution is represented by channel
switching factors(λi, λj , λk) and power levels(Pi, Pj , Pk),
wherei < j < k. The channels that are not employed in the
optimal solution are marked with “–” in the table. Since at
most three channels can be utilized in the optimal solution
according to Proposition 2, only two of the channel switching
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Fig. 3. Average probability of error versusAp for the optimal single channel
and optimal channel switching strategies, whereK = 4, σ = [0.4 0.6 0.8 1],
C = [7 5 3 1], andAc = 5.
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Fig. 4. A closer look at Fig. 3 forAp ∈ [0, 1].

factors are shown in the table, and the remaining one can
be calculated asλk = 1 − λi − λj . It should be noted that
λi, λj , and λk correspond to the channel switching factors
of the employed channelswith the smallest index, the second
smallest index, and the third smallest index, respectively. For
example, forAp = 0.1, channel1 is employed with channel
switching factor0.1667 and power0.1821 and channel4 is
employed with channel switching factor0.8333 and power
0.0836. (In this case,λk = 0, meaning that only two channels
are employed in the optimal solution). It is observed from
Table I that the optimal channel switching strategy performs
channel switching between two channels, which in compliance
with Proposition 2. In addition, the calculations show that

TABLE II

PARAMETERS OF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

FIG. 3.

Ap λi λj P1 P2 P3 P4

0.1 0.6667 0.3333 0.1281 – – 0.0437
0.2 0.6667 0.3333 0.2314 – – 0.1371
1 0.6667 0.3333 0.6894 – – 1.6212
2 1 – – 2 – –
3 1 – – 3 – –
4 1 – – 4 – –
5 1 – – 5 – –
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Fig. 5. Average probability of error versusAc for the optimal single channel
and optimal channel switching strategies, whereK = 4, σ = [0.4 0.6 0.8 1],
andC = [7 5 3 1].

the optimal channel switching solution utilizes the maximum
average power and maximum average cost as claimed in
Proposition 1. In addition, the statements in Proposition 3are
verified, which can be exemplified as follows: ParameterAij

in Proposition 3 can be calculated for channel3 and channel
4 asA34 = 0.7934. As observed from Table I, when channel
3 and channel4 are employed,Ap > A34 is satisfied and the
conditions in Part(ii) of Proposition 3 hold; that is,P4 >
Ap > P3 > A34. In addition, the ratio of the optimal power
levels is always smaller than the ratio of the noise variances,
1/(0.8)2 = 1.5625, as stated in (14) in Proposition 3. (Note
thatPmax = 10Ap > Apσ

2
4/σ

2
3 = 1.5625Ap is also satisfied.)

Compared to the optimal channel switching strategy, which
performs channel switching between channel 4 and another
channel, the optimal single channel solution always utilizes
channel4 at the maximum power limitAp since it is the only
channel with a cost that is lower than the average cost limit
Ac. However, as observed from Fig. 2 and Table I, performing
time sharing between channel4 and a channel with a higher
cost (lower error probability) reduces the average probability
of error in this scenario.

Next, the same channel configuration is considered with a
different average cost limit, which is given byAc = 5, and the
average probability of error curves are presented in Fig. 3.In
this case, since there is a channel with a cost that is equal to
Ac, Corollary 1 does not apply; i.e., channel switching is not
necessarily optimal. As observed from the figure, for small
values of the average power limitAp, the optimal channel
switching strategy outperforms the optimal single channel
strategy (please see Fig. 4 for a zoomed-in version of Fig. 3
for Ap ∈ [0, 1]), whereas both strategies achieve the same
performance asAp increases. Table II presents the parameters
of the optimal channel switching solution, which indicatesthat
employing channel 2 exclusively at the power limit (which is
the optimal single channel solution) becomes optimal when
Ap is larger than a certain value whereas switching between
channel1 and channel4 is optimal for small values ofAp.
Hence, it is concluded that when there exists a channel with a
cost equal toAc, employing a single channel exclusively may
or may not be the optimal solution depending on the system
parameters.
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Fig. 6. Average probability of error versusAp for the optimal single
channel and optimal channel switching strategies, whereK = 5, σ =
[0.6 0.7 0.8 0.9 1], C = [1.329 1.112 0.941 0.804 0.6931], andAc = 0.9.

TABLE III

PARAMETERS OF THE OPTIMAL CHANNEL SWITCHING STRATEGY IN

FIG. 6.

Ap λi λj P1 P2 P3 P4 P5

0.05 0.3028 0.0347 0.0811 0.0652 – – 0.0352
0.2 0.3254 0.6746 0.2652 – – – 0.1685
1 0.7007 0.2993 – – 0.9881 1.0278 –
2 0.7007 0.2993 – – 1.9310 2.1617 –
3 0.7007 0.2993 – – 2.8648 3.3164 –
4 0.7007 0.2993 – – 3.7955 4.4788 –
5 0.7007 0.2993 – – 4.7247 5.6447 –

In order to investigate the effects of the average cost limit
in more detail, the average probabilities of error are plotted
versusAc in Fig. 5 for various values ofAp based on the same
channel configuration as in the previous scenario. As expected,
the average probability of error is a non-increasing function of
the average cost limitAc. Also, in accordance with Part(ii)
of Remark 1, the average probability of error converges to the
error probability of the best channel (channel1) at the average
power limit Ap whenAc is larger than or equal to the cost of
the best channel; i.e., whenAc ≥ 7. In addition, it is observed
that the optimal single channel strategy results in piecewise
constant average probabilities of error, which is due to the
fact that the optimal single channel solution corresponds the
use of the best channel that has a cost lower than or equal to
Ac. Specifically, the optimal single channel strategy achieves
the error probabilities ofg4(Ap), g3(Ap), g2(Ap), andg1(Ap)
for Ac ∈ [1, 3), Ac ∈ [3, 5), Ac ∈ [5, 7), and Ac ≥ 7,
respectively, wheregi(Ap) = Q(

√

Ap/σi) denotes the error
probability of channeli at power levelAp. Furthermore, Fig. 5
verifies the argument in Corollary 1 that, forCK < Ac < C1,
channel switching is guaranteed to outperform the optimal
single channel strategy ifAc is not equal to the cost of one
of the channels.

As another scenario, a five-channel system is considered,
and the cost values are calculated based on the logarithmic
cost function in (16) withb = 1. The standard deviations
of the channels are set toσ = [0.6 0.7 0.8 0.9 1], and the
average cost limit is given byAc = 0.9. In Fig. 6, the average
probability of error is plotted versusAp for the optimal single
channel and optimal channel switching strategies. Similarto
the scenario in Fig. 2, it is observed that channel switching
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Fig. 7. Average probability of error versusAc for the optimal single
channel and optimal channel switching strategies, whereK = 5, σ =
[0.6 0.7 0.8 0.9 1], andC = [1.329 1.112 0.941 0.804 0.6931].

outperforms the single channel approach for all values ofAp as
a consequence of Corollary 1 as there exists no channel with
a cost equal toAc. The parameters of the optimal channel
switching strategy in Fig. 6 are presented in Table III for
some values ofAp. It is noted that the optimal solution
performs channel switching among at most three channels in
compliance with Proposition 2. Also, numerical calculations
show that the results in Proposition 1 and Proposition 3
are satisfied. In addition, as stated in Proposition 4, when
Ap ≥ b σ4

5/(σ
2
1(2 σ

2
5 + b)) = 0.926,5 the optimal channel

switching between two channels is performed between channel
3 and channel4, which is in accordance with (17) and (18).
Furthermore, channel switching among three channels is not
optimal forAp ≥ 2 b σ4

5/(σ
2
1(2 σ

2
5 + b)) = 1.852.

Finally, the average probabilities of error are plotted versus
Ac in Fig. 7 for various values ofAp based on the scenario
in Fig. 6. Similar observations to those related to Fig. 5
can be made. Namely, ifAc is smaller than the cost of the
best channel, which is equal to1.329, the optimal channel
switching strategy outperforms the single channel one when
Ac is not equal to the cost of a channel. On the other hand, for
Ac ≥ 1.329, both strategies achieve an average probability of
error that is equal to the error probability of the best channel
at the power limit.

VI. EXTENSIONS

The problem formulation in Section II assumes that there
is a single RF chain at the transmitter and the receiver; hence,
only one channel is employed at any time during channel
switching. Also, the transmitter has an average power con-
straint denoted byAp, which can, for example, be determined
according to the hardware constraints and/or the battery life
of the communication system. This power constraint specifies
a restriction on the transmit powers that can be used over
different channels. An important extension is the scenarioin
which there exist multiple RF chains at the transmitter and the
receiver, and multiple channels can be used simultaneously.
For that scenario, two different cases can be considered. In

5Pmax > Apσ2
K
/σ2

1 = 2.778Ap is always satisfied in this scenario since
Pmax = 10Ap.

the first case, the transmitter has the same average power
constraint as in the single RF chain scenario, and multiple
RF chains share the power at each time. In that case, it can
be shown that only one of the RF chains should be used with
all the available power for minimizing the average probability
of error. Therefore, this case reduces to the case with single
RF chains investigated in the previous sections. For example,
consider two RF chains at the transmitter and the receiver,
and assume that powerP is allocated for transmission over
two channels simultaneously, which are denoted as channeli
and channelj with average noise powers ofσ2

i and σ2
j ,

respectively. If powerPi is allocated for the RF chain that
operates over channeli, and power(P − Pi) for the RF
chain over channelj, then the SNR at the receiver becomes
Pi/σ

2
i + (P − Pi)/σ

2
j via optimal processing [28], which

is maximized by settingPi = P if σi < σj and Pi = 0
otherwise; that is, all the power is used for the RF chain
corresponding to the best channel. In the second case, it is
considered that the same power level can be used for all the RF
chains, which corresponds to an increased total power due to
the use of multiple RF chains. In that case, an equivalent model
can be developed and the proposed model in Section II can still
be employed as follows: Suppose that there existR RF chains
at the transmitter and the receiver. Then, allR combinations
of K channels can be considered as newcombined channels;

that is,

(

K
R

)

combined channels exist. For theith combined

channel, let the average noise powers and the costs of the
correspondingR channels be denoted byσ2

i,1, . . . , σ
2
i,R and

Ci,1, . . . , Ci,R, respectively. Then, this combined channel can
be considered as a single channel as in Fig. 1 with an

average noise power of̃σ2
i =

(

σ−2
i,1 + · · ·+ σ−2

i,R

)−1

and a

cost of C̃i = Ci,1 + · · · + Ci,R. Hence, the same problem
formulation as in Section II is obtained, and all the results
in the previous sections apply. It should be emphasized that
the expression for̃σ2

i is obtained by considering the SNR at
the receiver after optimal processing, which is expressed as
P/σ̃2

i = P/σ2
i,1 + · · ·+ P/σ2

i,R [28].

VII. C ONCLUDING REMARKS

In this study, optimal channel switching has been investi-
gated for Gaussian channels in the presence of average power
and average cost constraints. For generic cost functions, it
has been shown that the optimal channel switching strategy
performs time sharing among at most three channels and
operates at the average power and average cost limits. Also,for
channel switching between two channels, it has been proved
that the ratio of the optimal power levels is upper bounded
by the ratio of the larger noise variance to the smaller one
under certain conditions. In addition, for logarithmic cost
functions, the convexity properties of the error probability have
been characterized as a function of power and cost, and the
optimal channel switching strategy has been shown to employ
at most two channels, which can be determined based on
specific formulas, in certain scenarios. Numerical examples
have provided illustrations of the theoretical results. Future
work involves the incorporation of switching costs [20] in the
design of optimal channel switching strategies.
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APPENDIX

A. Proof of Proposition 3

First, consider the problem in (11) without the peak power
constraints. Then, it can be solved based on (13). The first-
order derivative of the objective function in (13) with respect
to Pi is expressed as

−λ∗κ η

2
√
2π σi

√
Pi

e
−

κ2Pi

2σ2
i +

λ∗
√
1− λ∗ κ η

2
√
2π σj

√

Ap − λ∗Pi

e
−

κ2(Ap−λ∗Pi)

2(1−λ∗)σ2
j .

(25)

It is observed that the first-order derivative in (25) is a
monotone increasing function ofPi for Pi ∈

(

0, Ap/λ
∗
)

,
which starts from−∞ at Pi = 0 and increases monotonically
towards infinity asPi goes toAp/λ

∗ . Therefore, there is a
unique minimizerP ∗

i for the optimization problem in (13),
which corresponds to the point at which the first-order deriva-
tive is zero. Equating the first-order derivative in (25) to zero
yields the following necessary and sufficient condition forthe
optimal solution of (13):

e
κ2Pi

2σ2
i

−
κ2(Ap−λ∗Pi)

2(1−λ∗)σ2
j =

σj

√

Ap − λ∗Pi√
1− λ∗ σi

√
Pi

. (26)

Sinceλ∗Pi+(1−λ∗)Pj = Ap, the condition in (26) can also
be expressed as

e
κ2

(

Pi

σ2
i

−
Pj

σ2
j

)

=
σ2
jPj

σ2
i Pi

. (27)

If Ap = Aij , it can be shown, by using the definition ofAij in
the proposition, thatPi = Pj = Aij satisfies the condition in
(27). Since the solution of (27) is unique, the optimal solution
of (13) is obtained asP ∗

i = P ∗
j = Aij . In addition, asPmax >

Ap = Aij , the optimal solution of the problem in (11) is
the same as that of (13) in this case; hence, the first part of
Proposition 3 is obtained.

In order to prove the second part of the proposition, it is first
observed that the first-order derivative in (25) is a monotone
decreasing function ofAp and a monotone increasing function
of Pi. Therefore, the value ofPi at which the first-order
derivative becomes zero gets larger asAp increases. Since
the first-order derivative becomes zero atPi = Aij when
Ap = Aij (as proved in the first part), the first-order derivative
becomes zero at a value larger thanAij when Ap > Aij .
Hence, the optimal solution of (13) satisfiesP ∗

i > Aij for
Ap > Aij . In addition, it is concluded from (27) that as
P ∗
i increases, the optimal value ofPj should also increase

in order for the optimality condition in (27) to be satisfied.
In other words,P ∗

i > Aij also impliesP ∗
j > Aij based on

the relation in (27). Next, the ordering betweenP ∗
i andP ∗

j

should be determined. To that aim, the optimal signal values
are expressed asP ∗

i = αAij andP ∗
j = βAij , whereα and

β are some positive numbers that are larger than one. Then,
the optimality condition in (27) becomeseκ

2Aij(α/σ
2
i −β/σ2

j ) =
βσ2

j /(ασ
2
i ). From the definition ofAij in the proposition,

σ2
j /σ

2
i can be expressed asσ2

j /σ
2
i = eκ

2Aij(1/σ
2
i −1/σ2

j ). Then,
the optimality condition is stated as

α

β
= e

κ2Aij

(

β−1

σ2
j

−α−1

σ2
i

)

. (28)

If it is assumed thatα > β, then (28) implies thatβ−1
α−1 >

σ2
j

σ2
i

. However, sinceσ2
i < σ2

j (as Ci > Cj ), this inequality
leads to a contradiction. Therefore,α cannot be larger than
β. On the other hand, if it is assumed thatα < β, then (28)
becomesα−1

β−1 >
σ2
i

σ2
j

, which is not a contradiction. Therefore,
it is obtained thatα < β, that is,P ∗

i < P ∗
j , whenAp > Aij .

Furthermore, due to the average power constraint,λ∗P ∗
i +

(1 − λ∗)P ∗
j = Ap, it is concluded thatP ∗

j > Ap > P ∗
i .

Combining this result with the first result in this paragraph,
it is obtained that whenAp > Aij , the optimal signal values
satisfy P ∗

j > Ap > P ∗
i > Aij . Hence, the second part of

Proposition 3 is proved. The third part of the proposition can
be proved in a similar manner to the proof of the second part,
and it can be shown thatAij > P ∗

i > Ap > P ∗
j based on (25)

and (27).

The final statement in the proposition can be proved as
follows: ForAp > Aij , it is obtained in the previous paragraph

that α−1
β−1 >

σ2
i

σ2
j

, whereβ > α > 1 with P ∗
i = αAij and

P ∗
j = βAij . The inequality can be manipulated as follows:

σ2
j

σ2
i

>
β − 1

α− 1
>

β

α
=

P ∗
j

P ∗
i

(29)

where the second inequality is obtained from the relationβ >
α > 1. ForAp < Aij , the second part of the proposition states
that P ∗

i > P ∗
j . Sinceσ2

i < σ2
j by definition (asCi > Cj), it

is obtained thatP ∗
i /σ

2
i > P ∗

j /σ
2
j . Therefore, the relation in

(27) yields

σ2
jP

∗
j

σ2
i P

∗
i

= e

P∗

i

σ2
i

−
P∗

j

σ2
j > 1 , (30)

which results inP ∗
i /P

∗
j < σ2

j /σ
2
i . Finally, for Ap = Aij ,

P ∗
i /P

∗
j = 1 as stated in the first part of the proposition.

Overall, the ratio between the optimal power levels is upper
bounded byσ2

j /σ
2
i for any value ofAp, as stated in the

proposition.

Based on the three conditions in the proposition and the
inequality in (14), it can be shown that the optimal power
levelsP ∗

i andP ∗
j are always smaller thanPmax sincePmax >

Apσ
2
j /σ

2
i . Hence, the properties of the solution of (11) ob-

tained without the peak power constraints (via the solutionof
(13)) also hold for the solution of the problem in (11) in the
presence of peak power constraints. �

B. Proof of Lemma 1

The error probability for a transmission power ofP is
expressed asη Q(κ

√
P/σ) as in (12), whereσ is the standard

deviation of the channel noise. Based on the cost function in
(16), σ is expressed asσ =

√

b/(eC − 1), which leads to the
following expression for the error probability:

g(P,C) = η Q(h(P )f(C)) , (31)

whereh(P ) , κ
√
P andf(C) ,

√

(eC − 1)/b. In order to
investigate the convexity of (31), the derivatives ofh and f
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are calculated first, which are expressed as

h′ =
κ2

2h
, f ′ =

bf2 + 1

2bf
,

h′′ = − κ4

4h3
, f ′′ =

(bf2 − 1)(bf2 + 1)

4b2f3
. (32)

Then, the first-order partial derivatives ofg(P,C) with respect
to P andC are given by

∂g(P,C)

∂P
= η h′f Q′(hf) and

∂g(P,C)

∂C
= η hf ′ Q′(hf) ,

(33)

whereQ′(x) denotes the first derivative of theQ-function.
(From (33), it is observed that the error probability is a
monotone decreasing function of power and cost as expected
sinceQ-function is monotone decreasing.) Next, the second-
order partial derivatives are calculated as

∂2g(P,C)

∂P 2
= η (h′f)2Q′′(hf) + η h′′f Q′(hf)

= η
(

fh′′ − f3h(h′)2
)

Q′(hf) (34)

∂2g(P,C)

∂C2
= η (hf ′)2Q′′(hf) + η hf ′′Q′(hf)

= η
(

hf ′′ − h3f(f ′)2
)

Q′(hf) (35)

∂2g(P,C)

∂P∂C
= η hh′ff ′Q′′(hf) + η h′f ′Q′(hf)

= η
(

1− h2f2
)

h′f ′Q′(hf) (36)

where the relationQ′′(x) = −xQ′(x) is employed to obtain
the final expressions. From (34)-(36), the2×2 Hessian matrix
can be formed forg(P,C), and the convexity ofg(P,C)
can be investigated based on the positive definiteness of the
Hessian matrix, which requires the leading principal minors
to be positive [30]. It noted from (34) that the second-order
derivative with respect toP is always positive. Therefore, the
only condition for positive definiteness becomes the determi-
nant of the Hessian matrix to be positive, which leads, after
some manipulation, to the following inequality:

P >
b

κ2(bf2 + 2)
=

b

κ2(eC + 1)
, (37)

where the final expression is obtained based on the definition
of f ; i.e., f(C) =

√

(eC − 1)/b . Therefore, the convexity
of g(P,C) requires that powerP should be larger than
b/(κ2(eC + 1)) as stated in the lemma.

Finally, it is shown thatSc, as defined in the lemma, is a
convex set. Let(Pi, Ci) and(Pj , Cj) denote any two elements
from set Sc. Then, their convex combination is given by
(λPi +(1− λ)Pj , λCi +(1− λ)Cj), whereλ ∈ [0, 1]. Since
bothCi andCj are in(Cmin, Cmax), their convex combination
resides in the same interval as well. In addition, the convex
combination of the powers satisfies the condition for setSc

due to the following inequalities:

λPi + (1− λ)Pj > λ
b/κ2

eCi + 1
+ (1 − λ)

b/κ2

eCj + 1

>
b/κ2

eλCi+(1−λ)Cj + 1
(38)

where the second inequality follows from the strict convexity

of b/(κ2(eC +1)). Therefore,Sc is a convex set, andg(P,C)
is a strictly convex function over setSc. �

C. Proof of Proposition 5

The statement in the proposition can be proved via contra-
diction. Suppose that the optimal solution is to switch among
three different channels, and let the channel indices, channel
switching factors, and power levels for that optimal solution be
denoted by(i, j, k), (λi, λj , λk) and(Pi, Pj , Pk), respectively,
where Ci > Cj > Ck without loss of generality. Since
the optimal solution must utilize the maximum average cost
Ac (see Proposition 1), eitherCi > Ac > Cj > Ck or
Ci > Cj > Ac > Ck must hold. Assume thatCi > Ac >
Cj > Ck. (The proof for the other scenario can be obtained
in a similar manner.) As stated in Proposition 1, the optimal
solution operates at the maximum average power and cost,
which leads to the following equality:

λi zi + λj zj + (1− λi − λj) zk = a , (39)

wherezi = (Pi, Ci) and a = (Ap, Ac), as in the proof of
Proposition 4. Consider an alternative solution that switches
between two channels, channeli and channelj, with channel
switching factorsγ and (1 − γ) and powersPi and Pj ,
respectively, and utilizes the maximum average power and
cost; that is,

γ zi + (1 − γ) zj = a . (40)

Based on (39) and (40),γ and λi can be obtained from the
average cost constraint asγ = (Ac − Cj)/(Ci − Cj) and
λi = (Ac −Ck − λj(Cj −Ck))/(Ci −Ck). First, it is shown
thatλi > γ. To that aim, the following inequality is obtained
from the conditionλi > γ based on the definition ofλi and
γ : (Ac − Ck − λj(Cj − Ck))(Ci − Cj) > (Ac − Cj)(Ci −
Ck), which reduces, after some manipulation, toλj Cj +(1−
λj)Ci > Ac. Since(1−λj) = λi+λk, Ci > Ck, andλi Ci+
λj Cj +λk Ck = Ac, the inequalityλj Cj +(1−λj)Ci > Ac

always holds, which verifies thatλi > γ. Then, from (39) and
(40), zj can be expressed as

zj =
λi − γ

1− γ − λj
zi +

1− λi − λj

1− γ − λj
zk . (41)

The remaining part of the proof depends on the values of
powersPi, Pj , andPk.

Case 1:If all the power levels satisfy the convexity con-
dition in Lemma 1, then the following inequality can be
obtained:

γ g(zi) + (1− γ) g(zj)

= γ g(zi) + λj g(zj) + (1− γ − λj) g(zj) (42)

< γ g(zi) + λj g(zj) + (1− γ − λj)

(

λi − γ

1− γ − λj
g(zi)

+
1− λi − λj

1− γ − λj
g(zk)

)

(43)

= λi g(zi) + λj g(zj) + (1− λi − λj) g(zk) (44)

whereg(zi) = g(Pi, Ci) denotes the average probability of
error as a function of power and cost, as defined in (31). In
obtaining the inequality in (43), the definition ofzj in (41)
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and the strict convexity ofg are employed. Note thatg is
strictly convex when the power levels satisfy the conditionin
Lemma 1, which is the assumption in Case 1. In addition,
it is noted that the(1 − γ − λj) term in (42) is never
negative sinceγ < λi as proved in the previous paragraph and
λi < 1−λj by definition. The inequality in (42)-(44) implies
that the channel switching between channeli and channelj
with channel switching factorsγ and (1 − γ), respectively,
achieves a lower average probability of error than the optimal
solution, which switches among channelsi, j, and k with
channel switching factorsλi, λj , andλk, respectively. Hence,
a contradiction arises. Therefore, the strategy that switches
among three channels cannot be optimal. In other words, for
any strategy that switches among three channels, there exist a
strategy that performs channel switching between two channels
and achieves a smaller average probability of error.

Case 2:Suppose that some of the power levels do not satisfy
the convexity condition in Lemma 1. Since the average power
should be equal toAp due to Proposition 1, at least one power
level should be belowAp. Assume without loss of generality
that Pi < Ap. Then, the average probability of error for the
optimal solution that switches among three different channels
can be bounded from below as follows:

λi g(zi) + λj g(zj) + λk g(zk)

= λi g(zi) + (λj + λk)
(

λ̃j g(zj) + λ̃k g(zk)
)

(45)

≥ λi g(zi) + (λj + λk) (νj g(z̃j) + νk g(z̃k)) (46)

= λi g(zi) + ν̃j g(z̃j) + ν̃k g(z̃k) (47)

with λ̃j , λj/(λj+λk), λ̃k , λk/(λj+λk), ν̃j , (λj+λk)νj ,
ν̃k , (λj + λk)νk, z̃j , (P̃j , Cj), and z̃k , (P̃k, Ck), where
P̃j and P̃k are the optimal power levels andνj and νk are
the corresponding optimal channel switching factors when the
channel switching is performed between channelj and channel
k only under the average cost limit̃Ac , λ̃j Cj + λ̃k Ck and
the average power limit̃Ap , λ̃j Pj + λ̃k Pk > Ap.6 Since
(P̃j , P̃k) and (νj , νk) are the solution of the optimal channel
switching problem in the presence of channelj and channel
k only under the average power limit̃Ap and the average
cost limit Ãc, the average probability of error is bounded
from below by the expression in (46). From Proposition 3,
min{P̃j , P̃k} > σ2

j Ãp/σ
2
k. Then, based on a similar argument

to that in (24), it can be shown that the convexity condition
in Lemma 1 is satisfied for power levels̃Pj and P̃k if Ãp >
bσ4

K/(κ2(2 σ2
1σ

2
K + b σ2

1)), which always holds due to the
assumption in the proposition and the fact thatÃp > Ap.
Next assume without loss of generality thatν̃j P̃j ≥ ν̃k P̃k.
Then, the lower bound in (47) can be improved as follows:

λi g(zi) + ν̃j g(z̃j) + ν̃k g(z̃k)

= (λi + ν̃j)
(

λ∗
i g(zi) + λ∗

j g(z̃j)
)

+ ν̃k g(z̃k) (48)

≥ (λi + ν̃j)
(

ν∗i g(z
∗
i ) + ν∗j g(z

∗
j )
)

+ ν̃k g(z̃k) (49)

= ν̂i g(z
∗
i ) + ν̂j g(z

∗
j ) + ν̃k g(z̃k) (50)

with λ∗
i , λi/(λi+ ν̃j), λ∗

j , ν̃j/(λi+ ν̃j), ν̂i , (λi+ ν̃j)ν
∗
i ,

ν̂j , (λi + ν̃j)ν
∗
j , z∗i , (P ∗

i , Ci), andz∗j , (P ∗
j , Cj), where

P ∗
i andP ∗

j are the optimal power levels andν∗i and ν∗j are

6The inequalityÃp > Ap follows from the assumption thatPi < Ap.

the corresponding optimal channel switching factors when the
channel switching is performed between channeli and channel
j only under the average cost limitA∗

c , λ∗
i Ci + λ∗

j Cj and
the average power limitA∗

p , λ∗
i Pi + λ∗

j P̃j > 0.5Ap.7

From Proposition 3,min{P ∗
i , P

∗
j } > σ2

iA
∗
p/σ

2
j . Then, sim-

ilar to (24), it can be shown that the convexity condition
in Lemma 1 is satisfied for power levelsP ∗

i and P ∗
j if

A∗
p > bσ4

K/(κ2(2 σ2
1σ

2
K + b σ2

1)), which is true due to the
assumption in the proposition and the fact thatA∗

p > 0.5Ap.
From (45)-(50), it is concluded that when the assumption in
the proposition holds, for any strategy that performs channel
switching among three different channels, there exists another
strategy that switches among the same channels with power
levels that satisfy the convexity condition in Lemma 1, and
achieves a smaller average probability of error. Therefore, the
arguments in the previous part of the proof (Case 1) can
be employed to show that there exists a strategy that per-
forms channel switching between two channels and achieves
a smaller average probability of error than the lower bound
in (50). Therefore, channel switching among three channels
cannot be optimal under the condition in the proposition.�
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