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Abstract—In this study, an optimal channel switching strategy
is proposed for average capacity maximization in the presere
of average and peak power constraints. Necessary and suffit
conditions are derived in order to determine when the proposd
optimal channel switching strategy can or cannot outperfom
the optimal single channel strategy, which performs no chanel
switching. Also, it is obtained that the optimal channel swiching
strategy can be realized by channel switching between at mbs
two different channels. In addition, a low-complexity optimization
problem is derived in order to obtain the optimal channel swich-
ing strategy. Furthermore, based on some necessary conditis
that need to be satisfied by the optimal channel switching sotion,
an alternative approach is proposed for calculating the opmal
channel switching strategy. Numerical examples are provied to
exemplify the derived theoretical results and to provide inuitive
explanations.

Index Terms—Channel switching, capacity, time sharing.

I. INTRODUCTION

power levels, and a necessary and sufficient condition is
derived for the improvability of the jamming performanca vi
time sharing of the power compared to a fixed power jamming
scheme.

Error performance of some communications systems that
operate over additive time-invariant noise channels can al
be enhanced via time sharing among multiple detectors,twhic
is called detector randomizatiorj4], [11], [16], [17], [18].

In this approach, the receiver employs each detector with a
certain time sharing factor (or, probability), and the suitter
adjusts its transmission in coordination with the receiver

[4], time sharing between two antipodal signal pairs and
the corresponding maximum a-posteriori probability (MAP)
detectors is studied for an average power constrained bi-
nary communication system. Significant performance imgrov
ments can be observed as a result of detector randomization
in the presence of symmetric Gaussian mixture noise over

In recent studies in the literature, benefits of time sharirfyrange of average power constraint values [4]. In [11], the

(“randomization”) have been investigated for various deoe

results in [4] and [10] are extended to an average power

and estimation problems [2]-[14]. For instance, in the eant constrained}/-ary communication system that can employ

of noise enhanced detection and estimation, additive &ioisPoth detector randomization and stochastic signaling aver
that is realized by time sharing among a certain number agditive noise channel with a known distribution. It is abeal
signal levels can be injected into the input of a suboptimfiat the joint optimization of the transmitted signals ahd t
detector or estimator for performance improvement [2]-[6fletectors at the receiver leads to time sharing betw_e(_an_ at
Also, error performance of average power constrained cofost two MAP detectors corresponding to two deterministic
munication systems that operate in non-Gaussian chanrfd@al constellations. In [13], the benefits of time sharing
can be improved bgtochastic signalingwhich involves time among multiple detectors are investigated for the downlink
sharing among multiple signal values for each informatio?®f @ multiuser communication system and the optimal time
symbol [9], [10]. It is shown that an optimal stochastic sign Sharing strategy is characterized.

can be represented by a randomization (time sharing) amongdn the presence of multiple channels between a transmitter
no more than three different signal values under second aarttl a receiver, it may be beneficial to perforthannel
fourth moment constraints [9]. In a different context, jagrm switching that is, to transmit over one channel for a certain
systems can achieve improved jamming performance via tirffaction of time, and then switch to another channel for the
sharing among multiple power levels [7], [12], [15]. In [7],next transmission period [7], [19]-[22]. In [7], the chahne
it is shown that a weak jammer should employ on-off timewitching problem is investigated in the presence of anamer
sharing to maximize the average probability of error for power constraint for the optimal detection of binary antigb
receiver that operates in the presence of noise with a syriumesignals over a number of channels that are subject to additiv
unimodal density. The optimum power allocation policy far aunimodal noise. It is proved that the optimal strategy is
average power constrained jammer operating over an apitr@ither to communicate over one channel exclusively, or to
additive noise channel is studied in [15], where the aim &witch between two channels with a certain time sharing
to minimize the detection probability of an instantanepusfactor. In [21], the channel switching problem is studied fo
and fully adaptive receiver that employs the Neyman-Pearst/-ary communications over additive noise channels (with
criterion. It is proved that the optimum jamming performancarbitrary probability distributions) in the presence ofné

is achieved via time sharing between at most two differeaharing among multiple signal constellations over eacmcha

nel. It is shown that the optimal strategy that minimizes
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the average probability of error under an average power
constraint corresponds to one of the following approaches:
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over a single channel; time sharing between two different
signal constellations over a single channel; or switchiimgg
sharing) between two channels with deterministic sigmglin
over each channel [21]. With a different perspective, the



concept of channel switching is studied for cognitive radichannel switching) factors and corresponding power fevel
systems in the context of opportunistic spectrum accessravhin this study, the average Shannon capacity is considered as
a number of secondary users aim to access the availatble main metric since it gives the maximum achievable data
frequency bands in the spectrum [23]-[26]. In [26], the oyati  rates with low probability of decoding errors. In addition,
bandwidth allocation is studied for secondary users in thiee data rate targets indicated by the Shannon capacity are
presence of multiple available primary user bands and undahievable in practical communication systems throughaur
channel switching constraints, and it is shown that seagndaoding or low density parity check codes [33]. In this paper,
users switching among discrete channels can achieve higfeemulate the optimal channel switching problem for averag
capacity than those that switch among consecutive channe&hannon capacity maximization over Gaussian channelin th

In a different but related problem, the capacity of thgresence of average and peak power constraints, and derive
sum channels presented in [27, p.525]. The sum channel iBecessary and sufficient conditions for the proposed ctianne
defined as a channel whose input and output alphabets areswéching approach to achieve a higher average capacity tha
unions of those of the original channels; that is, theretexie optimal approach without channel switching. In additio
multiple available channels between the transmitter amd ti$ obtained that the optimal solution to the channel switghi
receiver but only one channel is used at a given time fgroblem results in channel switching between at most two
each possible symbol in the input alphabet. For exampledidferent channels, and an approach is proposed to obtain th
sum channel can consist of two binary memoryless channelgtimal channel switching strategy with low computational
and the first two elements of the alphabet, gdy1}, are complexity. Numerical examples are presented to illusttaé
transmitted over the first channel whereas the last two alsnetheoretical results. The main contributions of this studg be
of the alphabet, say2,3}, are transmitted over the secondsummarized as follows:
channel. For discrete memoryless channels with capacities For the first time, the optimal channel switching problem
C1,Cy,...,Ck, the capacity of the sum channel can be s investigatedfor average capacity maximizatiom
obtained adog, (Zfil 2Ci) [27]. The main difference of the the presence of multiple Gaussian channels and under
sum channel from the channel switching scenario considered average and peak power constraints.
in this study (and those in [7], [21]) is that the alphabet is « It is shown that the optimal channel switching strategy
divided among different channels and each channel is used to switches among at most two different channels, and
transmit a certain subset of the alphabet in the sum channel. operates at the average power limit.

In the literature, optimal resource allocation is commonly « Necessary and sufficient conditions are derived to spec-
employed to enhance the capacity of communication systems. ify when performing channel switching can or cannot
In [28], the optimal dynamic resource allocation for fading  provide improvements over the optimal approach without
broadcast channels is studied for code division, time divis channel switching.
and frequency division in the presence of perfect chandel si « Optimality conditions are obtained for the proposed
information at the transmitter and the receivers, and degod ~ channel switching strategy, and an approach with low
capacity regions are obtained. In [29], an adaptive resourc  computational complexity is presented for calculating the
allocation procedure is presented for multiuser orthogrea parameters of the optimal strategy.
quency division multiplexing (MU-OFDM) systems with the Some of the practical motivations for studying the chan-
consideration of proportional fairness constraints amas®s. nel switching problem for data rate maximization can be
Optimal and suboptimal algorithms are implemented based eimmarized as follows: Firstly, the next-generation veissl
sum capacity maximization while satisfying the minimum resommunication systems are required to support all IP sesvic
quired data rate constraint for each user. In [30], optir@itj including high-data-rate multimedia traffic, with bit ragegets
power and channel allocation strategies are investigated &s high as 1 Gbit/s for low mobility and 100 Mbit/s for high
cognitive radio systems. A near optimal algorithm is présén mobility [34]. Such high data rate requirements make the
for the total sum capacity maximization of power-limitectapacity (usually measured by using Shannon capacity enetri
secondary users in a centralized cognitive radio netwark. [35], [36]) maximization problems (subject to appropriate
[31], capacity maximizing antenna selection is studied f@perating constraints on power and communication reltgpil
a multiple-input multiple-output (MIMO) system and low-more relevant for next-generation wireless communication
complexity antenna subset selection algorithms are diriveystems, rather than focusing on power or bit error mini-
It is shown that near optimal capacity of a full-complexitynization (subject to appropriate operating constraintsae).
system is achieved by selecting the number of antennas at $zondly, wireless telecommunication technology is culye
receiver to be at least as large as the number of antennas aifithe cusp of a major transition from the traditional caligfu
transmitter. In [32], the optimal antenna selection in efated planned homogenous macro-cell deployment to highly hetero
channels is analyzed for both the transmitter and receivergeneous small cell network architectures. These hetesagen
order to reduce the number of radio frequency chains. Thext generation network architectures (alternativelylecal
proposed algorithm results in a near optimal capacity whighetNets) will consist of multiple tiers of irregularly depled
is achieved without antenna selection. network elements with diverse range of backhaul connection

Although the optimal channel switching problem is studiedharacteristics, signal processing capabilities andtreleag-
thoroughly in terms of average probability of error mininetic radio emission levels. In such a HetNet scenario, it is
mization (e.g., [7], [21], [22]) and in the context of opporexpected that more than one radio link such as femto-cell
tunistic spectrum access (e.g., [23]-[26]), no studieshiea tconnection, macro-cell connection and Wi-Fi connectioith(w
literature have considered the channel switching problem fdifferent operating frequency bands, background noiseldev
maximization of data rates by jointly optimizing time shmyi and etc.) will be present to use at each mobile user. From an



channel 1 at a given time is that the transmitter and the receiver are
assumed to have a single RF chain each due to complexity/cost

—{ chamet 1 }—
considerations. Then, the transmitter-receiver pair eafopm
_/. k time sharing among different channels (i.e., channel Wity
Transmitter } : Receiver by employing only one channel at a given time. In a similar
: R fashion, the proposed system also has a potential to improve
data rates in emerging open-accéssier heterogeneous wire-

less networks by allowing users to switch between multiple
Fig. 1. Block diagram of a communication system in which sraiiter and access points and available frequency bands in the spectrum
receiver can switch among channels. [39]1 [40]-

Let B; and N,/2 represent, respectively, the bandwidth
engineering point of view, this paper provides some fundameand the constant power spectral density level of the aaditiv
tal design insights regarding how to time share (randomiz@pussian noise corresponding to chanrfet i € {1,..., K}.
among available radio links to maximize rates of communfhen, the capacity of channeis given by
cation for highly heterogenous wireless environmentsalijin
channel switching can be beneficial for secondary users in Ci(P) = Bilog, (1 +
a cognitive radio system in which there can exist multiple
available frequency bands in the spectrum (please see WhereP denotes the average transmit power [41].
second paragraph of Section II). The aim of this study is to obtain the optimal channel

The remainder of the paper is organized as follows: Thgvitching strategy that maximizes the average capacithef t
problem formulation for optimal channel switching is precommunication system in Fig. 1 under average and peak power
sented in Section Il. Section Il investigates the solut@n constraints. In order to formulate such a problem, channel
the optimal channel switching problem and provides variogsvitching (time sharing) factors, denoted By, ..., \x, are
theoretical results about the characteristics of the adtingefined first, where,; is the fraction of time when channgls

D1

P
bits/ 1
B) its/sec Q)

channel switching strategy. In Section IV, numerical exBsp used, with\; > 0fori=1,..., K, andzfil \; = 1.1 Then,
are presented for illustrating the theoretical resultsictvis  the optimal channel switching problem for average capacity
followed by the concluding remarks in Section V. maximization is proposed as follows:
K
Il. PROBLEM FORMULATION max i Ci(P; 2
amax > NGB (2)

=1 =1
K
subject oY ~ A\ P; < Pay
=1
Pi S [O,Ppk]a Vi € {LvK}

Consider a communication system in which a transmitter
and a receiver are connected vid different channels as
illustrated in Fig. 1. The channels are modeled as additive
Gaussian noise channels with possibly different noiseldeve
and bandwidths. It is assumed that noise is independent

across different channels. The transmitter and the receive K _
can switch (time share) among thesé channels in order Z)\i =1, M2>0, Vie{l,..., K}
to enhance the capacity of the communication system. A i=1

relay at the transmitter controls the access to the Chanr\ﬁﬁereci(Pi) is as defined in (1) with?; denoting the average

in such a way that only one of the channels can be usggnsmit power allocated to channgl P, represents the

for information transmission at any given time. It is assimepeak power limit, andP,, is the average power limit for

that the transmitter and the receiver are synchronized a@ transmitter. In practical systems, the average powt i

the receiver knows which channel is being utilized [7]. Ifs related to the power consumption and/or the battery life

practical scenarios, this assumption can hold in the poesenf the transmitter whereas the peak power limit specifies the

of a communication protocol that notifies the receiver abogi{aximum power level that can be generated by the transmitter

the numbers of symbols and the corresponding channelsctgeuitry; i.e., it is mainly a hardware constraint. Sintete

be employed during data communications. This notificatiaskists a single RF unit at the transmitter, the peak power

information can be sent in the header of a communicatiofit is taken to be the same for each channel. It is assumed

packet [11], [21]. that P,, < P, holds. From (2), it is observed that the
In some communication systems, multiple channels witfesign of an optimal channel switching strategy involves th

various bandwidth and noise characteristics can be a¥ilafpint optimization of the channel switching factors and the

between a transmitter and a receiver as in Fig. 1. For inetaI’I@orresponding power levels under average and peak power

in a cognitive radio system, primary users are the main osvn&fonstraints for the purpose of average capacity maxinoiaati

of the spectrum, and secondary users can utilize the freguen

bands of the primary users when they are available [23], [24]

[25], [37], [38]. In such a case, the available bands in thelChannel switching can be implemented in practice by trattsmithe first

spectrum can be considered as the channels in Fig. 1, and, symbols over channel 1, the nex N, symbols over channel 2, ..., and

the aim of a secondary user becomes the maximization tiggf final Axc Vs symbols over channek(, where N is the total number of

s average capaciy by performing optimal channel swiighi 0% (o127 wch charne satits do ot cange) o

under power constraints that are related to hardware @Nr gecoding algorithms can be employed for each channel teewehi data

and/or battery life. The motivation for using only one chahnnrate close to the Shannon capacity of that channel.



I11. OPTIMAL CHANNEL SWITCHING where ), and P; are defined as

In general, it is challenging to find the optimal channel _ _ VP
switching strategy by directly solving the optimizatioropr A2 v and B2 % : (11)
lem in (2). For this reason, our aim is to obtain a simpler kes; keSi Tk
version of the problem in (2) and to calculate the optimabr ; ¢ {1,..., K}. The equalities in (7) and (8) are ob-
channel switching solution in a low-complexity manner. Teained from the definitions in (5) and (6), respectively, and
that end, an alternative optimization problem is obtaingfle inequality in (9) follows from Jensen's inequality due
first. Let {7, Py };X, denote the optimal channel switchingo the concavity of the capacity function [41], [42]. It is
strategy obtained as the solution of (2) and defiiie as poted from (11), based on (5) and (6), thats and P's
the corresponding maximum average capacity; thaCfs—= satisfy the constraints in (2); that i$ NP, < P,
Zfil Af C;(Pf). Then, the following proposition presentsp, € [0, Py, Vie {1,...,K} ZK N\ = 1 andi- >0
an alternative optimization problem, the solution of whicky; {1’ P k} Therefore théinezaaalityin (’7)_(10)Z rﬁm’ely
achieves the same maximum average capacity as (2) do€Snx _ <K ' /BN il , -’ ’
Proposition 1: The solution of the following optimizationC < 2.izy Xi Ci(Py), implies that the optimal solution of (3)

. . . .~ ‘cannot achieve a higher average capacity than that achieved
problem results in the same maximum value that is achlevg (2): that is,C* < C*. Hence, it is concluded that* — C*

by the problem in2): sinceC* > C* must also hold as mentioned at the beginning

K of the proof. |
max Z Vi Cnax(P;) 3)
{vi.PYL, Based on Proposition 1, the maximum average capécity
K achieved by the optimal channel switching problem in (2)
subject tOZ v; P, < Py can also be obtained by solving the optimization problem
i1 in (3). Let {v}, P*}X | denote the optimal solution of (3).
P €[0,Py], Vie{l,...,K} Proposition 1 states thaf\* | v} Cumax(P}) = C*. In ad-
K dition, the optimal channel switching strategy correspogd
Z”i =1, 15,>0,Vie{l,...,K} to the channel switching problem in (2) can be obtained,

based on the arguments in the proof of Proposition 1, as
follows: Once{v}, P} X | is calculated from (3), the optimal
channel switching strategy can be obtained{as, P;}X |,

Cinax(P) £ max{Cy(P),...,Cx(P)} . (4) WhereA? =5, o viandP = (3 cq v/ (Xyes, Vi)
. with S; being given by (6). It should be emphasized that
Proof: The proof consists of two steps. Lév, P/}, a low-complexity approach is developed in the remainder
represent the solution of (3) and defife* as the cor- of this section for solving (3); hence, it is useful to obtain
resIPondlng maximum average capacity; that 6 = the optimal channel switching strategy corresponding ® th
> i1 Y5 Cmax(P}). First, it can be observed from (2) andchannel switching problem in (2) based on the solution of (3)
(3) thatC* > C* due to the definition in (4), wher€™* is
the maximum average capacity obtained from (2). Next, defineThe significance of Proposition 1 also lies in the fact that
function g(i) and setS,,, as follows? the alternative optimization problem in (3), which achigeve
A . . the same maximum average capacity as the original chan-
g(i) = largl mix G(Fy), vie{l,...,K} ®) el switching problem in (2), facilitates detailed thearak
LK} investigations of the optimal channel switching strategy,
and discussed in the remainder of this section.

A . .
Sm={ie{l,.... K} [g(i) =m}, ¥m e {l,... . K} 6 Towards the purpose of characterizing the optimal channel
(6) switching strategy, the following lemma is presented first,

=1
where C,.x(P) is defined as

Then, the following relations can be obtained ot : which states that the optimal solutions of (2) and (3) operat
X K at the average power limit.

o = Z’/i* Cmax(P}') = Z’/i* Cot (F7) @ Lemma 1: Let {A\;, P/}, and {v}, P*}X, denote the
=1 =1

solutions of the optimization problems (&) and (3), respec-
tively. Then,Zfil APF = P,y and Y5 v Pr = P,, hold.

i=1"1

i=1 keS; Proof: The proof is provided for the optimization problem
*> <Zkes- V}:p}:) in (3) only since the one for (2) can easily be obtained based
vi | Ci| =————— | on a similar approach (cf. Proposition 1 in [22]). Suppos# th
keS; {v;, P} | is an optimal solution of the problem in (3) such
9)  that Zfil v Py < P,y. SinceP,, < Py, there exist at least

K B one P; that is strictly smaller tharP,.. Let P, be one of
=Y M Ci(P) (10) ' them. Then, consider an alternative solution, P, } X, with
i=1 V.=, Yie{l,... K}, P, =P, Yie{l... K}\{i,

’ . K
2|n the case of multiple maximizers in (5), any maximizing eéxccan be and P, = H_lm{Ppkv Pl + ,(Pay — i {/ipi)/’/l}' Note that
chosen forg(i). the alternative solutionjv;, P, }X |, achieves a larger average



capacity than{v;, P} X, due to the following relation: strategy corresponding to (2) based on Proposition 1. Due to
the assumption in the proposition, the first-order denratf

K K
; = ' ! ! / Chax(P) in (4) exists in an interval aroun#,, and its value
i Cmax(P;) = Crax (P, Cmax (P 12 max \ £ v

;Vl (7 ;Vl )+ (F)(12) P, is calculated from (1) as

i#l , .

K Cmax(PaV) = % (16)
> Zyicmax(Pi) + 14 Cmax(Pl) (13) . : ' ,

— wherei* = arg max;c(i,... k) Ci(Pav). From (16), the con-

il dition in (15) can be expressed 8%,.x(P) < Chax(Pav) +

K Cr oi(Pay) (P — Py for all P € [0, P,y]. Then, for any chan-
= Zuicmax(Pi) (14) nel switching strategy denoted 4s;, P;}X ,, the following

i=1 inequalities can be obtained:

where the inequality follows from the facts th@t,..(P) isa K , K
monotone increasing function d@? (please see (1) and (3)) Z Vi Cinax (Pi) < Ciax(Pay) + Cosc(Pav) (Z v P; — Pay
and thatPl’ > P,. Therefore{v;, P;} £, cannot be an optimal i=1 i=1
solution of (3), which leads to a contradiction. Hence, any (17)
feasible point of the problem in (3) which utilizes an averag < Chax(Pay) (18)
power strictly smaller tharP,, cannot be optimal; that is, theWhere Poc [0,Py] andu > 0 for i € {1,...,K},

optimal solution must operate at the average power liniik. P P _
Yoiavi = 1, and > " v P < P,. It is noted that the

. o . . inequality in (18) is obtained from the facts thaf,, (P.,)
éirggg;nal Channel Switching versus Optimal Single Chanq?ll (16) is positive and thaEszl VP, — Py iS noN-positive
due to the average power constraint. From (17) and (18), it
Next, possible improvements that can be achieved via tkeconcluded that when the condition in the proposition bpld
optimal channel switching strategy over to@timal single channel switching can never result in a higher average igpac
channelstrategy are investigated. The optimal single channglan the optimal single channel strategy, which achieves a
strategy corresponds to the case of no channel switchiggpacity ofCyax (Pay ). On the other hand, fars, = 1, P5 =
and the use of the best channel all the time at the averggg, andv; = P =0 forall i € {1,...,K}\ {i*}, where
power limit. For that strategy, the achieved maximum cagaci;* — ar¢ max;. .k} Ci(Pay), the Zfil ViCrnax(P;) term
can be expressed &yax(Pav), Where Cra is as defined in (17) becomes equal t@ax(Pa). Since this possible
in (4), and the best ch4ann¢| is the one with the_ indexy|ution SatiSﬁeiiK:l vt P¥ = Py, (cf. Lemma 1) and all the
arg maxjeqy gy Ci(Fay).” It is noted that when a single cqnsiraints of the optimization problem in (3), it is corud
channel is used (i.e., no channel switching), it is Opt'm%atZ.K V¥ Cona(P¥) = Cinax (Pay) under the condition in
to utilize all the available powerP,, since Cnax(P) is @ yna prc;gtlnsiltiorfldx ! maxAs av
monotone increasing and continuous function /f as can N ) N
be verified from (1) and (4). In the following proposition, a 1he necessity part of the proof is contrapositive. Thersfor
necessary and sufficient condition is presented for thermpti the aim is to prove that if
channel switching strategy to have the same performance as (P-P )C/ (Pav) < Cunax(P) — Conae(Pav) (19)
the optimal single channel strategy. AV max AT Ay e sy
Proposition 2: Suppose thaC,,..(P) in (4) is first-order for some P € [0, Py, then the optimal channel switching
continuously differentiable in an interval around,,. Then, strategy outperforms the optimal single channel strategy i
the optimal channel switching and the optimal single channterms of the maximum average capacity. First, assume that
strategies achieve the same maximum average capacity if dhere existsP < [0, P,,] that satisfies the condition in (19)
only if and consider the straight line that passes through the gpoint
(P, Crmax(P)) and (Pay, Ciax(Pay)). Let ¢ denote the slope

P — P, M > Chax(P) — Cinax (Pay 15) of this line. From (19), the following relation is observed:
N« By« + P,
for all P € [0, Pyy], wherei* = arg max;eqi,... x} Ci(Pay) - e Cmax (Pav) — (’jmax(P) < Cyoi(Pay) - (20)

Proof: The proof consists of the sufficiency and the ne- Py —
cessity parts. The sufficiency of the condition in (15) can ®ye to the assumption in the proposition, the first-ordeiveer
proved by employing a similar approach to that in the proof @le of C.,..(P) in (4) is continuous in an interval around
Proposition 3 in [15]. Under the condition in the propositio p, . Therefore(,..(P) must correspond to the same channel
the aim is to prove that the optimal channel switching and ﬂaﬁ/er an interval ar()um’PaV,5 which |mp||e5 the Concavity of
optimal single channel strategies achieve the same maximwpnax(p) in that interval as the capacity curves are concave.
average capacity; that i$./ | v Ciuax (P?) = Cuax(Pay), By definition of the concavity aroun®,,, there exists a point
where{v}, Pr}K | denotes the solution of (3), which achieveg+ £ P, + € for an infinitesimally small positive number
the same average capacity as the optimal channel switching

SNote that the maximum of a set of monotone increasing funstis also
monotone increasing. 51f there multiple channels with the same bandwidths and endésels,
4In the case of multiple best channels, any of them can be ohosachieve they can be regarded as a single channel (i.e., only one of 8i®uld be
Cmax (Pav)- considered) since there is no advantage of switching betwaeh channels.



such that lie completely above thel,..(P) curve [15]. If this con-
Conax(Pay) = Conax (P) , dition is satisfied, then channel switching, which performs

P pr < Crax(Pav) - (21) convex combination of different’,..(P) values (as can be

av a noted from (3)), cannot achieve an average capacity above

Then, choose a such thatA P + (1 — )P}, = P,, and Chax(Pay), Which is already achieved by the optimal single
consider the following relations: channel strategy. Otherwise, a higher average capacity tha
< - < Chax(Pav) is obtained via optimal channel switching.
)‘ij’aX(P) 4: (- /\)Cj”a"(Pat) It is also noted from (15) and (16) that the condition in
> ACax(P) + (1= X) ((P;; — Py )+ Cmax(PaV)) (22) Proposition 2 corresponds to the subgradient inequalify,at

p <

Pt _ P, - Therefore, the proposition can also be stated as “the optima
= ﬁ Crnax(P) channel switching and the optimal single channel strasegie
av . achieve the same maximum average capacity if and only if
n Pi/ — Ii’ ((P;f, — Po)g+ Conan (P, )) (23) there ex_ists a sub-gradient &%, . I.n addition, it should be
P, — P emphasized that although concavity@f,.«(P) aroundP =
= Crax(Pay) (24) P.. is a necessary condition for the scenario in Proposition 2

to hold, it is not a sufficient condition in general.
. e, . g Based on Proposition 2, it can be determined whether the
In (23) follows fro_m_ t_he def”_"“on o\, and the f'”@' equah_ty channel switching strategy can improve the average capacit
is due 10 the definition of in (20). Overall, the miquallty of the system compared to the optimal single channel syateg
in (22)-(24), namely,ACrax(P) + (1 — N)Cmax(Pl) > For instance, ifCrmax(P) in (4) is first-order continuously
Crmax(Pav), implies that the channel switching strategy (Spegjitterentiable in an interval aroung,, and the condition in
ified by channel switching factor and (1 — A) and power (15) s satisfied for all> € [0, P, in a given system, then it
levels P and P, achieves a higher average capacity than the concluded that the optimal single channel strategy has th
optimal single channel strate§ySince the optimal channel same performance as the optimal channel switching strategy
switching strategy always achieves an average capacity tfifyt is, there is no need for channel switching. In that cthee,
is equal to or larger than the average capacity of any oth@gximum average channel capacity is given Gyax(Pay ).
channel switching strategy, it is concluded that the opltimg), the other hand, if there exist sonfec [0, P, ] for which
channel switching strategy outperforms the optimal singife condition in (15) is not satisfied, then the optimal clenn
channel strategy. L ~ switching strategy is guaranteed to achieve a higher agerag
Next, assume that there exigise (P,y, Py« that satisfies capacity thanCax (Pay ).
the condition in (19). Similar to the previous part of the@to  Remark 1: As a special case, it can be concluded from
let ¢ denote the slope of the straight line that passes throughyposition 2 that if the bandwidths of the channels are the
the points (P, Cnax(P)) and (Pay, Cmax(Pav)). Then, the same the optimal strategy is to transmit over the leastynois

where the inequality in (22) is obtained from (21), the edyal

following expression is obtained from (19): (best) channel exclusively at the average power limit. kheor
Cinax (Pav) — Conax (P , to make this conclusion, first consid€rt,.x(P) in (4), which
¢ = ( D ) 5 &) > Chax(Pav) - (25) pecomes equal to the capacity of the least noisy channel,

o ) ) . say channeb, when the channels have the same bandwidth
Similarly, due to the concavity arourfd,,, there exists a point (cf. (1)): that is, Cinax(P) 2 max{C1(P),...,Cx(P)} =

P, & Pay — ¢ for an infinitesimally smalk > 0 such that ¢, (p). Then, from(16), the condition in(15) of Proposition 2
’ Conax(Pav) — Conax (P) 0 is expressed aP — Py, )C, (Pay) > Cy(P) — Cy(Pay), which
>

. p >~ Cmax(Pav). (26) always holds for allP € [0, P,i] due to the concavity of
oo o _ _ the capacity function{,(P) (see(1)). Hence, Proposition 2
By choosing a\ € (0,1) such that\ P + (1 — A\)P;, = Pay  applies in this scenario; that is, the optimal single channe
and considering the expressions in (25) and (26), the sagigategy (i.e., the use of the best channel all the time at the
approach employed in the previous part of the proof (segerage power limit) becomes the optimal solution.
(22)-(24)) can be applied to show that the optimal channel|n proposition 2, it is assumed th@,..(P) in (4) is first-
switching strategy outperforms the optimal single channglder continuously differentiable in an interval arouf,.
strategy. Thus, it is concluded that when the condition in order to cover all possible scenarios and to specify the
Proposition 2 is not satisfied, the optimal single channgptimal strategy in all cases, the following propositiorsents
strategy achieves a smaller average capacity than the alptiq result for the case of,.x(P) that has a discontinuous

channel switching strategy, which implies that the conditi first-order derivative atP = P,,, which states that the
in the proposition is necessary to achieve the same maximg@timal channel switching always outperforms the optimal
average capacity for both strategies. B single channel strategy in this scenario.

A more intuitive description of Proposition 2 can be pro- proposition 3: If the first-order derivative 0l (P) in
vided as follows: Based on (16), the condition in (15) if4) is discontinuous at? = P,,, then the optimal channel
equivalent to having the tangent line @n.x(P) at P = Pay  switching strategy outperforms the optimal single channel

strategy.

SNote that the channel switching strategy denoted by chaswithing Proof: The aim is to prove that if the condition in PI’OpOSi-

factors X and (1 — X) and power levels? and Py}, must involve switching . . e e :
between two different channels since the inequaitymax(P) + (1 — tion 3 is satisfied, then the channel switching strategyeaefs

X)Cimax (Paly) > Cimax (Pav) cannot be satisfied for a single channel due 1§ Nigher average capacity than the optimal single channel
the concavity of the capacity curves. strategy. To that aim, defin® and P, as P,, + ¢ and



P,, — ¢, respectively, where is an infinitesimally small series expansion as follows:

positive number. The proof consists of two parts. ,
0.5 (Ci(Pav) + € (Pu)(Pry = Pay) + Ril(Pr))

First, it is proved that if the first-order derivat/iv@,;lax(P), , N N
is discontinuous aP = P,,, which implies thatC, . (P..) # +0.5 (Oj(Pav) + C; (Pav)(Pry — Pay) + Rj(Pav)) (32)
Crron(P), then C. (Pr) < C..(Pi) holds. Due to I . S
the discontinuous first-order derivative assumpt@n, (P, ) wr)’ere Rj () 2'3 "’]}S in-(30) and_Ri(PaV) Si N
and Cpax(PF) must correspond to different channels sincgi (“)(Pal _CPaV) /2 _orc aw € [PaV’l.DaV]'d .'ncﬁ
the first-order derivative would be continuous otherwisg!(Fav) = Cj(Pav) = Cmax(Pav) @s mentioned in the

(please see (1)). Therefore, let chanrielnd channelj Previous paragraph, (32) becomes equal to

denote the channels corresponding to the maximum capac- C P 05¢(C (P.)—C' (P
ities for power levelsP,, and P, respectively; that is, max(Fav) +0- 6( 5 (Pav) = G ( av))
Cmax(Pry) = Ci(Py) and Crax(Pi) = C;(P%) for +0.25 €2 (Ci//(w)—l—Cj“(U)). (33)

i # j wherei = argmax;y gy Ci(P,) andj =
arg maxjcy gy Ci(Pi). Also, Ci(Pay) = Cj(P.,) and Based on the result obtained in the first part of the proof,
Ci(P) < C;(P) since Cax(-) is a continuous monotone namely,C; (Pay) < C; (Pay), (33) implies that there exists an
increasing function. Based on Taylor series expansions igfinitesimally smalle > 0 such that the channel switching
C;(-) and C;(-) around P, C;(Pf) and C;(P;;) can be strategy achieves a larger average capacity tian.(Pav),
expressed as follows: which is the capacity achieved by the optimal single channel
, strategy. Hence, based on the first and the second parts of
Ci(Py) = Ci(Pay) + C; (Pav)(Pi, — Pav) + Ri(Py) (27) the proof, it is concluded that the optimal channel switghin
C;(PE) = Ci(Pay) + Cj/ (Pu) (P — Pay) + R;(P) (28) Strategy always provides a larger average capacity than the
optimal single channel strategy in the case of a discontiauo
where R;(P;,) and R;(P,},) are the second-order remaindefirst-order derivative 0l ax (P) at P = P,,. ]
terms forC;(P;)) andC;(P)), respectively. Based on the re- - aAg stated in the proof of Proposition 3, the discontinuities

mainder theorem, there existe [Py, Pl andv € [Pay, PX] in the first-order derivative of’,..(P) are observed when

such that capacity curves intersect. The capacity curves of two célsnn
N Ci“ (k) (P — Pay)? say channek and channel, can intersect [28] if one of them
Ri(Py) = 5 (29) has a smaller bandwidth and a lower noise level than the other
o (0)(P — Pu)? one; i.e.,B < B_l andN, < N;. In such a case, chanrieh_as
R;(PL) =~ av w (30) a higher capacity than channgfor small power levels (i.e.,
2 in the power-limited regime) since the capacity expression

where C;(-) and C,'(-) are the second-order derivativedn (1) becomes approximately equal {éog, e)P/N, and
of Ci(-) and C;(-),” respectively [43]. The second-order(logz e)P/N; for channelk and channel, respgctlvely, when
derivatives, which can be calculated from (1) @ (P) = I is close to zero. On the other hand, for high power levels
—B;logye/(N;B; + P)? andC’’ (P) = —Bjlog, ¢/(N; B, + (i.e., in the bandwidth-limited regime), chanriehchieves a

K3 3 3 7 - . . . .
P)?, are finite negative numbers for all possible power Ievelg!gher capacity than channgldue to the following reason:
Since C;(P}) > Ci(P}) and C;(P.) = Cj(Pa) as Bl 14 P
discussed previously, the following inequality can be otsd lim 17082 ( + NZBZ) — b > 1. (34)
based on (27)-(30): P=o0 B log, (1 T L) B,

Ny By,

C'/(Pav) _c’ (Pa) + (G () ~C; (w))e >0 (31) Therefore, the capacity curves can intersect in such siosnar
I ! 2 For example, in cognitive radio systems, there can exist mul
wheree = P — P,, as defined above. As the secondtiple available frequency bands in the spectrum with vagiou
order derivatives are finite and the relation in (31) shoufegndwidths and noise levels. Hence, such scenarios can be
hold for any infinitesimally smalk value, it is concluded that encountered in these systems.
C/(Pay) < C;(Pay). In other words, there is an increase in Remark 2: The main reason for the improvements that
the first-order derivative o€, (P) aroundP = P,,, which can be realized via opt_lmal qhannel switching is related
implies thatC, . (P) < C,...(P) to the fact that the optimal single channel approach can
achieve the capacity values specified®y,x(P) in (4) only
In the second part, it is proved that when there is an increagkereas the upper boundary of the convex hullgf,«(P)
in the first-order derivative of,.x(P) aroundP = P,,, the can also be achieved via optimal channel switching (8}).
optimal channel switching strategy outperforms the optim@herefore, the improvements that can be obtained via optima
single channel strategy. To that aim, consider a chanmélannel switching over the optimal single channel approach
switching strategy (not necessarily an optimal one) that pere related to the convexity/concavity propertieS(0f.«(P).
forms channel switching between chana@nd channej by Even though each capacity function is concave, their maxi-
employing power levels of?; and PJ,, respectively, with mum is not necessarily concave. Therefore, opportunites c
equal channel switching factors; i.6.5 each, wheré, j, P, appear for average power values corresponding to convex
and P} are as defined in the previous paragraph. Then, thagions of C,.<(P) as illustrated in Section IV. The proof
channel switching strategy achieves an average capacityobfProposition 3 contains the theoretical explanation abou
0.5 C;(Py,)+0.5C;(Py), which can be expressed via Taylotthis situation by showing that the first-order derivative of

v



Cmax(P) increases at the intersection point of two capacity Based on the previous result, the problem in (3) can be
curves, which implies that if two capacity functions ineats expressed as follows:
at a single point, there always exists a convex region around
that intersection due to the mathematical expression fer th Af%i’éz A Cinax (P1) + (1 = X)Crnax(£2) (37)
capacity. Hence, improvements may be realized via channel subject toA Py + (1 — \)P, = P, (38)
switching around those intersection points. *

g P P €0, Py, Py €0,Py] (39)

A e [0,1] (40)

) ) o where the average power constraint is imposed with equality
B. Solution of Optimal Channel Switching Problem based on Lemma 1. Then, by substituting the constraints in
) o ) (38)-(40) into the objective function and specifying tharsd
When the optimal channel switching strategy is guaranteg@ace, the optimization problem in (35) can be obtainel.
to achieve a higher average capacity than the optimal singlepnce)*, Py, andP; are calculated as in Proposition 4, the
channel strategy (which can be deduced from Prop05|t|0nogtima| strategy can be specified as follows:
or Proposition 3), _the optimization problem in (2) or 3) , case-1 (Channel Switching)if \* € (0,1), the optimal
needs to be solved in order to calculate the maximum average strategy is to switch between channehd channef with
capacity of the system, which involves a search ove&ka channel switching (time sharing) factoks and1 — \*

dimensiona_l space. However, the fo_IIowing pro_pos_itiortesia and power level and Py, respectively, where and j
that the optimal strategy can be obtained by switching betwe are given by

no more than two different channels, and the resulting cgdtim

strategy can be found via a search over a two-dimensional i = arg max Ci(Py) (41)
space only. . le{1,...K}
Proposition 4: The optimal solution of(2) results in J :lfér{gl m‘;‘(X} Ci(P3) - (42)

channel switching between at most two different channels, _ _
and the achieved maximum average capacity is calculated ag Case-2 (Single Channel)lf A* = 0, the optimal strategy

N Crax (Py) + (1 = X*)Ciax (Py), Wwhere P and Py are the is to perform communications over channehll the time
solutions of the following problem: with a power level ofP,,, wherem is defined as
Py — P P — Py m = arg max Cj(Pay) . (43)
Pl@?;i)fppk] Pl — P2 Cmax(Pl) + Pl — P2 Cmax(PQ) le{l,...,.K}
P2€[0, Pav] Note that, in the case of* € (0,1), i = j is not possible
(35) since time sharing of different power levels over the same
and \* is given by channel always reduces the capacity due to the convexity of
P — P} the capacity function in (1).

2= . (36) A flowchart is provided in Fig. 2 to explain the results
Py =Py obtained in this section. In particular, the optimal stggtean

Proof: As discussed in Proposition 1 and its proof, the o2& SPecified as shown in the flowchart based on the proposi-
timization problems in (2) and (3) achieve the same maximuig"S- Depending on the system parameters, either theesingl
average capacity and the optimal channel switching styateg'@nnel strategy or the channel switching strategy can @e th
corresponding to (2) can be obtained from the solution gPtimal approach. From Proposition 2 and Proposition 3, the
(3). Therefore, the optimization problem in (3) is consetgr OPtimal strategy can be classified single channe{case 2)
where the convex combinations 6f,..(P;)'s and P;’s are the or channel switchingcase 1) without solving the optimization
two main functions. The set of all possible pairs@f...(P) ProPlem in (35): If the first-order derivative @f'uax(P) is
and P is defined as séf; that is,i{ = {(Cuax(P), P), VP € continuous af,y (i.e., the condition in Proposition 3 does not
[0, P.]}. The convex hull o/, denoted byy, is guaranteed hold) and the condition in Proposition 2 is satisfied, them th
to contain the optimal solution of (3) sinae consists of all °Ptimal single channel strategy is optimal (i.e., thereasiaed
the convex combinations of the elementsibofby definition. for _channel §W|tch|ng), as shown in Fig. 2. In that case, the
In addition, it can be shown, similarly to [2], that the opsim ©Ptimal solution of (2) can directly be expressedas = 1,
solution of (3) should be on the boundarygince no interior Iil = Pay, and; =0 forall j € {1,... K} {i"}, where
points can be the maximizer of (3). Then, Carathéodonys = 38 MaXie(1,. .k} Ci(Pav) (cf. (43)), and the maximum
theorem [44], [45] is invoked, which states that any point o pacity become@m?x(P_av). If the <_:9nd|t|o.n n Propqsmon 3
the boundary of the convex hull of set/ can be represented oI<_js or the con_d|t|on n Proposition 2 is not satisfied, the

optimal strategy is to switch between two different chaanel

by a convex combination of at mo#t points in set/, where o9 g s :
D is the dimension of space in whiéh and ) reside. Hence, and the optimization problem in Proposition 4 (i.e., (3%hc
be solved in that case, as illustrated in Fig. 2. (As disalisse

in this scenario (wher&f C V C R?), Carathéodory’s theorem h i h luti £ (3 Is0 be obtained
implies that an optimal solution of (3) can be expressed as the next section, the solution o (35) can also be obtaine
ased on Proposition 5.)

convex combination of (i.e., time sharing between) at most t . . . .
( 9 ) It is noted that the computational complexity of the opti-

different power levels; that is;; # 0 for one or two indicesin .~ ™ .
3). Therzfore, the optimal solﬁtion of the channel swithi mization problem in (35) depends on the number of channels,

problem in (2) corresponds to channel switching between at, the case of multiple maximizers in (41) or (42), any of thean be
most two different channels. chosen for the optimal strategy.



Pay—A* Py

(i) Pf = Py and Py = =753

P3)/(Pox — P5).
(i) Py = PyxandP; =
PaV)/(Ppk_Pf)-
Proof: The results in the proposition can be proved via
Karush-Kuhn-Tucker (KKT) conditions [42] based on the
optimal channel switching problem formulated in (2). Tottha
aim, the Lagrangian [42] for the optimization problem in (2)
is obtained first:

, where \* = (P, —

Start

Input:

Channel bandwidthsB; , i € {1,..., K}
Noise levels,N; , i € {1,..., K}
Average power limit,P,,

Peak power limit,Pp

Pov—(1=X")Ppx

, Wherex* = (Ppx—

CalculateCiyax(-) in (4)

K K
L(A1P1M777ﬁ797a) = _Z)\zcz(Pz)+M (Z)\zpz _Pav>
i=1 =1

K K K K
_Z'YiPi+ZBi(Pi_Ppk)+9 <Z)\l — 1) _Zai/\i
=1 1=1 =1 =1
(44)

whereA = [A\;---Ag| and P = [P, --- Pg] are the op-
timization variables in (2), and:, v, 3, 6, and o are the
KKT multipliers, with v = [y ---vk], 8 = [f1--- Bk], and
a = [a1 -+ ak]. Then, the optimal solution of the problem
in (2), denoted by{\:, P*}X, (equivalently, by \*, P*),

satisfies the following KKT conditions:

. Stationarity: 2P .80, = 0 and

aL(A*’P;#”’ﬂ’e"") =0forie{l,...,K}, whereL is
as defined in (44).
« Complementary slackness:u (Zfil AF P — Pav) =
/ 0, Zfil vi B 0, Zfil Bi (P — Po) = 0, and
SR @A =0.
« Primal and dual feasibility: ;4 >0, v; >0, 5; > 0, and
a; >0forie{l,...,K}.
From the stationarity conditions; the following equaktiare
obtained based on (44):

Ci(Pi*):/LPi*-i-@—Oéi, ViE{l,...7K}7

. Bi — i
(P)=p+ ST
K, only through Crmax in (4), and the dimension of the Now consider the scenario in the proposition, where channel

search space is always two irrespective of the number Qfiiching between channél and channel is optimal; that
channels. Therefore, Proposition 4 can provide a significgg XA O N A0, PF=Pr £0,PF = P # 0, and

simplification over the original formulation in (2), whichpi* =\ =0forie{l,... . K}\{k1}EThen, =~ =0

requires a search over2d dimensional space. anday, = o; = 0 can be obtained from the second and fourth

complementary slackness conditions. For the optimal power

levels, three possible scenarios exist:

o First, it is assumed thal < P,x and Py < P,k hold.
Then,Br = 0 and 3, = 0 are satisfied due to the third
complementary slackness condition. Combining this re-

Does the condition in Proposition 3 hold?

Does the condition in Proposition 2 hold?

—>| Single Channel Strate%y |Channe| Switching Strate%;—

Solve the optimization
problem in Proposition 4
(cf. Section IlI-C)

Solve the optimization
problem in (43)

L

Employ the strateg]y

Fig. 2. A flowchart indicating the outline of the proposedim@l channel
switching and optimal single channel approaches.

(45)
c,

; Vie{l,...,K}.  (46)

C. Alternative Solution for Optimal Channel Switching

When the optimal strategy involves channel switching,
which can be deduced from Proposition 2 and Proposition 3,

one way to obtain the solution is to solve the optimization
problem in (35). An alternative approach can be developed
based on the following proposition:

Proposition 5: Consider a scenario in which channel
switching between channél and channell is optimal. Let .
P and P; denote the optimal transmit powers allocated
to channelk and channell, respectively. Then, the optimal
solution satisfies at least one of the following conditions:

(i) N + Z—lz = N; + %{, where B, and N /2 (B; and
N, /2) are, respectively,

sult withy, =+, = 0, A;, # 0, and\} # 0, the condition

in (46) can be expressed &, (P;) = C/(P}) = p,
which leads to conditiorii) in the proposition based on
the first-order derivative expression in (16).

Second, it is assumed th&t" = Py and Py < Ppy.
Due to Lemma 1, the average power constraint must
be satisfied with equality, which leads & = (P., —
A*Pox)/(1 = X*), whereX* = (P, — Py)/(Pox — P5).
Hence, conditior{i) in the proposition is obtained. Note

the bandwidth and the COnStantSNote that the on-off scheme, in which one power level is edoaero,

power spectral density level of the additive Gaussiagnnot be optimal due to the concavity of the capacity cuses the fact

noise corresponding to channkl(channell).

thatC;(0) = 0, Vi € {1,..., K}.
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thgt in this c/ase;@;C > 0 and 8; = 0, which implies that be calculated as follows:
C,(Py) > C, (P}) based on (46).

« For the third scenario, the third condition in the proposi- Cor = Jel™ 1y Cav(i:9) 1)
tion can similarly be obtained under the assumption that i£]

P < By and P; = P Overall, the solution of the optimal channel switching pesh

in (2) achieves the following maximum average capacity:

Finally, it is noted that’; = P; = P, is not possible since it C2% = max {Cay, Cav } (52)
violates the average power constrainids > P.,. Therefore, ~ _ ) .

the optimal solution of the channel switching strategy ety Where C.y and C,, are as in (49) and (51), respectively.
two channels satisfies at least one of the three conditionsAf$0. the optimal strategy can be obtained as follows: If

Proposition 5. B Ca = Cmax(Pav) > Cay, then the optimal solution corre-
sponds to the single channel strategy, which is to transmit
Proposition 5 presents necessary conditions that need toover channelm all the time with power levelP,,, where
satisfied by the optimal channel switching strategy. Based ov = arg max;cqq, gy Ci(Pay). (In fact, based on Proposi-
this proposition, the optimal solution of the problem in (2}ion 2, the cases in which the single channel strategy israpti
can also be calculated as described in the following. For then be determined beforehand, and the efforts in solving (48
scenario in which one of the power levels is setRq., the (52) can be avoided.) I€,, > Ca and Cay > Cryax(Pav),

maximum capacity achieved can be calculated from the secdhd optimal strategy is to switch over chankéland channel

and third conditions in Proposition 5 as follows: J* with power levels P, and P and channel switching
- P — P, Py — Pa factors(Pay — P ) /(FPox — P ) and (FPpk — Pav) / (Pox — PJ),
Cav(i,7) = max ————= Ci(Pok) + C;(P;) respectively, where’:. denotes the maximizer of the prob-

P;€[0,Pay] Pox — P Pox — P;

(47) lem in (48), k* = arg max;cr, k) Ci(Bp ), and j* =
arg max;e .

o T argmaxgeqy, K3, jk- Cav (4), With Cy () being as defined
wherei,j € {1,...,K} andi # j. Since one power level iy (48). Finally, if Co, > Cay, then the optimal strategy is
is fixed to P, it is sufficient to consider the best channely switch between channel* and channeli* with power
only for that power level in calculating the maximum averaggyels p* and P = B;. (N;« — Ni) + By Pj- /B;- and
capacity. Hence, a new function, which is a function of a&ingchannefl switching factor&P- ’p )/(P;- —P-*)Jand'EP. )
channel index only, is defined in that respect as follows: p_)/(p. _ p,.) respectively, where?” is the maximizer
. 7 .1 ’ 7* X X

= A P —F; Pox — Pay of the problem in (50) and* and j* denote the maximizers
£ ——— Cnax(P, ——Cj(F;
PjG[O,)IgaV] Ppk — Pj ( pk) + Ppk — Pj j( J) of (51)

(48)

where j € {1,....,K} \ {k*} with k* =
arg maxie{lmK} Oi(Ppk) and Cmax(Ppk) = Ck* (Ppk). . .
Then, in the case of channel switching between two chann?@n order to compare the approach in the previous paragraph

where one power level is equal ), the maximum achieved _called the seconc_zl approach) to the one provided in Proposi-
capacity can be calculated as follows: tion 4 (called the first approach) in terms of the computation

~ ~ complexity in obtaining the optimal switching solution,eth
Cav = max  Ca(y) (49) optimization problems in (35) and in (48)-(52) are consider
Je{;};’;m In the first approach, the problem in (35) requires a two-
~ ! dimensional search ové0, P.,] x (Pay, Ppk]. On the other
It should be noted thaf',, also includes the maximum capachand, the main operations in the second approach are related
ity that can be achieved by the optimal single channel gjyateto the optimization problem in (48), which requires a one-
sinceClyy () in (48) reduces ta@’;(P,y,) for P; = P,, (which dimensional search ovér, P,,], and the optimization problem
is added to the search space for this purpose). For the soenar (50), which requires a one-dimensional search over aetubs
in which the optimal power levels are belo,y, the first of [0, P,]. It is observed from (49) and (51) that the problem
condition in Proposition 5, namelW;+P; /B; = N;+P;/B;, in (48) is solved forK — 1 different channel indices and
can be employed to obtain the following formulation for théhe one in (50) is solved foi (K — 1) different channel

maximum achieved capacity: pairs. Therefore, overall, the second approach invalvés- 1
~ P — P P_P one-dimensional searches. In fact, insteadiof a smaller
Cav(i,j) £  max =L Ci(P,)+——-=-C;(P;) number can be considered in many scenarios when some

pye(pb,pv] Py — P P, —P;

channels outperform other channels in the sense that they

(50) have larger or equal capacities for all possible power \&@alue
b A B; AT . w o From (1), it is observed that, for channieind channej, if

where Py = H?X {0, (PaVB_i + B (Ni = Ny))}, P> = N; < N; and B; > B;, then channef outperforms channel
min { Pay , (Bpr 5t +Bj (N;—Nj)) }, andP; = Bi(N;—N;)+  j for all power values. Therefore, channjetan be excluded
B;P;/B; . Note that the search space By (namely,P/> and from the set of channels for the optimal channel switching
P;J‘.b) is obtained by the joint consideration &f < (0, P,,] solution. Hence, based on this observation, it can be stated
and P; = B;j(N; — N;) + B;P;j/B; € (Pav,Ppx]. Then, that the second approach involvés® — 1 one-dimensional
the maximum capacity that can be achieved by switchirsgarches, wher& is the number of elements in s€t which
between two channels with power levels lower thign can is defined asC = {i € {1,...,K}|(N; < N; or B; >
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Fig. 3. Capacity of each channel versus power, where= 1 MHz, By =  Fig. 4. Average capacity versus average power limit for theénwal channel
5MHz, B3 = 10MHz, N1 = 10712 W/Hz, N> = 10~ W/Hz, andN3 =  switching and the optimal single channel strategies forstt@nario in Fig. 3,
10~ W/Hz. where P, = 0.1 mW. The shaded area indicates the achievable rates via

channel switching that are higher than those achieved byitienal single
channel strategy.
Bj) Vi € {1,...,K}\ {i}}.° Therefore, the computational
complexity comparison between the first approach and the ‘ foP W. Th .
second approach depends on the number of channels and ffRfipe performance faf,, < 0.0196 mW. These regions can

noise levels and bandwidths. In particular, the secondt)(fir§IISO be obtained by checking the necessary and sufficient

: dition in Proposition 2 (see (15)), which is satisfied for
hb d ble f I (I I . o
fl;lgproac ecome more desirable for small (large) va uesaI P €10,0.1] mW for P,, < 0.0196 mW, and is not satisfied

for someP € [0,0.1]mW for P,, € [0.0196,0.1] mW. In
addition, in accordance with Proposition 3, it is observed
IV. NUMERICAL RESULTS that the optimal channel switching strategy outperfornes th

In this section, numerical examples are provided in ordéptimal single channel strategy &, = 0.048mW, which
to investigate the proposed optimal channel switchingegga  COrresponds to a discontinuity point for the first-orderiter
and to compare it against the optimal single channel styate§ve of Crnax(P). . o o )
First, consider a scenario withk = 3 channels and the [n order to provide a detailed investigation of the optimal
following bandwidths and noise levels (cf. (1)} = 1 MHz, channgal S\_/vitching strategy, Table | presents the optimaheh
B, = 5MHz, By = 10MHz, N; = 10~'2W/Hz, N, = nelswitching solutions for various values of the averagego
10~ W/Hz, and N5 = 10~ W/Hz. Suppose that the peak“mlt, P,,. In the table, the optimal solut|.on is represented
power limit in (2) is set toP,, = 0.ImW. In Fig. 3, the by parameters\”, P, P, i, andj, meaning that channel
capacity of each channel is plotted as a function of powérS used with channel switching factor” and powerPr,
based on the capacity formula in (1). For the scenario #d channelj is used with channel switching factdr— A*
Fig. 3, the proposed optimal channel switching strategy affd powerPs. It is observed_from t_he table that the optimal
the optimal single channel strategy are calculated for-vagolution reduces to the optimal single channel strategy for
ous average power limitsf, ), and the achieved maximum¥av = 0.0l mW (m Wh.ICh case channelis used all the time),
average capacities are plotted in Fig. 4 verds. Also, and itinvolves switching between chaniednd channes for
the shaded area in the figure indicates the achievable rd@f§er values off,,. This observation is also consistent with
(average capacities) via channel switching that are higHg@- 4, which illustrates improvements via channel switchi
than those achieved by the optimal single channel strateff}), Fav > 0.0196 mW. It is also observed from the table that
As discussed in the previous section, the optimal singld€ optimal channel switching solution fét,, > 0.0196 mW
channel strategy achieves a capacity (@f..(Pa), Which satisfies conditioffiz) in Proposition 5 sincé’’ = Py = 0.1,
IS Cunax(Pay) = max{C1(Pay), Co(Pay), Cs(Pay)} in the P2 = (Pav — A"Ppic)/(1 = A*) = 0.0196mW, and A" =
considered scenario. It is observed from Fig. 3 and Fig. (£av —F5)/(Fpc—F3). In addition, as stated in Lemma 1, the
that Crax(Pay) = C1(Pay) for P, € (0,0.048) mW and optimal solutions always operate at the average powerdimit
Chax(Pay) = C3(Pay) for Py, € [0.048,0.1]mW; that is, For the scenario in Fig. 3, the average capacity versus the
channel 1 is the best channel up R, = 0.048mW, and Peak power limit curves are presented for the optimal chianne
channel 3 is the best after that power level. From Fig. #Wwitching and the optimal single channel strategies in bjg.
it is also noted that the proposed optimal channel switchig:\‘.‘f‘ere the average power limit is set fg, = 0.04mW.
strategy outperforms the optimal single channel strategy f-7om the figure, it is observed that the average capacity for
P, € [0.0196,0.1lmW, and the two strategies have thdhe optimal single channel strategy does not depend on the

P, value since this strategy achieves an average capacity of

SFor convenience, it is assumed that the identical chanrtbls game Cmax(Pav) @nd Pox > Py = 0.04mW in this scenario. On
bandwidth and noise level) are already eliminated. the other hand, increasétl, can improve the average capacity
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TABLE |
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS
CHANNEL ¢ AND CHANNEL j WITH CHANNEL SWITCHING FACTORSA*
AND (1 — A\*) AND POWER LEVELSP}* AND P, RESPECTIVELY.

TABLE I
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS
CHANNEL ¢ AND CHANNEL j WITH CHANNEL SWITCHING FACTORSA*
AND (1 — A\*) AND POWER LEVELSP}* AND P, RESPECTIVELY.

P,y (mW)

)\*

Pl*

.

(1))

Py

J Po (MW) [ A Pr [ i [ =X Py [ j
0.01 - - - 1 0.01 11 0.045 - — [ — | 1.000 | 0.0400 | 1
0.02 0.005 | 0.1000 | 3 0.995 0.0196 | 1 0.050 0.465 | 0.050 | 3 0.535 0.0313 | 1
0.03 0.129 | 0.1000 | 3 0.871 0.0196 | 1 0.055 0.488 | 0.055 | 3 0.512 0.0257 | 1
0.04 0.254 | 0.1000 | 3 0.746 0.0196 | 1 0.060 0.455 | 0.060 | 3 0.545 0.0233 | 1
0.05 0.378 | 0.1000 | 3 0.622 0.0196 | 1 0.065 0.419 | 0.065 | 3 0.581 0.0220 | 1
0.06 0.503 | 0.1000 | 3 || 0.498 | 0.0196 | 1 0.070 0.387 | 0.070 | 3 || 0.613 | 0.0211 | 1
0.07 0.627 | 0.1000 | 3 0.373 0.0196 | 1 0.075 0357 | 0.075 | 3 0.643 0.0206 | 1
0.08 0.751 | 0.1000 | 3 || 0.249 | 0.0196 | 1 0.080 0.331 | 0.080 | 3 || 0.669 | 0.0202 | 1
0.09 0.876 | 0.1000 | 3 0.124 0.0196 | 1 0.085 0.309 | 0.085 | 3 0.691 0.0199 | 1
0.090 0.289 | 0.090 | 3 0.711 0.0197 | 1
0.095 0.271 | 0.095 | 3 0.729 0.0196 | 1
0.100 0.254 | 0.100 | 3 0.746 0.0196 | 1
6
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Fig. 5. Average capacity versus peak power limit for the rapti channel % 005 o1 015 02 025
switching and the optimal single channel strategies forsttenario in Fig. 3, P(MW)

where P,, = 0.04 mW.

Fig. 6. Capacity of each channel versus powBt, = 0.5MHz, B2

2.0MHz, B3 = 2.5MHz, B4 = 5.0MHz, N1 = 1072 W/Hz, N,
for the optimal channel switching strategy as observed frof? ?10:1;\9’5“:]2\}\/\’3 = 2.0 x 1071 WiHz, N3 = 2.5 x 1071 WiHz,
the figure. The intuition behind this increase can be deduceéJI = '
from Fig. 3 and Table Il. In particular, as observed from
Table 1l, when the peak power limit is larger thar)48 mw,
which is the discontinuity point for the first-order derivat of 8
Cmax, the optimal channel switching strategy performs tim
sharing (switching) between chanriebnd channeB, where

channel3 is operated at the peak power limf,y.

Next, a scenario withKX' = 4 channels is considered,
where the bandwidths and the noise levels of channels
specified asB; = 0.5 MHz, B, = 2.0 MHz, B; = 2.5 MHz,
B, =5.0MHz, N; = 1072 W/Hz, N, = 1.5 x 10~ W/Hz,
N3 =2.0x 10~ W/Hz, andN, = 2.5 x 10~ W/Hz. Also,
the peak power limit is set tdx = 0.25mW. In Fig. 6,
the capacity of each channel is plotted versus the transi

Average Capacity (Mbps)

power. In Fig. 7, the average capacity verdtys curves are
presented for the proposed optimal channel switchingegyat
and the optimal single channel strategy. In addition, trelsd
area in the figure indicates the achievable rates via chan

Achievable Rates via Channel Switching| |
Optimal Channel Switching

= = = Optimal Single Channel
n

switching that are higher than those achieved by the optim.c.

single channel strategy. From Fig. 7, it is observed that thgy 7 average capacity versus average power limit for thngal channel

0.05

0.1 0.15 0.2
P_ (mw)
av

0.25

optimal channel switching strategy outperforms the optimewitching and the optimal single channel approachesAgr = 0.25 mW.

single channel strategy faP,, € (0.031,0.187) mW. Also,
it can be deduced from Fig. 6 and Fig. 7 that chanbe

The shaded area indicates the achievable rates via chanitethiag that are
[ higher than those achieved by the optimal single channaiesgty.
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TABLE Il

OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 6, WHICH EMPLOYS 4 T
CHANNEL 4 AND CHANNEL j WITH CHANNEL SWITCHING FACTORSA* Optimal Channel Switching

AND (1 — \*) AND POWER LEVELS P} AND Py, RESPECTIVELY ~ — — Optimal Single Channel
P (MW) | X Pr i AN ] B |J 89

0.025 — — — 1.0000 0.0250 | 1 7

0.050 0.1236 | 0.1868 | 4 0.8764 0.0307 | 1 g 28l

0.075 0.2838 | 0.1868 | 4 0.7162 0.0307 | 1 2

0.100 0.4439 | 0.1868 | 4 0.5561 0.0307 | 1 %

0.125 0.6041 | 0.1868 | 4 0.3959 0.0307 | 1 ©

0.150 0.7643 | 0.1868 | 4 || 0.2357 | 0.0307 | 1 g

0.175 0.9244 | 0.1868 | 4 0.0756 0.0307 | 1 z

0.200 — — — 1.0000 0.2000 | 4

0.225 - — | — || 1.0000 | 0.2250 | 4 ey o

35 i i i
0.07 0.1 0.15 0.2 0.25

is not employed in any strategy Sin@,.x(P) # Cs3(P)
for P € [0,0.25]mW. In Table lll, the optimal strategies
are presented for the scenario in Fig. 6 for various valueg. g. Average capacity versus peak power limit for the ropti channel
of P,,. As observed from the table, the optimal strategywitching and the optimal single channel strategies forsttenario in Fig. 6,
corresponds to the optimal single channel strategy for lsm#here Pay = 0.07mW.
and large values af,, and it corresponds to channel switching
between channel and channelt for medium range off,, TABLE IV
values. These observations are in accordance with Fig. 79PTIMAL STRATEGY FOR THE SCENARIO INFIG. 6, WHICH EMPLOYS

.. .. . CHANNEL 2 AND CHANNEL 3 WITH CHANNEL SWITCHING FACTORS\*
In addition, it is important to emphasize that the channels™ 5 (1 — x+) anp Power LEVELSP; AND P, RESPECTIVELY
employed in the optimal channel switching strategy for a
given value ofP,, may not correspond to the channel used in £ox (MW) A" Py
the optimal single channel strategy for the safmg value. 0.075 - -
For example, as can be observed from Fig. 6 and Fig. |7, 8'8% 8'2?‘% 8'8%8
channel2 is not employed in the optimal channel switching 0.090 0.5745 | 0.0900
strategy forP,, € (0.031,0.187) mW (channell and channel 0.095 0.5336 | 0.0950
4 are employed); however, it is the optimal channel for the (100 0.5008 | 0.1000
optimal single channel strategy fdt,, € [0.075,0.099] mW 0.125 0.4009 | 0.1250
as Crax(Pay) = Ca(Pay). This is mainly due to the fact | 0.150 0.3260 | 0.1500
that the optimal single channel approach achieves the itgpa¢  0.175 0.2723 | 0.1750
value specified byCp.«(P.) Whereas the upper boundary] 0-200 0.2518 | 0.1868
of the convex hull ofC.,.x(P) is achieved via the optimal 83?8 8'32}2 8‘1222
channel switching approach. - . -

Finally, for the scenario in Fig. 6P,, is set to P,, =

.0'07 T.W’tagdl thlf. eff8ec:rs] of the peak pov_\;er_ “mf?lj[l;’ c:\re between no more than two channels. In the absence of channel
investigated. In F1g. ©, the average capacily IS plottleGwer switching, the maximum capacity is given ,.x(Pay),

Py for the _optima_l channel switching and o_ptimal_single Char\'/\'/hereas via channel switching, the upper boundary of the
nel strategies. It is observed that the optimal single Cbhm&onvex hull of Cyax (Pay) €N a'Iso be achieved (see, e.g
strategy achieves a constant capacity/gf.(Pay) for all P Fig. 4). Since tr%axup;ver boundary of the convex hl,J|| caﬁ
vaIues,_wherePpk < (0'0.7’0'.25] mwW. On the other hand,.for always be formed by a convex combination of two different
the optimal channel switching strategy, improvements i t

average capacity are observed for w is larger than oints, no more than two different channels are needed to
; Efk . achieve the optimal capacity. Finally, it is important totao
0.075mW. It is also noted that the behavioral changes P pactty y P

! . €S Mat the optimal solution to the channel switching problem i
the average capacity curve for the optimal channel SW|g:h||a3) may not be unique in general; that is, in some cases, two

strategy occurs dL075 mW and0.099 mW, which correspond different channel switching strategies or a channel switgh

to the discontinuity points for the_ flrst—or.de.r derivativé o trategy and a single channel strategy can be the optimal
Cuax, @S can be observed from Fig. 6. Similar to Table | olutions

Table IV presents the solutions corresponding to the optima

strategy for various values of’,x. From the table, it is

observed that the optimal strategy changes with respect to V. CONCLUDING REMARKS

the peak power limit. In addition, it can be shown that the In this study, the optimal channel switching strategy has

solutions of the optimal channel switching strategy satisbeen proposed for average capacity maximization in the pres

condition (i) in Proposition 5 forF,. > 0.1868mW and ence of average and peak power constraints. Necessary and

condition (i7) for P,k € (0.075,0.1868) mW. sufficient conditions have been derived for specifying ket
Based on the numerical examples, an intuitive explanatitime proposed optimal channel switching strategy can or@ann

can be provided about the benefits of channel switching aadtperform the optimal single channel strategy. In additio

why the optimal channel switching strategy involves swiiigh the optimal channel switching solution has been shown to be

Ppk(mw)

=X P
1.0000 0.0700
0.3460 0.0511
0.3827 0.0458
0.4255 0.0430
0.4664 0.0414
0.4992 0.0399
0.5991 0.0332
0.6740 0.0313
0.7277 0.0307
0.7482 0.0307
0.7482 0.0307
0.7482 0.0307

I = T S e R S S s e A

R R R R R R NN NN S
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realized by channel switching between at most two differefis] S. Bayram, N. D. Vanli, B. Dulek, I. Sezer, and S. Gezi@ptimum
channels, and a low-complexity optimization problem hasnbe
formulated to calculate the optimal channel switching soiu
Furthermore, based on the necessary conditions that neegidép H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Ghe
be satisfied by the optimal channel switching solution, an
alternative approach has been proposed for calculating the
optimal channel switching strategy. Numerical exampleshaj17)
been investigated and intuitive explanations about thetitsn
of channel switching have been provided. Although Gaussian

channels have been considered in this study, the results gaN g. L. Lehmann,Testing Statistical Hypothesegnd ed.

also be applied to block frequency-flat fading channels & th
presence of Gaussian noise when the channel state informal#®!
is available at the transmitter and the receiver. In thatade,
the proposed channel switching strategy can be adopted [foj
each channel state. As future work, performance improvésnen

that can be achieved by performing both channel switchi

at each channel state and adaptation over varying channel

states can be considered. Another future work involves the
consideration of channel switching costs (delays) in trsgte [22]
of optimal channel switching strategies.

Acknowledgement: The authors would like to thank Prof.
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ments.
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