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Abstract—In this study, an optimal channel switching strategy
is proposed for average capacity maximization in the presence
of average and peak power constraints. Necessary and sufficient
conditions are derived in order to determine when the proposed
optimal channel switching strategy can or cannot outperform
the optimal single channel strategy, which performs no channel
switching. Also, it is obtained that the optimal channel switching
strategy can be realized by channel switching between at most
two different channels. In addition, a low-complexity optimization
problem is derived in order to obtain the optimal channel switch-
ing strategy. Furthermore, based on some necessary conditions
that need to be satisfied by the optimal channel switching solution,
an alternative approach is proposed for calculating the optimal
channel switching strategy. Numerical examples are provided to
exemplify the derived theoretical results and to provide intuitive
explanations.

Index Terms—Channel switching, capacity, time sharing.

I. I NTRODUCTION

In recent studies in the literature, benefits of time sharing
(“randomization”) have been investigated for various detection
and estimation problems [2]-[14]. For instance, in the context
of noise enhanced detection and estimation, additive “noise”
that is realized by time sharing among a certain number of
signal levels can be injected into the input of a suboptimal
detector or estimator for performance improvement [2]-[6].
Also, error performance of average power constrained com-
munication systems that operate in non-Gaussian channels
can be improved bystochastic signaling, which involves time
sharing among multiple signal values for each information
symbol [9], [10]. It is shown that an optimal stochastic signal
can be represented by a randomization (time sharing) among
no more than three different signal values under second and
fourth moment constraints [9]. In a different context, jammer
systems can achieve improved jamming performance via time
sharing among multiple power levels [7], [12], [15]. In [7],
it is shown that a weak jammer should employ on-off time
sharing to maximize the average probability of error for a
receiver that operates in the presence of noise with a symmetric
unimodal density. The optimum power allocation policy for an
average power constrained jammer operating over an arbitrary
additive noise channel is studied in [15], where the aim is
to minimize the detection probability of an instantaneously
and fully adaptive receiver that employs the Neyman-Pearson
criterion. It is proved that the optimum jamming performance
is achieved via time sharing between at most two different
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power levels, and a necessary and sufficient condition is
derived for the improvability of the jamming performance via
time sharing of the power compared to a fixed power jamming
scheme.

Error performance of some communications systems that
operate over additive time-invariant noise channels can also
be enhanced via time sharing among multiple detectors, which
is called detector randomization[4], [11], [16], [17], [18].
In this approach, the receiver employs each detector with a
certain time sharing factor (or, probability), and the transmitter
adjusts its transmission in coordination with the receiver. In
[4], time sharing between two antipodal signal pairs and
the corresponding maximum a-posteriori probability (MAP)
detectors is studied for an average power constrained bi-
nary communication system. Significant performance improve-
ments can be observed as a result of detector randomization
in the presence of symmetric Gaussian mixture noise over
a range of average power constraint values [4]. In [11], the
results in [4] and [10] are extended to an average power
constrainedM -ary communication system that can employ
both detector randomization and stochastic signaling overan
additive noise channel with a known distribution. It is obtained
that the joint optimization of the transmitted signals and the
detectors at the receiver leads to time sharing between at
most two MAP detectors corresponding to two deterministic
signal constellations. In [13], the benefits of time sharing
among multiple detectors are investigated for the downlink
of a multiuser communication system and the optimal time
sharing strategy is characterized.

In the presence of multiple channels between a transmitter
and a receiver, it may be beneficial to performchannel
switching; that is, to transmit over one channel for a certain
fraction of time, and then switch to another channel for the
next transmission period [7], [19]–[22]. In [7], the channel
switching problem is investigated in the presence of an average
power constraint for the optimal detection of binary antipodal
signals over a number of channels that are subject to additive
unimodal noise. It is proved that the optimal strategy is
either to communicate over one channel exclusively, or to
switch between two channels with a certain time sharing
factor. In [21], the channel switching problem is studied for
M -ary communications over additive noise channels (with
arbitrary probability distributions) in the presence of time
sharing among multiple signal constellations over each chan-
nel. It is shown that the optimal strategy that minimizes
the average probability of error under an average power
constraint corresponds to one of the following approaches:
deterministic signaling (i.e., use of one signal constellation)
over a single channel; time sharing between two different
signal constellations over a single channel; or switching (time
sharing) between two channels with deterministic signaling
over each channel [21]. With a different perspective, the
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concept of channel switching is studied for cognitive radio
systems in the context of opportunistic spectrum access, where
a number of secondary users aim to access the available
frequency bands in the spectrum [23]-[26]. In [26], the optimal
bandwidth allocation is studied for secondary users in the
presence of multiple available primary user bands and under
channel switching constraints, and it is shown that secondary
users switching among discrete channels can achieve higher
capacity than those that switch among consecutive channels.

In a different but related problem, the capacity of the
sum channelis presented in [27, p.525]. The sum channel is
defined as a channel whose input and output alphabets are the
unions of those of the original channels; that is, there exist
multiple available channels between the transmitter and the
receiver but only one channel is used at a given time for
each possible symbol in the input alphabet. For example, a
sum channel can consist of two binary memoryless channels,
and the first two elements of the alphabet, say{0, 1}, are
transmitted over the first channel whereas the last two elements
of the alphabet, say{2, 3}, are transmitted over the second
channel. For discrete memoryless channels with capacities
C1, C2, . . . , CK , the capacity of the sum channel can be
obtained aslog2

(
∑K

i=1 2
Ci
)

[27]. The main difference of the
sum channel from the channel switching scenario considered
in this study (and those in [7], [21]) is that the alphabet is
divided among different channels and each channel is used to
transmit a certain subset of the alphabet in the sum channel.

In the literature, optimal resource allocation is commonly
employed to enhance the capacity of communication systems.
In [28], the optimal dynamic resource allocation for fading
broadcast channels is studied for code division, time division,
and frequency division in the presence of perfect channel side
information at the transmitter and the receivers, and ergodic
capacity regions are obtained. In [29], an adaptive resource
allocation procedure is presented for multiuser orthogonal fre-
quency division multiplexing (MU-OFDM) systems with the
consideration of proportional fairness constraints amongusers.
Optimal and suboptimal algorithms are implemented based on
sum capacity maximization while satisfying the minimum re-
quired data rate constraint for each user. In [30], optimal joint
power and channel allocation strategies are investigated for
cognitive radio systems. A near optimal algorithm is presented
for the total sum capacity maximization of power-limited
secondary users in a centralized cognitive radio network. In
[31], capacity maximizing antenna selection is studied for
a multiple-input multiple-output (MIMO) system and low-
complexity antenna subset selection algorithms are derived.
It is shown that near optimal capacity of a full-complexity
system is achieved by selecting the number of antennas at the
receiver to be at least as large as the number of antennas at the
transmitter. In [32], the optimal antenna selection in correlated
channels is analyzed for both the transmitter and receiver in
order to reduce the number of radio frequency chains. The
proposed algorithm results in a near optimal capacity which
is achieved without antenna selection.

Although the optimal channel switching problem is studied
thoroughly in terms of average probability of error mini-
mization (e.g., [7], [21], [22]) and in the context of oppor-
tunistic spectrum access (e.g., [23]-[26]), no studies in the
literature have considered the channel switching problem for
maximization of data rates by jointly optimizing time sharing

(channel switching) factors and corresponding power levels.
In this study, the average Shannon capacity is considered as
the main metric since it gives the maximum achievable data
rates with low probability of decoding errors. In addition,
the data rate targets indicated by the Shannon capacity are
achievable in practical communication systems through turbo
coding or low density parity check codes [33]. In this paper,we
formulate the optimal channel switching problem for average
Shannon capacity maximization over Gaussian channels in the
presence of average and peak power constraints, and derive
necessary and sufficient conditions for the proposed channel
switching approach to achieve a higher average capacity than
the optimal approach without channel switching. In addition, it
is obtained that the optimal solution to the channel switching
problem results in channel switching between at most two
different channels, and an approach is proposed to obtain the
optimal channel switching strategy with low computational
complexity. Numerical examples are presented to illustrate the
theoretical results. The main contributions of this study can be
summarized as follows:

• For the first time, the optimal channel switching problem
is investigatedfor average capacity maximizationin
the presence of multiple Gaussian channels and under
average and peak power constraints.

• It is shown that the optimal channel switching strategy
switches among at most two different channels, and
operates at the average power limit.

• Necessary and sufficient conditions are derived to spec-
ify when performing channel switching can or cannot
provide improvements over the optimal approach without
channel switching.

• Optimality conditions are obtained for the proposed
channel switching strategy, and an approach with low
computational complexity is presented for calculating the
parameters of the optimal strategy.

Some of the practical motivations for studying the chan-
nel switching problem for data rate maximization can be
summarized as follows: Firstly, the next-generation wireless
communication systems are required to support all IP services
including high-data-rate multimedia traffic, with bit ratetargets
as high as 1 Gbit/s for low mobility and 100 Mbit/s for high
mobility [34]. Such high data rate requirements make the
capacity (usually measured by using Shannon capacity metric
[35], [36]) maximization problems (subject to appropriate
operating constraints on power and communication reliability)
more relevant for next-generation wireless communication
systems, rather than focusing on power or bit error mini-
mization (subject to appropriate operating constraints onrate).
Secondly, wireless telecommunication technology is currently
on the cusp of a major transition from the traditional carefully
planned homogenous macro-cell deployment to highly hetero-
geneous small cell network architectures. These heterogeneous
next generation network architectures (alternatively called
HetNets) will consist of multiple tiers of irregularly deployed
network elements with diverse range of backhaul connection
characteristics, signal processing capabilities and electromag-
netic radio emission levels. In such a HetNet scenario, it is
expected that more than one radio link such as femto-cell
connection, macro-cell connection and Wi-Fi connection (with
different operating frequency bands, background noise levels
and etc.) will be present to use at each mobile user. From an
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Fig. 1. Block diagram of a communication system in which transmitter and
receiver can switch amongK channels.

engineering point of view, this paper provides some fundamen-
tal design insights regarding how to time share (randomize)
among available radio links to maximize rates of communi-
cation for highly heterogenous wireless environments. Finally,
channel switching can be beneficial for secondary users in
a cognitive radio system in which there can exist multiple
available frequency bands in the spectrum (please see the
second paragraph of Section II).

The remainder of the paper is organized as follows: The
problem formulation for optimal channel switching is pre-
sented in Section II. Section III investigates the solutionof
the optimal channel switching problem and provides various
theoretical results about the characteristics of the optimal
channel switching strategy. In Section IV, numerical examples
are presented for illustrating the theoretical results, which is
followed by the concluding remarks in Section V.

II. PROBLEM FORMULATION

Consider a communication system in which a transmitter
and a receiver are connected viaK different channels as
illustrated in Fig. 1. The channels are modeled as additive
Gaussian noise channels with possibly different noise levels
and bandwidths. It is assumed that noise is independent
across different channels. The transmitter and the receiver
can switch (time share) among theseK channels in order
to enhance the capacity of the communication system. A
relay at the transmitter controls the access to the channels
in such a way that only one of the channels can be used
for information transmission at any given time. It is assumed
that the transmitter and the receiver are synchronized and
the receiver knows which channel is being utilized [7]. In
practical scenarios, this assumption can hold in the presence
of a communication protocol that notifies the receiver about
the numbers of symbols and the corresponding channels to
be employed during data communications. This notification
information can be sent in the header of a communications
packet [11], [21].

In some communication systems, multiple channels with
various bandwidth and noise characteristics can be available
between a transmitter and a receiver as in Fig. 1. For instance,
in a cognitive radio system, primary users are the main owners
of the spectrum, and secondary users can utilize the frequency
bands of the primary users when they are available [23], [24],
[25], [37], [38]. In such a case, the available bands in the
spectrum can be considered as the channels in Fig. 1, and
the aim of a secondary user becomes the maximization of
its average capacity by performing optimal channel switching
under power constraints that are related to hardware constraints
and/or battery life. The motivation for using only one channel

at a given time is that the transmitter and the receiver are
assumed to have a single RF chain each due to complexity/cost
considerations. Then, the transmitter-receiver pair can perform
time sharing among different channels (i.e., channel switching)
by employing only one channel at a given time. In a similar
fashion, the proposed system also has a potential to improve
data rates in emerging open-accessK-tier heterogeneous wire-
less networks by allowing users to switch between multiple
access points and available frequency bands in the spectrum
[39], [40].

Let Bi and Ni/2 represent, respectively, the bandwidth
and the constant power spectral density level of the additive
Gaussian noise corresponding to channeli for i ∈ {1, . . . ,K}.
Then, the capacity of channeli is given by

Ci(P ) = Bi log2

(

1 +
P

NiBi

)

bits/sec (1)

whereP denotes the average transmit power [41].

The aim of this study is to obtain the optimal channel
switching strategy that maximizes the average capacity of the
communication system in Fig. 1 under average and peak power
constraints. In order to formulate such a problem, channel
switching (time sharing) factors, denoted byλ1, . . . , λK , are
defined first, whereλi is the fraction of time when channeli is
used, withλi ≥ 0 for i = 1, . . . ,K, and

∑K
i=1 λi = 1.1 Then,

the optimal channel switching problem for average capacity
maximization is proposed as follows:

max
{λi,Pi}K

i=1

K
∑

i=1

λi Ci(Pi) (2)

subject to
K
∑

i=1

λiPi ≤ Pav

Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K}
K
∑

i=1

λi = 1 , λi ≥ 0 , ∀i ∈ {1, . . . ,K}

whereCi(Pi) is as defined in (1) withPi denoting the average
transmit power allocated to channeli, Ppk represents the
peak power limit, andPav is the average power limit for
the transmitter. In practical systems, the average power limit
is related to the power consumption and/or the battery life
of the transmitter whereas the peak power limit specifies the
maximum power level that can be generated by the transmitter
circuitry; i.e., it is mainly a hardware constraint. Since there
exists a single RF unit at the transmitter, the peak power
limit is taken to be the same for each channel. It is assumed
that Pav < Ppk holds. From (2), it is observed that the
design of an optimal channel switching strategy involves the
joint optimization of the channel switching factors and the
corresponding power levels under average and peak power
constraints for the purpose of average capacity maximization.

1Channel switching can be implemented in practice by transmitting the first
λ1Ns symbols over channel 1, the nextλ2Ns symbols over channel 2, ..., and
the finalλKNs symbols over channelK, whereNs is the total number of
symbols (over which channel statistics do not change), andλ1, λ2, . . . , λK

are the channel switching factors. In this case, suitable channel coding-
decoding algorithms can be employed for each channel to achieve a data
rate close to the Shannon capacity of that channel.
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III. O PTIMAL CHANNEL SWITCHING

In general, it is challenging to find the optimal channel
switching strategy by directly solving the optimization prob-
lem in (2). For this reason, our aim is to obtain a simpler
version of the problem in (2) and to calculate the optimal
channel switching solution in a low-complexity manner. To
that end, an alternative optimization problem is obtained
first. Let {λ∗

i , P
∗
i }

K
i=1 denote the optimal channel switching

strategy obtained as the solution of (2) and defineC∗ as
the corresponding maximum average capacity; that is,C∗ =
∑K

i=1 λ
∗
i Ci(P

∗
i ). Then, the following proposition presents

an alternative optimization problem, the solution of which
achieves the same maximum average capacity as (2) does.

Proposition 1: The solution of the following optimization
problem results in the same maximum value that is achieved
by the problem in(2):

max
{νi,Pi}K

i=1

K
∑

i=1

νi Cmax(Pi) (3)

subject to
K
∑

i=1

νiPi ≤ Pav

Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K}
K
∑

i=1

νi = 1 , νi ≥ 0 , ∀i ∈ {1, . . . ,K}

whereCmax(P ) is defined as

Cmax(P ) , max{C1(P ), . . . , CK(P )} . (4)

Proof: The proof consists of two steps. Let{ν⋆i , P
⋆
i }

K
i=1

represent the solution of (3) and defineC⋆ as the cor-
responding maximum average capacity; that is,C⋆ =
∑K

i=1 ν
⋆
i Cmax(P

⋆
i ). First, it can be observed from (2) and

(3) thatC⋆ ≥ C∗ due to the definition in (4), whereC∗ is
the maximum average capacity obtained from (2). Next, define
function g(i) and setSm as follows:2

g(i) , arg max
l∈{1,...,K}

Cl(P
⋆
i ) , ∀i ∈ {1, . . . ,K} (5)

and

Sm , {i ∈ {1, . . . ,K} | g(i) = m} , ∀m ∈ {1, . . . ,K} .
(6)

Then, the following relations can be obtained forC⋆ :

C⋆ =

K
∑

i=1

ν⋆i Cmax(P
⋆
i ) =

K
∑

i=1

ν⋆i Cg(i)(P
⋆
i ) (7)

=
K
∑

i=1

∑

k∈Si

ν⋆k Ci(P
⋆
k ) (8)

≤

K
∑

i=1

(

∑

k∈Si

ν⋆k

)

Ci

(

∑

k∈Si
ν⋆kP

⋆
k

∑

k∈Si
ν⋆k

)

(9)

=

K
∑

i=1

λ̄i Ci(P̄i) (10)

2In the case of multiple maximizers in (5), any maximizing index can be
chosen forg(i).

whereλ̄i and P̄i are defined as

λ̄i ,
∑

k∈Si

ν⋆k and P̄i ,

∑

k∈Si
ν⋆kP

⋆
k

∑

k∈Si
ν⋆k

· (11)

for i ∈ {1, . . . ,K}. The equalities in (7) and (8) are ob-
tained from the definitions in (5) and (6), respectively, and
the inequality in (9) follows from Jensen’s inequality due
to the concavity of the capacity function [41], [42]. It is
noted from (11), based on (5) and (6), thatλ̄i’s and P̄i’s
satisfy the constraints in (2); that is,

∑K
i=1 λ̄i P̄i ≤ Pav,

P̄i ∈ [0, Ppk], ∀i ∈ {1, . . . ,K},
∑K

i=1 λ̄i = 1, and λ̄i ≥ 0,
∀i ∈ {1, . . . ,K}. Therefore, the inequality in (7)-(10), namely,
C⋆ ≤

∑K
i=1 λ̄i Ci(P̄i), implies that the optimal solution of (3)

cannot achieve a higher average capacity than that achieved
by (2); that is,C⋆ ≤ C∗. Hence, it is concluded thatC⋆ = C∗

sinceC⋆ ≥ C∗ must also hold as mentioned at the beginning
of the proof. �

Based on Proposition 1, the maximum average capacityC∗

achieved by the optimal channel switching problem in (2)
can also be obtained by solving the optimization problem
in (3). Let {ν⋆i , P

⋆
i }

K
i=1 denote the optimal solution of (3).

Proposition 1 states that
∑K

i=1 ν
⋆
i Cmax(P

⋆
i ) = C∗. In ad-

dition, the optimal channel switching strategy corresponding
to the channel switching problem in (2) can be obtained,
based on the arguments in the proof of Proposition 1, as
follows: Once{ν⋆i , P

⋆
i }

K
i=1 is calculated from (3), the optimal

channel switching strategy can be obtained as{λ∗
i , P

∗
i }

K
i=1,

whereλ∗
i =

∑

k∈Si
ν⋆k andP ∗

i = (
∑

k∈Si
ν⋆kP

⋆
k )/(

∑

k∈Si
ν⋆k)

with Si being given by (6). It should be emphasized that
a low-complexity approach is developed in the remainder
of this section for solving (3); hence, it is useful to obtain
the optimal channel switching strategy corresponding to the
channel switching problem in (2) based on the solution of (3).

The significance of Proposition 1 also lies in the fact that
the alternative optimization problem in (3), which achieves
the same maximum average capacity as the original chan-
nel switching problem in (2), facilitates detailed theoretical
investigations of the optimal channel switching strategy,as
discussed in the remainder of this section.

Towards the purpose of characterizing the optimal channel
switching strategy, the following lemma is presented first,
which states that the optimal solutions of (2) and (3) operate
at the average power limit.

Lemma 1: Let {λ∗
i , P

∗
i }

K
i=1 and {ν⋆i , P

⋆
i }

K
i=1 denote the

solutions of the optimization problems in(2) and (3), respec-
tively. Then,

∑K
i=1 λ

∗
iP

∗
i = Pav and

∑K
i=1 ν

⋆
i P

⋆
i = Pav hold.

Proof: The proof is provided for the optimization problem
in (3) only since the one for (2) can easily be obtained based
on a similar approach (cf. Proposition 1 in [22]). Suppose that
{νi, Pi}

K
i=1 is an optimal solution of the problem in (3) such

that
∑K

i=1 νiPi < Pav. SincePav < Ppk, there exist at least
one Pi that is strictly smaller thanPpk. Let Pl be one of
them. Then, consider an alternative solution{ν

′

i , P
′

i }
K
i=1, with

ν
′

i = νi, ∀i ∈ {1, . . . ,K}, P
′

i = Pi, ∀i ∈ {1, . . . ,K} \ {l},
andP

′

l = min{Ppk, Pl + (Pav −
∑K

i=1 νiPi)/νl}. Note that
the alternative solution,{ν

′

i , P
′

i }
K
i=1, achieves a larger average
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capacity than{νi, Pi}
K
i=1 due to the following relation:

K
∑

i=1

ν
′

iCmax(P
′

i ) =
K
∑

i=1
i6=l

ν
′

iCmax(P
′

i ) + ν
′

lCmax(P
′

l ) (12)

>

K
∑

i=1
i6=l

νiCmax(Pi) + νl Cmax(Pl) (13)

=

K
∑

i=1

νiCmax(Pi) (14)

where the inequality follows from the facts thatCmax(P ) is a
monotone increasing function ofP (please see (1) and (4))3,
and thatP

′

l > Pl. Therefore,{νi, Pi}
K
i=1 cannot be an optimal

solution of (3), which leads to a contradiction. Hence, any
feasible point of the problem in (3) which utilizes an average
power strictly smaller thanPav cannot be optimal; that is, the
optimal solution must operate at the average power limit.�

A. Optimal Channel Switching versus Optimal Single Channel
Strategy

Next, possible improvements that can be achieved via the
optimal channel switching strategy over theoptimal single
channelstrategy are investigated. The optimal single channel
strategy corresponds to the case of no channel switching
and the use of the best channel all the time at the average
power limit. For that strategy, the achieved maximum capacity
can be expressed asCmax(Pav), whereCmax is as defined
in (4), and the best channel is the one with the index
arg maxl∈{1,...,K} Cl(Pav).4 It is noted that when a single
channel is used (i.e., no channel switching), it is optimal
to utilize all the available power,Pav since Cmax(P ) is a
monotone increasing and continuous function ofP , as can
be verified from (1) and (4). In the following proposition, a
necessary and sufficient condition is presented for the optimal
channel switching strategy to have the same performance as
the optimal single channel strategy.

Proposition 2: Suppose thatCmax(P ) in (4) is first-order
continuously differentiable in an interval aroundPav. Then,
the optimal channel switching and the optimal single channel
strategies achieve the same maximum average capacity if and
only if

(P − Pav)
Bi∗ log2 e

Ni∗Bi∗ + Pav
≥ Cmax(P )− Cmax(Pav) (15)

for all P ∈ [0, Ppk], wherei∗ = arg maxi∈{1,...,K}Ci(Pav) .
Proof: The proof consists of the sufficiency and the ne-

cessity parts. The sufficiency of the condition in (15) can be
proved by employing a similar approach to that in the proof of
Proposition 3 in [15]. Under the condition in the proposition,
the aim is to prove that the optimal channel switching and the
optimal single channel strategies achieve the same maximum
average capacity; that is,

∑K
i=1 ν

⋆
i Cmax(P

⋆
i ) = Cmax(Pav),

where{ν⋆i , P
⋆
i }

K
i=1 denotes the solution of (3), which achieves

the same average capacity as the optimal channel switching

3Note that the maximum of a set of monotone increasing functions is also
monotone increasing.

4In the case of multiple best channels, any of them can be chosen to achieve
Cmax(Pav).

strategy corresponding to (2) based on Proposition 1. Due to
the assumption in the proposition, the first-order derivative of
Cmax(P ) in (4) exists in an interval aroundPav and its value
at Pav is calculated from (1) as

C
′

max(Pav) =
Bi∗ log2 e

Ni∗Bi∗ + Pav
(16)

where i∗ = arg maxi∈{1,...,K} Ci(Pav). From (16), the con-
dition in (15) can be expressed asCmax(P ) ≤ Cmax(Pav) +
C

′

max(Pav)(P −Pav) for all P ∈ [0, Ppk]. Then, for any chan-
nel switching strategy denoted as{νi, Pi}

K
i=1, the following

inequalities can be obtained:

K
∑

i=1

νiCmax(Pi) ≤ Cmax(Pav) + C
′

max(Pav)

(

K
∑

i=1

νiPi − Pav

)

(17)

≤ Cmax(Pav) (18)

where Pi ∈ [0, Ppk] and νi ≥ 0 for i ∈ {1, . . . ,K},
∑K

i=1 νi = 1, and
∑K

i=1 νiPi ≤ Pav. It is noted that the
inequality in (18) is obtained from the facts thatC

′

max(Pav)
in (16) is positive and that

∑K
i=1 νiPi − Pav is non-positive

due to the average power constraint. From (17) and (18), it
is concluded that when the condition in the proposition holds,
channel switching can never result in a higher average capacity
than the optimal single channel strategy, which achieves a
capacity ofCmax(Pav). On the other hand, forν⋆i∗ = 1, P ⋆

i∗ =
Pav, andν⋆i = P ⋆

i = 0 for all i ∈ {1, . . . ,K} \ {i∗}, where
i∗ = arg maxi∈{1,...,K}Ci(Pav), the

∑K
i=1 νiCmax(Pi) term

in (17) becomes equal toCmax(Pav). Since this possible
solution satisfies

∑K
i=1 ν

⋆
i P

⋆
i = Pav (cf. Lemma 1) and all the

constraints of the optimization problem in (3), it is concluded
that

∑K
i=1 ν

⋆
i Cmax(P

⋆
i ) = Cmax(Pav) under the condition in

the proposition.

The necessity part of the proof is contrapositive. Therefore,
the aim is to prove that if

(P − Pav)C
′

max(Pav) < Cmax(P )− Cmax(Pav) (19)

for someP ∈ [0, Ppk], then the optimal channel switching
strategy outperforms the optimal single channel strategy in
terms of the maximum average capacity. First, assume that
there existsP̃ ∈ [0, Pav] that satisfies the condition in (19)
and consider the straight line that passes through the points
(P̃ , Cmax(P̃ )) and (Pav, Cmax(Pav)). Let ϕ denote the slope
of this line. From (19), the following relation is observed:

ϕ ,
Cmax(Pav)− Cmax(P̃ )

Pav − P̃
< C

′

max(Pav) . (20)

Due to the assumption in the proposition, the first-order deriva-
tive of Cmax(P ) in (4) is continuous in an interval around
Pav. Therefore,Cmax(P ) must correspond to the same channel
over an interval aroundPav,5 which implies the concavity of
Cmax(P ) in that interval as the capacity curves are concave.
By definition of the concavity aroundPav, there exists a point
P+
av , Pav + ǫ for an infinitesimally small positive numberǫ

5If there multiple channels with the same bandwidths and noise levels,
they can be regarded as a single channel (i.e., only one of them should be
considered) since there is no advantage of switching between such channels.
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such that

ϕ <
Cmax(Pav)− Cmax(P

+
av)

Pav − P+
av

< C
′

max(Pav) . (21)

Then, choose ãλ such thatλ̃ P̃ + (1 − λ̃)P+
av = Pav and

consider the following relations:

λ̃ Cmax(P̃ ) + (1− λ̃)Cmax(P
+
av)

> λ̃Cmax(P̃ ) + (1− λ̃)
(

(P+
av − Pav)ϕ+ Cmax(Pav)

)

(22)

=
P+
av − Pav

P+
av − P̃

Cmax(P̃ )

+
Pav − P̃

P+
av − P̃

(

(P+
av − Pav)ϕ+ Cmax(Pav)

)

(23)

= Cmax(Pav) (24)

where the inequality in (22) is obtained from (21), the equality
in (23) follows from the definition of̃λ, and the final equality
is due to the definition ofϕ in (20). Overall, the inequality
in (22)-(24), namely,λ̃ Cmax(P̃ ) + (1 − λ̃)Cmax(P

+
av) >

Cmax(Pav), implies that the channel switching strategy (spec-
ified by channel switching factors̃λ and (1 − λ̃) and power
levelsP̃ andP+

av) achieves a higher average capacity than the
optimal single channel strategy.6 Since the optimal channel
switching strategy always achieves an average capacity that
is equal to or larger than the average capacity of any other
channel switching strategy, it is concluded that the optimal
channel switching strategy outperforms the optimal single
channel strategy.

Next, assume that there exists̄P ∈ (Pav, Ppk] that satisfies
the condition in (19). Similar to the previous part of the proof,
let φ denote the slope of the straight line that passes through
the points (P̄ , Cmax(P̄ )) and (Pav, Cmax(Pav)). Then, the
following expression is obtained from (19):

φ ,
Cmax(Pav)− Cmax(P̄ )

Pav − P̄
> C

′

max(Pav) . (25)

Similarly, due to the concavity aroundPav, there exists a point
P−
av , Pav − ǫ for an infinitesimally smallǫ > 0 such that

φ >
Cmax(Pav)− Cmax(P

−
av)

Pav − P−
av

> C
′

max(Pav) . (26)

By choosing āλ ∈ (0, 1) such thatλ̄ P̄ + (1 − λ̄)P−
av = Pav

and considering the expressions in (25) and (26), the same
approach employed in the previous part of the proof (see
(22)-(24)) can be applied to show that the optimal channel
switching strategy outperforms the optimal single channel
strategy. Thus, it is concluded that when the condition in
Proposition 2 is not satisfied, the optimal single channel
strategy achieves a smaller average capacity than the optimal
channel switching strategy, which implies that the condition
in the proposition is necessary to achieve the same maximum
average capacity for both strategies. �

A more intuitive description of Proposition 2 can be pro-
vided as follows: Based on (16), the condition in (15) is
equivalent to having the tangent line toCmax(P ) at P = Pav

6Note that the channel switching strategy denoted by channelswitching
factors λ̃ and (1 − λ̃) and power levelsP̃ andP+

av must involve switching
between two different channels since the inequalityλ̃ Cmax(P̃ ) + (1 −
λ̃)Cmax(P

+
av) > Cmax(Pav) cannot be satisfied for a single channel due to

the concavity of the capacity curves.

lie completely above theCmax(P ) curve [15]. If this con-
dition is satisfied, then channel switching, which performs
convex combination of differentCmax(P ) values (as can be
noted from (3)), cannot achieve an average capacity above
Cmax(Pav), which is already achieved by the optimal single
channel strategy. Otherwise, a higher average capacity than
Cmax(Pav) is obtained via optimal channel switching.

It is also noted from (15) and (16) that the condition in
Proposition 2 corresponds to the subgradient inequality atPav.
Therefore, the proposition can also be stated as “the optimal
channel switching and the optimal single channel strategies
achieve the same maximum average capacity if and only if
there exists a sub-gradient atPav.” In addition, it should be
emphasized that although concavity ofCmax(P ) aroundP =
Pav is a necessary condition for the scenario in Proposition 2
to hold, it is not a sufficient condition in general.

Based on Proposition 2, it can be determined whether the
channel switching strategy can improve the average capacity
of the system compared to the optimal single channel strategy.
For instance, ifCmax(P ) in (4) is first-order continuously
differentiable in an interval aroundPav and the condition in
(15) is satisfied for allP ∈ [0, Ppk] in a given system, then it
is concluded that the optimal single channel strategy has the
same performance as the optimal channel switching strategy;
that is, there is no need for channel switching. In that case,the
maximum average channel capacity is given byCmax(Pav).
On the other hand, if there exist someP ∈ [0, Ppk] for which
the condition in (15) is not satisfied, then the optimal channel
switching strategy is guaranteed to achieve a higher average
capacity thanCmax(Pav).

Remark 1: As a special case, it can be concluded from
Proposition 2 that if the bandwidths of the channels are the
same, the optimal strategy is to transmit over the least noisy
(best) channel exclusively at the average power limit. In order
to make this conclusion, first considerCmax(P ) in (4), which
becomes equal to the capacity of the least noisy channel,
say channelb, when the channels have the same bandwidth
(cf. (1)); that is, Cmax(P ) , max{C1(P ), . . . , CK(P )} =
Cb(P ). Then, from(16), the condition in(15) of Proposition 2
is expressed as(P −Pav)C

′

b (Pav) ≥ Cb(P )−Cb(Pav), which
always holds for allP ∈ [0, Ppk] due to the concavity of
the capacity function,Cb(P ) (see(1)). Hence, Proposition 2
applies in this scenario; that is, the optimal single channel
strategy (i.e., the use of the best channel all the time at the
average power limit) becomes the optimal solution.

In Proposition 2, it is assumed thatCmax(P ) in (4) is first-
order continuously differentiable in an interval aroundPav.
In order to cover all possible scenarios and to specify the
optimal strategy in all cases, the following proposition presents
a result for the case ofCmax(P ) that has a discontinuous
first-order derivative atP = Pav, which states that the
optimal channel switching always outperforms the optimal
single channel strategy in this scenario.

Proposition 3: If the first-order derivative ofCmax(P ) in
(4) is discontinuous atP = Pav, then the optimal channel
switching strategy outperforms the optimal single channel
strategy.

Proof: The aim is to prove that if the condition in Proposi-
tion 3 is satisfied, then the channel switching strategy achieves
a higher average capacity than the optimal single channel
strategy. To that aim, defineP+

av and P−
av as Pav + ǫ and
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Pav − ǫ, respectively, whereǫ is an infinitesimally small
positive number. The proof consists of two parts.

First, it is proved that if the first-order derivative,C
′

max(P ),
is discontinuous atP = Pav, which implies thatC

′

max(P
−
av) 6=

C
′

max(P
+
av), then C

′

max(P
−
av) < C

′

max(P
+
av) holds. Due to

the discontinuous first-order derivative assumption,Cmax(P
−
av)

and Cmax(P
+
av) must correspond to different channels since

the first-order derivative would be continuous otherwise
(please see (1)). Therefore, let channeli and channelj
denote the channels corresponding to the maximum capac-
ities for power levelsP−

av and P+
av, respectively; that is,

Cmax(P
−
av) = Ci(P

−
av) and Cmax(P

+
av) = Cj(P

+
av) for

i 6= j where i = arg maxl∈{1,...,K} Cl(P
−
av) and j =

arg maxl∈{1,...,K} Cl(P
+
av). Also, Ci(Pav) = Cj(Pav) and

Ci(P
−
av) < Cj(P

+
av) sinceCmax(·) is a continuous monotone

increasing function. Based on Taylor series expansions of
Ci(·) and Cj(·) aroundP+

av, Ci(P
+
av) and Cj(P

+
av) can be

expressed as follows:

Ci(P
+
av) = Ci(Pav) + C

′

i (Pav)(P
+
av − Pav) +Ri(P

+
av) (27)

Cj(P
+
av) = Cj(Pav) + C

′

j (Pav)(P
+
av − Pav) +Rj(P

+
av) (28)

whereRi(P
+
av) andRj(P

+
av) are the second-order remainder

terms forCi(P
+
av) andCj(P

+
av), respectively. Based on the re-

mainder theorem, there existκ ∈ [Pav, P
+
av] andυ ∈ [Pav, P

+
av]

such that

Ri(P
+
av) =

C
′′

i (κ)(P+
av − Pav)

2

2
(29)

Rj(P
+
av) =

C
′′

j (υ)(P+
av − Pav)

2

2
(30)

where C
′′

i (·) and C
′′

j (·) are the second-order derivatives
of Ci(·) and Cj(·), respectively [43]. The second-order
derivatives, which can be calculated from (1) asC

′′

i (P ) =
−Bi log2 e/(NiBi+P )2 andC

′′

j (P ) = −Bj log2 e/(NjBj+
P )2, are finite negative numbers for all possible power levels.
Since Cj(P

+
av) > Ci(P

+
av) and Ci(Pav) = Cj(Pav) as

discussed previously, the following inequality can be obtained
based on (27)-(30):

C
′

j (Pav)− C
′

i (Pav) +
(C

′′

j (υ)− C
′′

i (κ)) ǫ

2
> 0 (31)

where ǫ = P+
av − Pav as defined above. As the second-

order derivatives are finite and the relation in (31) should
hold for any infinitesimally smallǫ value, it is concluded that
C

′

i (Pav) < C
′

j (Pav). In other words, there is an increase in
the first-order derivative ofCmax(P ) aroundP = Pav, which
implies thatC

′

max(P
−
av) < C

′

max(P
+
av).

In the second part, it is proved that when there is an increase
in the first-order derivative ofCmax(P ) aroundP = Pav, the
optimal channel switching strategy outperforms the optimal
single channel strategy. To that aim, consider a channel
switching strategy (not necessarily an optimal one) that per-
forms channel switching between channeli and channelj by
employing power levels ofP−

av and P+
av, respectively, with

equal channel switching factors; i.e.,0.5 each, wherei, j, P−
av

andP+
av are as defined in the previous paragraph. Then, that

channel switching strategy achieves an average capacity of
0.5Ci(P

−
av)+0.5Cj(P

+
av), which can be expressed via Taylor

series expansion as follows:

0.5
(

Ci(Pav) + C
′

i (Pav)(P
−
av − Pav) +Ri(P

−
av)
)

+ 0.5
(

Cj(Pav) + C
′

j (Pav)(P
+
av − Pav) +Rj(P

+
av)
)

(32)

where Rj(P
+
av) is as in (30) and Ri(P

−
av) =

C
′′

i (ω)(P−
av − Pav)

2/2 for a ω ∈ [P−
av, Pav]. Since

Ci(Pav) = Cj(Pav) = Cmax(Pav) as mentioned in the
previous paragraph, (32) becomes equal to

Cmax(Pav) + 0.5 ǫ
(

C
′

j (Pav)− C
′

i (Pav)
)

+0.25 ǫ2
(

C
′′

i (ω) + C
′′

j (υ)
)

. (33)

Based on the result obtained in the first part of the proof,
namely,C

′

i (Pav) < C
′

j (Pav), (33) implies that there exists an
infinitesimally smallǫ > 0 such that the channel switching
strategy achieves a larger average capacity thanCmax(Pav),
which is the capacity achieved by the optimal single channel
strategy. Hence, based on the first and the second parts of
the proof, it is concluded that the optimal channel switching
strategy always provides a larger average capacity than the
optimal single channel strategy in the case of a discontinuous
first-order derivative ofCmax(P ) at P = Pav. �

As stated in the proof of Proposition 3, the discontinuities
in the first-order derivative ofCmax(P ) are observed when
capacity curves intersect. The capacity curves of two channels,
say channelk and channell, can intersect [28] if one of them
has a smaller bandwidth and a lower noise level than the other
one; i.e.,Bk < Bl andNk < Nl. In such a case, channelk has
a higher capacity than channell for small power levels (i.e.,
in the power-limited regime) since the capacity expression
in (1) becomes approximately equal to(log2 e)P/Nk and
(log2 e)P/Nl for channelk and channell, respectively, when
P is close to zero. On the other hand, for high power levels
(i.e., in the bandwidth-limited regime), channell achieves a
higher capacity than channelk due to the following reason:

lim
P→∞

Bl log2

(

1 + P
NlBl

)

Bk log2

(

1 + P
NkBk

) =
Bl

Bk

> 1 . (34)

Therefore, the capacity curves can intersect in such scenarios.
For example, in cognitive radio systems, there can exist mul-
tiple available frequency bands in the spectrum with various
bandwidths and noise levels. Hence, such scenarios can be
encountered in these systems.

Remark 2: The main reason for the improvements that
can be realized via optimal channel switching is related
to the fact that the optimal single channel approach can
achieve the capacity values specified byCmax(P ) in (4) only
whereas the upper boundary of the convex hull ofCmax(P )
can also be achieved via optimal channel switching (cf.(3)).
Therefore, the improvements that can be obtained via optimal
channel switching over the optimal single channel approach
are related to the convexity/concavity properties ofCmax(P ).
Even though each capacity function is concave, their maxi-
mum is not necessarily concave. Therefore, opportunities can
appear for average power values corresponding to convex
regions ofCmax(P ) as illustrated in Section IV. The proof
of Proposition 3 contains the theoretical explanation about
this situation by showing that the first-order derivative of
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Cmax(P ) increases at the intersection point of two capacity
curves, which implies that if two capacity functions intersect
at a single point, there always exists a convex region around
that intersection due to the mathematical expression for the
capacity. Hence, improvements may be realized via channel
switching around those intersection points.

B. Solution of Optimal Channel Switching Problem

When the optimal channel switching strategy is guaranteed
to achieve a higher average capacity than the optimal single
channel strategy (which can be deduced from Proposition 2
or Proposition 3), the optimization problem in (2) or (3)
needs to be solved in order to calculate the maximum average
capacity of the system, which involves a search over a2K
dimensional space. However, the following proposition states
that the optimal strategy can be obtained by switching between
no more than two different channels, and the resulting optimal
strategy can be found via a search over a two-dimensional
space only.

Proposition 4: The optimal solution of (2) results in
channel switching between at most two different channels,
and the achieved maximum average capacity is calculated as
λ∗Cmax(P

∗
1 )+ (1−λ∗)Cmax(P

∗
2 ), whereP ∗

1 andP ∗
2 are the

solutions of the following problem:

max
P1∈(Pav,Ppk]

P2∈[0,Pav]

Pav − P2

P1 − P2
Cmax(P1) +

P1 − Pav

P1 − P2
Cmax(P2)

(35)

andλ∗ is given by

λ∗ =
Pav − P ∗

2

P ∗
1 − P ∗

2

. (36)

Proof: As discussed in Proposition 1 and its proof, the op-
timization problems in (2) and (3) achieve the same maximum
average capacity and the optimal channel switching strategy
corresponding to (2) can be obtained from the solution of
(3). Therefore, the optimization problem in (3) is considered,
where the convex combinations ofCmax(Pi)’s andPi’s are the
two main functions. The set of all possible pairs ofCmax(P )
andP is defined as setU ; that is,U = {(Cmax(P ), P ), ∀P ∈
[0, Ppk]}. The convex hull ofU , denoted byV , is guaranteed
to contain the optimal solution of (3) sinceV consists of all
the convex combinations of the elements ofU by definition.
In addition, it can be shown, similarly to [2], that the optimal
solution of (3) should be on the boundary ofV since no interior
points can be the maximizer of (3). Then, Carathéodory’s
theorem [44], [45] is invoked, which states that any point on
the boundary of the convex hullV of setU can be represented
by a convex combination of at mostD points in setU , where
D is the dimension of space in whichU andV reside. Hence,
in this scenario (whereU ⊂ V ⊂ R

2), Carathéodory’s theorem
implies that an optimal solution of (3) can be expressed as the
convex combination of (i.e., time sharing between) at most two
different power levels; that is,νi 6= 0 for one or two indices in
(3). Therefore, the optimal solution of the channel switching
problem in (2) corresponds to channel switching between at
most two different channels.

Based on the previous result, the problem in (3) can be
expressed as follows:

max
λ,P1,P2

λCmax(P1) + (1− λ)Cmax(P2) (37)

subject toλP1 + (1− λ)P2 = Pav (38)

P1 ∈ [0, Ppk], P2 ∈ [0, Ppk] (39)

λ ∈ [0, 1] (40)

where the average power constraint is imposed with equality
based on Lemma 1. Then, by substituting the constraints in
(38)-(40) into the objective function and specifying the search
space, the optimization problem in (35) can be obtained.�

Onceλ∗, P ∗
1 , andP ∗

2 are calculated as in Proposition 4, the
optimal strategy can be specified as follows:

• Case-1 (Channel Switching):If λ∗ ∈ (0, 1), the optimal
strategy is to switch between channeli and channelj with
channel switching (time sharing) factorsλ∗ and 1 − λ∗

and power levelsP ∗
1 andP ∗

2 , respectively, wherei andj
are given by7

i = arg max
l∈{1,...,K}

Cl(P
∗
1 ) , (41)

j = arg max
l∈{1,...,K}

Cl(P
∗
2 ) . (42)

• Case-2 (Single Channel):If λ∗ = 0, the optimal strategy
is to perform communications over channelm all the time
with a power level ofPav, wherem is defined as

m = arg max
l∈{1,...,K}

Cl(Pav) . (43)

Note that, in the case ofλ∗ ∈ (0, 1), i = j is not possible
since time sharing of different power levels over the same
channel always reduces the capacity due to the convexity of
the capacity function in (1).

A flowchart is provided in Fig. 2 to explain the results
obtained in this section. In particular, the optimal strategy can
be specified as shown in the flowchart based on the proposi-
tions. Depending on the system parameters, either the single
channel strategy or the channel switching strategy can be the
optimal approach. From Proposition 2 and Proposition 3, the
optimal strategy can be classified assingle channel(case 2)
or channel switching(case 1) without solving the optimization
problem in (35): If the first-order derivative ofCmax(P ) is
continuous atPav (i.e., the condition in Proposition 3 does not
hold) and the condition in Proposition 2 is satisfied, then the
optimal single channel strategy is optimal (i.e., there is no need
for channel switching), as shown in Fig. 2. In that case, the
optimal solution of (2) can directly be expressed asλi∗ = 1,
Pi∗ = Pav, andλj = 0 for all j ∈ {1, . . . ,K} \ {i∗}, where
i∗ = arg maxi∈{1,...,K} Ci(Pav) (cf. (43)), and the maximum
capacity becomesCmax(Pav). If the condition in Proposition 3
holds or the condition in Proposition 2 is not satisfied, the
optimal strategy is to switch between two different channels,
and the optimization problem in Proposition 4 (i.e., (35)) can
be solved in that case, as illustrated in Fig. 2. (As discussed
in the next section, the solution of (35) can also be obtained
based on Proposition 5.)

It is noted that the computational complexity of the opti-
mization problem in (35) depends on the number of channels,

7In the case of multiple maximizers in (41) or (42), any of themcan be
chosen for the optimal strategy.
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Start

Input:
Channel bandwidths,Bi , i ∈ {1, . . . ,K}

Noise levels,Ni , i ∈ {1, . . . ,K}
Average power limit,Pav

Peak power limit,Ppk

CalculateCmax(·) in (4)

Does the condition in Proposition 3 hold?

Does the condition in Proposition 2 hold?

Single Channel Strategy Channel Switching Strategy

Solve the optimization
problem in (43)

Solve the optimization
problem in Proposition 4

(cf. Section III-C)

Employ the strategy

yes

no

noyes

Fig. 2. A flowchart indicating the outline of the proposed optimal channel
switching and optimal single channel approaches.

K, only through Cmax in (4), and the dimension of the
search space is always two irrespective of the number of
channels. Therefore, Proposition 4 can provide a significant
simplification over the original formulation in (2), which
requires a search over a2K dimensional space.

C. Alternative Solution for Optimal Channel Switching

When the optimal strategy involves channel switching,
which can be deduced from Proposition 2 and Proposition 3,
one way to obtain the solution is to solve the optimization
problem in (35). An alternative approach can be developed
based on the following proposition:

Proposition 5: Consider a scenario in which channel
switching between channelk and channell is optimal. Let
P ∗
1 and P ∗

2 denote the optimal transmit powers allocated
to channelk and channell, respectively. Then, the optimal
solution satisfies at least one of the following conditions:

(i) Nk +
P∗

1

Bk
= Nl +

P∗

2

Bl
, whereBk and Nk/2 (Bl and

Nl/2) are, respectively, the bandwidth and the constant
power spectral density level of the additive Gaussian
noise corresponding to channelk (channell).

(ii) P ∗
1 = Ppk and P ∗

2 =
Pav−λ∗Ppk

1−λ∗
, whereλ∗ = (Pav −

P ∗
2 )/(Ppk − P ∗

2 ) .
(iii) P ∗

2 = Ppk andP ∗
1 =

Pav−(1−λ∗)Ppk

λ∗
, whereλ∗ = (Ppk−

Pav)/(Ppk − P ∗
1 ) .

Proof: The results in the proposition can be proved via
Karush-Kuhn-Tucker (KKT) conditions [42] based on the
optimal channel switching problem formulated in (2). To that
aim, the Lagrangian [42] for the optimization problem in (2)
is obtained first:

L(λ,P , µ,γ,β, θ,α) = −

K
∑

i=1

λi Ci(Pi) + µ

(

K
∑

i=1

λi Pi − Pav

)

−

K
∑

i=1

γi Pi +

K
∑

i=1

βi (Pi − Ppk) + θ

(

K
∑

i=1

λi − 1

)

−

K
∑

i=1

αi λi

(44)

where λ = [λ1 · · ·λK ] and P = [P1 · · ·PK ] are the op-
timization variables in (2), andµ, γ, β, θ, and α are the
KKT multipliers, with γ = [γ1 · · · γK ], β = [β1 · · ·βK ], and
α = [α1 · · ·αK ]. Then, the optimal solution of the problem
in (2), denoted by{λ∗

i , P
∗
i }

K
i=1 (equivalently, byλ∗,P ∗),

satisfies the following KKT conditions:

• Stationarity: ∂L(λ∗,P ∗, µ,γ,β,θ,α)
∂λi

= 0 and
∂L(λ∗,P ∗, µ,γ,β,θ,α)

∂Pi
= 0 for i ∈ {1, . . . ,K}, whereL is

as defined in (44).
• Complementary slackness:µ

(

∑K
i=1 λ

∗
i P

∗
i − Pav

)

=

0,
∑K

i=1 γi P
∗
i = 0,

∑K
i=1 βi (P

∗
i − Ppk) = 0, and

∑K
i=1 αi λ

∗
i = 0.

• Primal and dual feasibility: µ ≥ 0, γi ≥ 0, βi ≥ 0, and
αi ≥ 0 for i ∈ {1, . . . ,K}.

From the stationarity conditions; the following equalities are
obtained based on (44):

Ci(P
∗
i ) = µP ∗

i + θ − αi , ∀i ∈ {1, . . . ,K} , (45)

C
′

i (P
∗
i ) = µ+

βi − γi
λ∗
i

, ∀i ∈ {1, . . . ,K} . (46)

Now consider the scenario in the proposition, where channel
switching between channelk and channell is optimal; that
is, λ∗

k 6= 0, λ∗
l 6= 0, P ∗

k = P ∗
1 6= 0, P ∗

l = P ∗
2 6= 0, and

P ∗
i = λ∗

i = 0 for i ∈ {1, . . . ,K} \ {k, l}.8 Then,γk = γl = 0
andαk = αl = 0 can be obtained from the second and fourth
complementary slackness conditions. For the optimal power
levels, three possible scenarios exist:

• First, it is assumed thatP ∗
1 < Ppk andP ∗

2 < Ppk hold.
Then,βk = 0 andβl = 0 are satisfied due to the third
complementary slackness condition. Combining this re-
sult with γk = γl = 0, λ∗

k 6= 0, andλ∗
l 6= 0, the condition

in (46) can be expressed asC
′

k(P
∗
k ) = C

′

l (P
∗
l ) = µ,

which leads to condition(i) in the proposition based on
the first-order derivative expression in (16).

• Second, it is assumed thatP ∗
1 = Ppk and P ∗

2 < Ppk.
Due to Lemma 1, the average power constraint must
be satisfied with equality, which leads toP ∗

2 = (Pav −
λ∗Ppk)/(1 − λ∗), whereλ∗ = (Pav − P ∗

2 )/(Ppk − P ∗
2 ).

Hence, condition(ii) in the proposition is obtained. Note

8Note that the on-off scheme, in which one power level is equalto zero,
cannot be optimal due to the concavity of the capacity curvesand the fact
that Ci(0) = 0, ∀i ∈ {1, . . . , K}.
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that in this caseβk ≥ 0 andβl = 0, which implies that
C

′

k(P
∗
k ) ≥ C

′

l (P
∗
l ) based on (46).

• For the third scenario, the third condition in the proposi-
tion can similarly be obtained under the assumption that
P ∗
1 < Ppk andP ∗

2 = Ppk.

Finally, it is noted thatP ∗
1 = P ∗

2 = Ppk is not possible since it
violates the average power constraint asPpk > Pav. Therefore,
the optimal solution of the channel switching strategy between
two channels satisfies at least one of the three conditions in
Proposition 5. �

Proposition 5 presents necessary conditions that need to be
satisfied by the optimal channel switching strategy. Based on
this proposition, the optimal solution of the problem in (2)
can also be calculated as described in the following. For the
scenario in which one of the power levels is set toPpk, the
maximum capacity achieved can be calculated from the second
and third conditions in Proposition 5 as follows:

C̃av(i, j) , max
Pj∈[0,Pav]

Pav − Pj

Ppk − Pj

Ci(Ppk) +
Ppk − Pav

Ppk − Pj

Cj(Pj)

(47)

where i, j ∈ {1, . . . ,K} and i 6= j. Since one power level
is fixed to Ppk, it is sufficient to consider the best channel
only for that power level in calculating the maximum average
capacity. Hence, a new function, which is a function of a single
channel index only, is defined in that respect as follows:

C̃av(j) , max
Pj∈[0,Pav]

Pav − Pj

Ppk − Pj

Cmax(Ppk) +
Ppk − Pav

Ppk − Pj

Cj(Pj)

(48)

where j ∈ {1, . . . ,K} \ {k∗} with k∗ =
arg maxi∈{1,...,K} Ci(Ppk) and Cmax(Ppk) = Ck∗(Ppk).
Then, in the case of channel switching between two channels
where one power level is equal toPpk, the maximum achieved
capacity can be calculated as follows:

C̃av = max
j∈{1,...,K}

j 6=k∗

C̃av(j) (49)

It should be noted that̃Cav also includes the maximum capac-
ity that can be achieved by the optimal single channel strategy
sinceC̃av(j) in (48) reduces toCj(Pav) for Pj = Pav (which
is added to the search space for this purpose). For the scenario
in which the optimal power levels are belowPpk, the first
condition in Proposition 5, namely,Ni+Pi/Bi = Nj+Pj/Bj,
can be employed to obtain the following formulation for the
maximum achieved capacity:

C̄av(i, j) , max
Pj∈(P lb

ij
,Pub

ij ]

Pav − Pj

Pi − Pj

Ci(Pi) +
Pi − Pav

Pi − Pj

Cj(Pj)

(50)

whereP lb
ij , max

{

0 ,
(

Pav
Bj

Bi
+ Bj (Ni − Nj)

)}

, P ub
ij ,

min
{

Pav ,
(

Ppk
Bj

Bi
+Bj (Ni−Nj)

)}

, andPi = Bi(Nj−Ni)+

BiPj/Bj . Note that the search space forPj (namely,P lb
ij and

P ub
ij ) is obtained by the joint consideration ofPj ∈ (0, Pav]

and Pi = Bi(Nj − Ni) + BiPj/Bj ∈ (Pav, Ppk]. Then,
the maximum capacity that can be achieved by switching
between two channels with power levels lower thanPpk can

be calculated as follows:

C̄av = max
i,j∈{1,...,K}

i6=j

C̄av(i, j) (51)

Overall, the solution of the optimal channel switching problem
in (2) achieves the following maximum average capacity:

Cmax
av = max

{

C̃av, C̄av

}

(52)

where C̃av and C̄av are as in (49) and (51), respectively.
Also, the optimal strategy can be obtained as follows: If
C̃av = Cmax(Pav) ≥ C̄av, then the optimal solution corre-
sponds to the single channel strategy, which is to transmit
over channelm all the time with power levelPav, where
m = arg maxi∈{1,...,K} Ci(Pav). (In fact, based on Proposi-
tion 2, the cases in which the single channel strategy is optimal
can be determined beforehand, and the efforts in solving (48)-
(52) can be avoided.) If̃Cav ≥ C̄av and C̃av > Cmax(Pav),
the optimal strategy is to switch over channelk∗ and channel
j∗ with power levelsPpk and P ∗

j∗ and channel switching
factors(Pav−P ∗

j∗)/(Ppk−P ∗
j∗) and(Ppk−Pav)/(Ppk−P ∗

j∗),
respectively, whereP ∗

j∗ denotes the maximizer of the prob-
lem in (48), k∗ = arg maxi∈{1,...,K} Ci(Ppk), and j∗ =

arg maxj∈{1,...,K}, j 6=k∗ C̃av(j), with C̃av(j) being as defined
in (48). Finally, if C̄av > C̃av, then the optimal strategy is
to switch between channelj∗ and channeli∗ with power
levels P ∗

j∗ and P ∗
i∗ = Bi∗(Nj∗ − Ni∗) + Bi∗Pj∗/Bj∗ and

channel switching factors(Pi∗ −Pav)/(Pi∗ −Pj∗) and(Pav−
Pj∗)/(Pi∗ − Pj∗), respectively, whereP ∗

j∗ is the maximizer
of the problem in (50) andi∗ and j∗ denote the maximizers
of (51).

In order to compare the approach in the previous paragraph
(called the second approach) to the one provided in Proposi-
tion 4 (called the first approach) in terms of the computational
complexity in obtaining the optimal switching solution, the
optimization problems in (35) and in (48)-(52) are considered.
In the first approach, the problem in (35) requires a two-
dimensional search over[0, Pav] × (Pav, Ppk]. On the other
hand, the main operations in the second approach are related
to the optimization problem in (48), which requires a one-
dimensional search over[0, Pav], and the optimization problem
in (50), which requires a one-dimensional search over a subset
of [0, Pav]. It is observed from (49) and (51) that the problem
in (48) is solved forK − 1 different channel indices and
the one in (50) is solved forK(K − 1) different channel
pairs. Therefore, overall, the second approach involvesK2−1
one-dimensional searches. In fact, instead ofK, a smaller
number can be considered in many scenarios when some
channels outperform other channels in the sense that they
have larger or equal capacities for all possible power values.
From (1), it is observed that, for channeli and channelj, if
Ni ≤ Nj andBi ≥ Bj , then channeli outperforms channel
j for all power values. Therefore, channelj can be excluded
from the set of channels for the optimal channel switching
solution. Hence, based on this observation, it can be stated
that the second approach involves̃K2 − 1 one-dimensional
searches, wherẽK is the number of elements in setC, which
is defined asC = {i ∈ {1, . . . ,K} | (Ni < Nj or Bi >
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Fig. 3. Capacity of each channel versus power, whereB1 = 1MHz, B2 =
5MHz, B3 = 10MHz, N1 = 10−12 W/Hz, N2 = 10−11 W/Hz, andN3 =
10−11 W/Hz.

Bj) ∀j ∈ {1, . . . ,K} \ {i}}.9 Therefore, the computational
complexity comparison between the first approach and the
second approach depends on the number of channels and their
noise levels and bandwidths. In particular, the second (first)
approach become more desirable for small (large) values of
K̃.

IV. N UMERICAL RESULTS

In this section, numerical examples are provided in order
to investigate the proposed optimal channel switching strategy
and to compare it against the optimal single channel strategy.
First, consider a scenario withK = 3 channels and the
following bandwidths and noise levels (cf. (1)):B1 = 1MHz,
B2 = 5MHz, B3 = 10MHz, N1 = 10−12 W/Hz, N2 =
10−11 W/Hz, andN3 = 10−11 W/Hz. Suppose that the peak
power limit in (2) is set toPpk = 0.1mW. In Fig. 3, the
capacity of each channel is plotted as a function of power
based on the capacity formula in (1). For the scenario in
Fig. 3, the proposed optimal channel switching strategy and
the optimal single channel strategy are calculated for vari-
ous average power limits (Pav), and the achieved maximum
average capacities are plotted in Fig. 4 versusPav. Also,
the shaded area in the figure indicates the achievable rates
(average capacities) via channel switching that are higher
than those achieved by the optimal single channel strategy.
As discussed in the previous section, the optimal single
channel strategy achieves a capacity ofCmax(Pav), which
is Cmax(Pav) = max{C1(Pav), C2(Pav), C3(Pav)} in the
considered scenario. It is observed from Fig. 3 and Fig. 4
that Cmax(Pav) = C1(Pav) for Pav ∈ (0, 0.048)mW and
Cmax(Pav) = C3(Pav) for Pav ∈ [0.048, 0.1]mW; that is,
channel 1 is the best channel up toPav = 0.048mW, and
channel 3 is the best after that power level. From Fig. 4,
it is also noted that the proposed optimal channel switching
strategy outperforms the optimal single channel strategy for
Pav ∈ [0.0196, 0.1]mW, and the two strategies have the

9For convenience, it is assumed that the identical channels (the same
bandwidth and noise level) are already eliminated.
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Fig. 4. Average capacity versus average power limit for the optimal channel
switching and the optimal single channel strategies for thescenario in Fig. 3,
wherePpk = 0.1mW. The shaded area indicates the achievable rates via
channel switching that are higher than those achieved by theoptimal single
channel strategy.

same performance forPav < 0.0196mW. These regions can
also be obtained by checking the necessary and sufficient
condition in Proposition 2 (see (15)), which is satisfied for
all P ∈ [0, 0.1]mW for Pav < 0.0196mW, and is not satisfied
for someP ∈ [0, 0.1]mW for Pav ∈ [0.0196, 0.1]mW . In
addition, in accordance with Proposition 3, it is observed
that the optimal channel switching strategy outperforms the
optimal single channel strategy atPav = 0.048mW, which
corresponds to a discontinuity point for the first-order deriva-
tive of Cmax(P ).

In order to provide a detailed investigation of the optimal
channel switching strategy, Table I presents the optimal chan-
nel switching solutions for various values of the average power
limit, Pav. In the table, the optimal solution is represented
by parametersλ∗, P ∗

1 , P ∗
2 , i, and j, meaning that channel

i is used with channel switching factorλ∗ and powerP ∗
1 ,

and channelj is used with channel switching factor1 − λ∗

and powerP ∗
2 . It is observed from the table that the optimal

solution reduces to the optimal single channel strategy for
Pav = 0.01mW (in which case channel1 is used all the time),
and it involves switching between channel1 and channel3 for
larger values ofPav. This observation is also consistent with
Fig. 4, which illustrates improvements via channel switching
for Pav > 0.0196mW. It is also observed from the table that
the optimal channel switching solution forPav > 0.0196mW
satisfies condition(ii) in Proposition 5 sinceP ∗

1 = Ppk = 0.1,
P ∗
2 = (Pav − λ∗Ppk)/(1 − λ∗) = 0.0196mW, and λ∗ =

(Pav−P ∗
2 )/(Ppk−P ∗

2 ). In addition, as stated in Lemma 1, the
optimal solutions always operate at the average power limits.

For the scenario in Fig. 3, the average capacity versus the
peak power limit curves are presented for the optimal channel
switching and the optimal single channel strategies in Fig.5,
where the average power limit is set toPav = 0.04mW.
From the figure, it is observed that the average capacity for
the optimal single channel strategy does not depend on the
Ppk value since this strategy achieves an average capacity of
Cmax(Pav) andPpk > Pav = 0.04mW in this scenario. On
the other hand, increasedPpk can improve the average capacity
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TABLE I
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORSλ∗

AND (1 − λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

Pav (mW) λ∗ P ∗

1 i (1− λ∗) P ∗

2 j

0.01 − − − 1 0.01 1
0.02 0.005 0.1000 3 0.995 0.0196 1
0.03 0.129 0.1000 3 0.871 0.0196 1
0.04 0.254 0.1000 3 0.746 0.0196 1
0.05 0.378 0.1000 3 0.622 0.0196 1
0.06 0.503 0.1000 3 0.498 0.0196 1
0.07 0.627 0.1000 3 0.373 0.0196 1
0.08 0.751 0.1000 3 0.249 0.0196 1
0.09 0.876 0.1000 3 0.124 0.0196 1
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Fig. 5. Average capacity versus peak power limit for the optimal channel
switching and the optimal single channel strategies for thescenario in Fig. 3,
wherePav = 0.04mW.

for the optimal channel switching strategy as observed from
the figure. The intuition behind this increase can be deduced
from Fig. 3 and Table II. In particular, as observed from
Table II, when the peak power limit is larger than0.048mW,
which is the discontinuity point for the first-order derivative of
Cmax, the optimal channel switching strategy performs time
sharing (switching) between channel1 and channel3, where
channel3 is operated at the peak power limit,Ppk.

Next, a scenario withK = 4 channels is considered,
where the bandwidths and the noise levels of channels are
specified asB1 = 0.5MHz, B2 = 2.0MHz, B3 = 2.5MHz,
B4 = 5.0MHz, N1 = 10−12 W/Hz, N2 = 1.5× 10−11 W/Hz,
N3 = 2.0× 10−11 W/Hz, andN4 = 2.5× 10−11 W/Hz. Also,
the peak power limit is set toPpk = 0.25mW. In Fig. 6,
the capacity of each channel is plotted versus the transmit
power. In Fig. 7, the average capacity versusPav curves are
presented for the proposed optimal channel switching strategy
and the optimal single channel strategy. In addition, the shaded
area in the figure indicates the achievable rates via channel
switching that are higher than those achieved by the optimal
single channel strategy. From Fig. 7, it is observed that the
optimal channel switching strategy outperforms the optimal
single channel strategy forPav ∈ (0.031, 0.187)mW. Also,
it can be deduced from Fig. 6 and Fig. 7 that channel3

TABLE II
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 3, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORSλ∗

AND (1− λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

Ppk (mW) λ∗ P ∗

1 i (1− λ∗) P ∗

2 j

0.045 − − − 1.000 0.0400 1
0.050 0.465 0.050 3 0.535 0.0313 1
0.055 0.488 0.055 3 0.512 0.0257 1
0.060 0.455 0.060 3 0.545 0.0233 1
0.065 0.419 0.065 3 0.581 0.0220 1
0.070 0.387 0.070 3 0.613 0.0211 1
0.075 0.357 0.075 3 0.643 0.0206 1
0.080 0.331 0.080 3 0.669 0.0202 1
0.085 0.309 0.085 3 0.691 0.0199 1
0.090 0.289 0.090 3 0.711 0.0197 1
0.095 0.271 0.095 3 0.729 0.0196 1
0.100 0.254 0.100 3 0.746 0.0196 1
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Fig. 6. Capacity of each channel versus power,B1 = 0.5MHz, B2 =
2.0MHz, B3 = 2.5MHz, B4 = 5.0MHz, N1 = 10−12 W/Hz, N2 =
1.5 × 10−11 W/Hz, N3 = 2.0 × 10−11 W/Hz, N4 = 2.5 × 10−11 W/Hz,
andPpk = 0.25mW.
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Fig. 7. Average capacity versus average power limit for the optimal channel
switching and the optimal single channel approaches forPpk = 0.25mW.
The shaded area indicates the achievable rates via channel switching that are
higher than those achieved by the optimal single channel strategy.
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TABLE III
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 6, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORSλ∗

AND (1 − λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

Pav (mW) λ∗ P ∗

1 i (1− λ∗) P ∗

2 j

0.025 − − − 1.0000 0.0250 1
0.050 0.1236 0.1868 4 0.8764 0.0307 1
0.075 0.2838 0.1868 4 0.7162 0.0307 1
0.100 0.4439 0.1868 4 0.5561 0.0307 1
0.125 0.6041 0.1868 4 0.3959 0.0307 1
0.150 0.7643 0.1868 4 0.2357 0.0307 1
0.175 0.9244 0.1868 4 0.0756 0.0307 1
0.200 − − − 1.0000 0.2000 4
0.225 − − − 1.0000 0.2250 4

is not employed in any strategy sinceCmax(P ) 6= C3(P )
for P ∈ [0, 0.25]mW. In Table III, the optimal strategies
are presented for the scenario in Fig. 6 for various values
of Pav. As observed from the table, the optimal strategy
corresponds to the optimal single channel strategy for small
and large values ofPav and it corresponds to channel switching
between channel1 and channel4 for medium range ofPav

values. These observations are in accordance with Fig. 7.
In addition, it is important to emphasize that the channels
employed in the optimal channel switching strategy for a
given value ofPav may not correspond to the channel used in
the optimal single channel strategy for the samePav value.
For example, as can be observed from Fig. 6 and Fig. 7,
channel2 is not employed in the optimal channel switching
strategy forPav ∈ (0.031, 0.187)mW (channel1 and channel
4 are employed); however, it is the optimal channel for the
optimal single channel strategy forPav ∈ [0.075, 0.099]mW
as Cmax(Pav) = C2(Pav). This is mainly due to the fact
that the optimal single channel approach achieves the capacity
value specified byCmax(Pav) whereas the upper boundary
of the convex hull ofCmax(P ) is achieved via the optimal
channel switching approach.

Finally, for the scenario in Fig. 6,Pav is set toPav =
0.07mW, and the effects of the peak power limit,Ppk, are
investigated. In Fig. 8, the average capacity is plotted versus
Ppk for the optimal channel switching and optimal single chan-
nel strategies. It is observed that the optimal single channel
strategy achieves a constant capacity ofCmax(Pav) for all Ppk

values, wherePpk ∈ (0.07, 0.25]mW. On the other hand, for
the optimal channel switching strategy, improvements in the
average capacity are observed for whenPpk is larger than
0.075mW. It is also noted that the behavioral changes in
the average capacity curve for the optimal channel switching
strategy occurs at0.075mW and0.099mW, which correspond
to the discontinuity points for the first-order derivative of
Cmax, as can be observed from Fig. 6. Similar to Table II,
Table IV presents the solutions corresponding to the optimal
strategy for various values ofPpk. From the table, it is
observed that the optimal strategy changes with respect to
the peak power limit. In addition, it can be shown that the
solutions of the optimal channel switching strategy satisfy
condition (i) in Proposition 5 forPpk ≥ 0.1868mW and
condition(ii) for Ppk ∈ (0.075, 0.1868)mW.

Based on the numerical examples, an intuitive explanation
can be provided about the benefits of channel switching and
why the optimal channel switching strategy involves switching
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Fig. 8. Average capacity versus peak power limit for the optimal channel
switching and the optimal single channel strategies for thescenario in Fig. 6,
wherePav = 0.07mW.

TABLE IV
OPTIMAL STRATEGY FOR THE SCENARIO INFIG. 6, WHICH EMPLOYS

CHANNEL i AND CHANNEL j WITH CHANNEL SWITCHING FACTORSλ∗

AND (1− λ∗) AND POWER LEVELSP ∗

1 AND P ∗

2 , RESPECTIVELY.

Ppk (mW) λ∗ P ∗

1 i (1− λ∗) P ∗

2 j

0.075 − − − 1.0000 0.0700 1
0.080 0.6540 0.0800 2 0.3460 0.0511 1
0.085 0.6173 0.0850 2 0.3827 0.0458 1
0.090 0.5745 0.0900 2 0.4255 0.0430 1
0.095 0.5336 0.0950 2 0.4664 0.0414 1
0.100 0.5008 0.1000 4 0.4992 0.0399 1
0.125 0.4009 0.1250 4 0.5991 0.0332 1
0.150 0.3260 0.1500 4 0.6740 0.0313 1
0.175 0.2723 0.1750 4 0.7277 0.0307 1
0.200 0.2518 0.1868 4 0.7482 0.0307 1
0.225 0.2518 0.1868 4 0.7482 0.0307 1
0.250 0.2518 0.1868 4 0.7482 0.0307 1

between no more than two channels. In the absence of channel
switching, the maximum capacity is given byCmax(Pav),
whereas via channel switching, the upper boundary of the
convex hull of Cmax(Pav) can also be achieved (see, e.g.,
Fig. 4). Since the upper boundary of the convex hull can
always be formed by a convex combination of two different
points, no more than two different channels are needed to
achieve the optimal capacity. Finally, it is important to note
that the optimal solution to the channel switching problem in
(3) may not be unique in general; that is, in some cases, two
different channel switching strategies or a channel switching
strategy and a single channel strategy can be the optimal
solutions.

V. CONCLUDING REMARKS

In this study, the optimal channel switching strategy has
been proposed for average capacity maximization in the pres-
ence of average and peak power constraints. Necessary and
sufficient conditions have been derived for specifying whether
the proposed optimal channel switching strategy can or cannot
outperform the optimal single channel strategy. In addition,
the optimal channel switching solution has been shown to be
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realized by channel switching between at most two different
channels, and a low-complexity optimization problem has been
formulated to calculate the optimal channel switching solution.
Furthermore, based on the necessary conditions that need to
be satisfied by the optimal channel switching solution, an
alternative approach has been proposed for calculating the
optimal channel switching strategy. Numerical examples have
been investigated and intuitive explanations about the benefits
of channel switching have been provided. Although Gaussian
channels have been considered in this study, the results can
also be applied to block frequency-flat fading channels in the
presence of Gaussian noise when the channel state information
is available at the transmitter and the receiver. In that scenario,
the proposed channel switching strategy can be adopted for
each channel state. As future work, performance improvements
that can be achieved by performing both channel switching
at each channel state and adaptation over varying channel
states can be considered. Another future work involves the
consideration of channel switching costs (delays) in the design
of optimal channel switching strategies.
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