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Abstract—In this study, the Ziv-Zakai bound (ZZB) is derived
for synchronous visible light positioning (VLP) systems. The
proposed ZZB extracts ranging information from the prior
information, the time delay parameter, and the channel atten-
uation factor based on the Lambertian pattern. In addition to
the ZZB, the Bayesian Craḿer-Rao bound (BCRB) and the
weighted CRB (WCRB) are calculated for synchronous VLP
systems. Furthermore, a closed-form expression is obtained for
the expectation of the conditional CRB (ECRB). Numerical
examples are presented to compare the bounds against each
other and against the maximum a-posteriori probability (MAP)
estimator. It is observed that the ZZB can provide a reasonable
lower limit on the performance of MAP estimators. On the other
hand, the WCRB and the ECRB converge to the ZZB in regions
of low and high source optical powers, respectively; however, they
are not tight in other regions.

Index Terms–Estimation, Ziv-Zakai bound, visible light, Lam-
bertian pattern, positioning.

I. I NTRODUCTION

In indoor environments, light emitting diode (LED) based
visible light systems can be used for accurate positioning,high
speed data transmission, and illumination simultaneously[1]–
[9]. The topic of this manuscript is related to positioning via
visible light systems. Visible light positioning (VLP) systems
with high localization accuracy can be employed in numerous
applications including robot navigation and asset tracking [4],
[10]. Recently, various studies have been performed on VLP
systems, and high positioning accuracies have been reported
based on experiments and simulations; e.g., [11]–[13]. The
aim in this manuscript is to obtain theoretical limits on dis-
tance (range) estimation in asynchronousVLP system, which
provide performance benchmarks for practical estimators.

Depending on the presence/absence of synchronization
among LED transmitters and visible light communication
(VLC) receivers, VLP systems can be categorized assyn-
chronousandasynchronous. In an asynchronous VLP system,
LED transmitters are not synchronized with VLC receivers,
and the main parameter utilized for positioning is the received
signal strength (RSS) (or, power) of the incoming signal
based on the Lambertian formula [7], [8], [11], [13]–[15].
On the other hand, in a synchronous VLP system, where
LED transmitters and VLC receivers are synchronized, both
the time-of-arrival (TOA) and the RSS parameters can be
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utilized for distance (hence, position) estimation [5], [16].
Also, in the presence of multiple photo-detectors at the VLC
receiver, the angle-of-arrival (AOA) parameter can also be
employed for positioning [9], [17], [18]. The AOA can be
calculated from the TOA differences or the RSS differences
among the photo-detectors depending on the presence/absence
of synchronization.

Theoretical accuracy limits are important for VLP systems
to present benchmarks for numerous studies in the literature. In
[5], [6], [16], [19], the Cramér-Rao bound (CRB) is considered
for providing theoretical limits for various VLP systems. In
[6], the CRB on range (distance) estimation is derived for an
asynchronous VLP system based on RSS measurements, and
the effects of system parameters, such as the signal bandwidth,
LED configuration and transmitter height, are investigated.
The study in [5] focuses on a synchronous VLP system and
presents the CRB on TOA based range estimation. It also
analyzes the impact of various system parameters, such as
the area of the photo detector, source optical power, and
center frequency, on ranging accuracy. In [16], the CRBs and
maximum likelihood estimators (MLEs) are investigated for
both synchronous and asynchronous VLP systems. In the syn-
chronous case, both the channel attenuation factor (RSS) and
the TOA parameters are utilized while only the RSS parameter
is used in the asynchronous case. Comparisons are performed
among the synchronous and asynchronous scenarios based on
the analytical CRB expressions [16]. In [19], a hybrid AOA
and RSS based three-dimensional localization is investigated
for an asynchronous VLP system, where AOA based and RSS
based localization algorithms employ, respectively, a least-
squares estimator and an analytical learning rule based on the
Newton-Raphson method. Also, the CRB is derived for RSS
based three dimensional localization for a generic deployment
scenario. Unlike the theoretical limits in [5], [6], [16], [19],
the aim in this study is to provide theoretical limits for a
synchronous VLP system by considering the effects ofprior
information, as well.

Although the CRB can provide tight limits on mean-
squared errors (MSEs) of unbiased estimators in high signal-
to-noise ratio (SNR) conditions, it can be quite loose for
low SNRs [20]. In addition, the CRB derivations do not
consider any prior statistical information about the range(or,
position) parameter, which can in fact be available in indoor
environments; e.g., based on physical dimensions and known
system parameters such as the field of view of the photo
detector. To address these issues, the Ziv-Zakai bound (ZZB)
can be used as a benchmark for ranging in VLP systems.
The ZZB can provide tight limits on MSEs of estimators in
all SNR conditions, and it also utilizes the available prior
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information [20], [21]. The study in [22] derives the ZZB
on range estimation in an asynchronous VLP system based
on RSS measurements and provides comparisons with the
maximum a-posteriori probability (MAP) and the minimum
mean-squared error (MMSE) estimators.

In this manuscript, the ZZB on ranging is derived for a
synchronous VLP system by utilizing the prior information
and the ranging information from both the time delay (TOA)
parameter and the channel attenuation factor (RSS) via the
Lambertian pattern. Based on the ZZB, effects of various sys-
tem parameters, such as the Lambertian order, the area of the
photo detector, and the source optical power, are analyzed in
terms of ranging accuracy, and design guidelines are provided
for practical VLP systems. In addition, the expectation of the
CRB (ECRB) is calculated and a closed-form expression is
obtained for uniform prior information. The ECRB expression
both illustrates the effects of prior information and provides a
low-complexity alternative to the ZZB in high SNR conditions.
Moreover, the Bayesian CRB (BCRB) and the weighted CRB
(WCRB) are derived in order to present theoretical limits that
effectively utilize the prior information, and they are compared
against the ZZB. The main contributions of this study can be
summarized as follows:

• The ZZB on ranging is derived for a synchronous VLC
system by utilizing prior information together with the
ranging information extracted from the time delay pa-
rameter and the channel attenuation factor. (The provided
ZZB expression is different from those for synchronous
RF systems [20], [23], [24] due to the facts that (i)
synchronous VLP systems utilize both time delay and
received signal power information whereas synchronous
RF systems use time delay information only, and (ii)
the Lambertian formula is available for VLP systems to
specify the received signal power, which is not valid for
RF systems.)

• A closed-form ECRB expression is derived for ranging in
synchronous VLC systems, which converges to the ZZB
in the high SNR regime.

• The BCRB and the WCRB expressions are provided for a
synchronous VLC system, which have not been available
in the literature.

• Performance of the MAP estimator is compared against
the theoretical limits. It is demonstrated that the theoreti-
cal limits on the performance of the MAP estimators can
be characterized by the ZZB, which provides important
guidelines for designers of practical VLP systems. In
addition, the ECRB and the WCRB are observed to
converge to the ZZB in the high and low SNR regimes,
respectively.

The rest of the manuscript is organized as follows: The
system model is introduced in Section II. The ZZB for
synchronous VLP systems is derived in Section III, and a
closed-form ECRB expression is provided in Section IV. The
BCRB and the WCRB expressions are obtained in Section V.
Numerical results investigating the performance of the MAP
estimator and the bounds are presented in Section VI, followed
by some concluding remarks in Section VII.

II. SYSTEM MODEL

Consider an LED transmitter and a VLC receiver that are
located at a distance ofx from each other. A line-of-sight
(LOS) scenario is assumed, which is commonly the case for
visible light systems [4], [5]. Then, the received signal atthe
VLC receiver is stated as [5]

r(t) = αRp s(t− τ) + n(t) (1)

for t ∈ [T1, T2], whereT1 andT2 determine the observation
interval, α is the attenuation factor of the optical channel
(α > 0), Rp is the responsivity of the photo detector,s(t)
is the transmitted signal which is nonzero over an interval
of [0, Ts], τ is the time-of-arrival (TOA), andn(t) is zero-
mean additive white Gaussian noise with spectral density level
σ2. Considering a synchronous system as in [5], the TOA
parameter is modeled as

τ =
x

c
(2)

wherex is the distance (range) between the LED transmitter
and the VLC receiver, andc is the speed of light. It is assumed
that the signal component in (1) is contained completely in the
observation interval[T1, T2]; that is,τ ∈ [T1, T2 −Ts]. In (1),
the channel attenuation factorα is modeled as

α =
m+ 1

2π
cosm(φ) cos(θ)

S

x2
(3)

wherem is the Lambertian order,φ is the irradiation angle,
θ is the incidence angle, andS is the area of the photo
detector at the VLC receiver [5]. For clarity of theoretical
expressions, it is assumed, as in [5], [6], [11], [22], that the
LED transmitter is pointing downwards (which is commonly
the case since LEDs are employed also for illumination) and
the photo detector at the VLC receiver is pointing upwards.
Then,φ = θ and cos(φ) = cos(θ) = h/x, whereh denotes
the height of the LED transmitter relative to the VLC receiver.
(The theoretical expressions in this study can also be extended
to the cases with arbitrary transmitter and receiver orientations,
which however leads to lengthy and inconvenient expressions.)
In addition, as in [5], [6], [8], [11], [22], it is assumed that
the LED transmitter is at a known height with respect to the
VLC receiver; i.e., possible locations of the VLC receiver are
confined to a two-dimensional plane. This assumption is valid
in various practical applications; e.g., when the VLC receiver
is attached to a cart or a robot that is tracked via a VLP system
since VLC receivers have fixed and known heights in those
applications (e.g., Fig. 3 in [4]). Under these assumptions, (3)
reduces to

α =
m+ 1

2π

(

h

x

)m+1
S

x2
, γ x−m−3 (4)

whereγ is a known constant defined as

γ , (m+ 1)hm+1S

2π
· (5)
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III. Z IV-ZAKAI BOUND (ZZB)

The ZZB provides a lower limit on MSEs of estimators
based on a relation in terms of the probability of error in a
binary hypothesis-testing problem. It is expressed as [21]

ξ ≥ 1

2

∫ ∞

0

∫ ∞

−∞
(w(ϑ) + w(ϑ + δ))Pmin(ϑ, ϑ+ δ)dϑ δ dδ

(6)

where ξ = E{|x̂ − x|2} is the MSE of an estimator̂x,
w(·) represents the prior probability density function (PDF)
of parameterx, andPmin(ϑ, ϑ + δ) denotes the probability
of error corresponding to the optimal decision rule for the
following hypothesis-testing problem:

H0 : p(r(t)|x = ϑ)

H1 : p(r(t)|x = ϑ+ δ)
(7)

In practical indoor scenarios, lower and upper limits on the
range parameterx are available based on physical dimensions
of the environment and the field of view of the photo detector.
Hence, it is reasonable to assume that the prior PDF ofx is
zero outside the interval[D1, D2], whereD1 andD2 denote
the minimum and maximum possible distances, respectively.
(For the signal model in (1), the observation interval[T1, T2]
can be related toD1 andD2 asT1 = D1/c andT2 = D2/c+
Ts.) In this case, the ZZB in (6) is expressed as

ξ ≥ 1

2

∫ D2−D1

0

∫ D2−δ

D1

(w(ϑ) + w(ϑ + δ))Pmin(ϑ, ϑ+ δ)dϑ δ dδ.

(8)

For example, if the prior PDF ofx corresponds to uniform
distribution over[D1, D2] (that is,w(x) = 1/(D2 − D1) if
x ∈ [D1, D2] andw(x) = 0 otherwise), the ZZB in (8) reduces
to

ξ ≥ 1

D2 −D1

∫ D2−D1

0

∫ D2−δ

D1

Pmin(ϑ, ϑ+ δ)dϑ δ dδ . (9)

To obtain an explicit expression for the ZZB,Pmin(ϑ, ϑ+δ)
in (8) should be specified. Based on the PDFw(x) of x, the
prior probabilities of hypothesesH0 andH1 in (7) are equal
to w(ϑ)/(w(ϑ)+w(ϑ+ δ)) andw(ϑ+ δ)/(w(ϑ)+w(ϑ+ δ)),
respectively. Then, the optimal decision rule for the problem
in (7) is the MAP rule [25], which is expressed as

w(ϑ + δ)

w(ϑ) + w(ϑ+ δ)
p(r(t)|x = ϑ+ δ) (10)

H0

S
H1

w(ϑ)

w(ϑ) + w(ϑ+ δ)
p(r(t)|x = ϑ) .

After taking the natural logarithm of both sides, (10) becomes

− log p(r(t)|x = ϑ) + log p(r(t)|x =ϑ+ δ) (11)
H0

S
H1

log

(

w(ϑ)

w(ϑ + δ)

)

.

From (1), (2), and (4), the log-likelihood function is expressed
as [26]

log p(r(t)|x) = k − 1

2σ2

∫ T2

T1

(

r(t)− Rpγ

xm+3
s

(

t− x

c

))2

dt

(12)

wherek is a constant that does not depend onx. From (12),
the decision rule in (11) be stated as
∫ T2

T1

(

r(t)− γ ϑ−m−3Rp s

(

t− ϑ

c

))2

dt

−
∫ T2

T1

(

r(t) − γ (ϑ+ δ)−m−3Rp s

(

t− ϑ+ δ

c

))2

dt

H0

S
H1

2σ2 log

(

w(ϑ)

w(ϑ + δ)

)

(13)

which reduces, via some rearrangement, to

Crs(ϑ+ δ)

(ϑ+ δ)m+3
− Crs(ϑ)

ϑm+3

H0

S
H1

RpγEs

2

(

1

(ϑ+ δ)2m+6
(14)

− 1

ϑ2m+6

)

+
σ2

Rpγ
log

(

w(ϑ)

w(ϑ+ δ)

)

where

Crs(x) ,
∫ T2

T1

r(t)s

(

t− x

c

)

dt (15)

and

Es ,
∫ ∞

−∞
(s(t))

2
dt (16)

is the energy of signals(t).
The probability of error for the decision rule in (14) is

calculated as

Pmin(ϑ, ϑ+ δ) =
w(ϑ)

w(ϑ) + w(ϑ + δ)
P
(

Ĥ1|H0

)

+
w(ϑ+ δ)

w(ϑ) + w(ϑ + δ)
P
(

Ĥ0|H1

)

(17)

where P
(

Ĥi|Hj

)

denotes the probability of deciding for
hypothesisHi whenHj is true. UnderH0, it can be shown
from (1), (4), (7), and (15) thatCrs(ϑ) andCrs(ϑ + δ) are
jointly Gaussian distributed as
[

Crs(ϑ)
Crs(ϑ+ δ)

]

∼ N
([

γRpEs

ϑm+3

γRpEsρ(
δ
c
)

ϑm+3

]

,

[

σ2Es σ2Esρ
(

δ
c

)

σ2Esρ
(

δ
c

)

σ2Es

]

)

(18)

whereN (µ,Σ) represents Gaussian distribution with meanµ

and covariance matrixΣ, andρ(·) represents the normalized
auto-correlation function ofs(t), which is defined as

ρ(τ) , 1

Es

∫ ∞

−∞
s(t)s(t− τ)dt . (19)

From (14) and (18),P
(

Ĥ1|H0

)

can be calculated as

P
(

Ĥ1|H0

)

= (20)

Q





0.5Rpγ Es g(ϑ, ϑ+ δ) + σ2

γ Rp
log (w(ϑ)/w(ϑ+ δ))

√

σ2Es g(ϑ, ϑ+ δ)





whereQ(y) = 1√
2π

∫∞
y e−t2/2dt denotes theQ-function, and

g(ϑ, ϑ+ δ) , 1

(ϑ+ δ)2m+6
+

1

ϑ2m+6
− 2ρ(δ/c)

(ϑ(ϑ + δ))m+3
·

(21)
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Also, via similar derivations,P
(

Ĥ0|H1

)

can be obtained as
follows:

P
(

Ĥ0|H1

)

= (22)

Q





0.5Rpγ Es g(ϑ, ϑ+ δ)− σ2

γ Rp
log (w(ϑ)/w(ϑ+ δ))

√

σ2Es g(ϑ, ϑ+ δ)



 .

Then, the probability of error for the decision rule in (14) can
be evaluated via (17), (20), and (22), which can be expressed
in a compact form as follows:

Pmin(ϑ, ϑ+ δ) =

∑1
i=0 w(ϑ+ iδ)P

(

Ĥ1−i|Hi

)

w(ϑ) + w(ϑ+ δ)
. (23)

Based on the obtained minimum probability of error expres-
sion in (23), the ZZB in (8) can be calculated.

As a special case, when the prior PDF ofx is uniform over
[D1, D2], the logarithm terms in (20) and (22) become zero,
andPmin(ϑ, ϑ+ δ) in (23) can be simplified as follows:

Pmin(ϑ, ϑ+ δ) = 0.5P
(

Ĥ1|H0

)

+ 0.5P
(

Ĥ0|H1

)

= Q

(

Rpγ
√
Es

√

g(ϑ, ϑ+ δ)

2σ

)

. (24)

For the uniform prior case, the ZZB can be calculated based
on (9) and (24).

Since the integral limits in (8) and (9) are finite, the ZZB
can accurately be evaluated via numerical approaches. From
(8), (20), (22), and (23), it is observed that the ZZB reducesas
Es increases; that is, improved ranging accuracy is achieved
with higher transmitted signal energy, as expected. It is also
noted that the ZZB expression in (8) and (23) is different from
both the ZZB expression in asynchronous VLP systems [22]
since the range related information from both the time delay
parameter and the channel attenuation factor is employed in
the synchronous case.

Remark 1: It is important to emphasize that the ZZB
expression in (8) and (23) has important distinctions compared
to the ZZB expressions for synchronous RF based ranging
systems (e.g., [20]) due to the facts that (i) the synchronous
VLP system utilizes both time delay and received signal power
(channel attenuation factor) information whereas synchronous
RF systems use time delay information only (since the received
power parameter carries negligible information compared to
the time delay parameter in most practical RF localization
systems), and (ii) the Lambertian equation in (4) is available
for VLP systems to relate the channel attenuation factor (the
received signal power) to distancex in LOS visible light
channels, which is not valid for RF systems. Overall, the
Lambertian formula is utilized, together with the time delay
information and the prior information, for the purpose of range
estimation in this study.

IV. ECRB DERIVATIONS

In this section, the Cramér-Rao bound (CRB) expressions
for range estimation in VLP systems are investigated to
provide comparisons against the ZZB.

For a given value of the unknown parameter, thecondi-
tional CRBpresents a lower limit on the MSEs of unbiased
estimators, which is expressed as [21]

E{|x̂− x|2} ≥
(

E

{

(

∂ log p(r(t)|x)
∂x

)2
})−1

, (JF(x))
−1 = CRB(x) (25)

where x̂ is an unbiased estimate ofx and the expectation
operators are conditioned onx. For the estimation of the range
parameterx, the conditional CRB in the synchronous case can
be obtained from (25) as [16]

CRB(x) = (JF(x))
−1 =

(σxm+4/(γ Rp))
2

(m+ 3)2Es + Ẽs(x/c)2
(26)

whereẼs ,
∫ Ts

0 (s′(t))2dt, with s′(t) denoting the first-order
derivative ofs(t).1 The conditional CRB expression in (26) is a
function of the unknown parameterx, and no prior information
is considered in the derivation of this bound.

The expectation of the conditional CRB (ECRB)is obtained
by calculating the average of the conditional CRB over the
prior distribution of the unknown parameter [21], which results
in the following expression for the considered scenario:

ECRB = E {CRB(x)} =

∫ D2

D1

w(x)CRB(x) dx (27)

whereCRB(x) denotes the conditional CRB in (26), andw(x)
is the prior PDF ofx, which is zero outside[D1, D2]. For the
uniform prior PDF, the ECRB is specified as in the following
lemma:

Lemma 1: Suppose that the prior PDF ofx is specified by
a uniform distribution over[D1, D2]. Then, the ECRB in the
synchronous case is given by

ECRB =
(σ/(γ Rp))

2

(D2 −D1)Ẽs/c2

∫ D2

D1

x2m+8

x2 + a
dx (28)

with a , (m + 3)2c2Es/Ẽs, which can be stated as in the
following expression when2m is an integer:

ECRB =
(σ/(γ Rp))

2

(D2 −D1)Ẽs/c2

(

(−a)⌊m+3⌋+1Hm(D1, D2, a)

+

⌊m+3⌋
∑

i=0

(−a)i
(

D
2(m+3−i)+1
2 −D

2(m+3−i)+1
1

)

2(m+ 3− i) + 1

)

(29)

where

Hm(D1, D2, a) , (30)
{

(

tan−1(D2/
√
a)− tan−1(D1/

√
a)
)

/
√
a , if m ∈ Z

+

0.5
(

ln(D2
2 + a)− ln(D2

1 + a)
)

, if 2m ∈ Z
+ & m /∈ Z

+

Proof: The generic expression in (28) directly follows from
(26) and (27). To derive the specific expressions in (29) and

1For the expression in (26), it is assumed thats(0) = s(Ts), which is
commonly the case [16].
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(30), consider the division ofx2m+8 by x2 + a, which results
in the following relation:

x2m+8 = (x2 + a)

j
∑

i=0

(−a)ix2(m+3−i) − (−1)jaj+1x2(m+3−j)

(31)

where j ≤ m + 3 is an integer. Then, the integral in (28)
becomes
∫ D2

D1

x2m+8

x2 + a
dx =

∫ D2

D1

j
∑

i=0

(−a)ix2(m+3−i) dx

− (−1)jaj+1

∫ D2

D1

x2(m+3−j)

x2 + a
dx . (32)

If m is a positive integer,j = m+3 can be employed to obtain
the result specified by (29) and the first part of (30). (Note that
the last integral term in (32) becomes

∫D2

D1
(x2+a)−1dx in this

case, which leads to thetan−1 terms in (30).) Similarly, ifm
is not an integer but2m is a positive integer, thenj = ⌊m+3⌋
can be used to derive the expression specified by (29) and the
second part of (30). (Note that the last integral term in (32)
becomes

∫ D2

D1
x (x2+a)−1dx in this case, which results in the

logarithm terms in (30).) �
The ECRB may not provide a lower bound on the perfor-

mance of MAP estimators since the conditional CRBs, which
are the basis for the ECRB as described above, do not take
the prior information into account [21]. However, at high
SNRs, the ECRB can converge to the ZZB, which is expected
since the prior information becomes negligible compared to
the information gathered from the measurements in high SNR
conditions. Overall, the ECRB provides useful benchmarks
for comparisons against the ZZB and helps quantify the
range related information gathered from prior information, as
investigated in Section VI. In addition, the ECRB expressions
provide a low-complexity approach (compared to the ZZB
expressions) for calculating the theoretical limits on range
estimation in high SNR scenarios.

V. BAYESIAN CRB (BCRB)AND WEIGHTED CRB
(WCRB)

In order to incorporate the prior information into the lower
bound effectively, theBayesian CRB (BCRB)can be consid-
ered [21]. The BCRB is expressed as

ξ ≥
(

E

{

(

∂ log p(r(t)|x)
∂x

)2
}

+ E

{

(

∂ logw(x)

∂x

)2
})−1

(33)

whereξ = E{|x̂ − x|2} denotes the MSE of an estimatorx̂
[21]. In (33), the first expectation operator is with respectto
bothr(t) andx while the second expectation is over parameter
x only. From (25) and (26), the first term in (33) can be
calculated as follows:

E

{

(

∂ log p(r(t)|x)
∂x

)2
}

= E {JF(x)}

=

∫ D2

D1

w(x)
(m + 3)2Es + Ẽs(x/c)

2

(σxm+4/(γ Rp))2
dx . (34)

For a given prior PDF, the BCRB can be obtained based on
(33) and (34). One of the limitations of the BCRB is due
to the existence and absolute integrability requirement for the
partial derivative of the joint PDF of the observation and the
parameter [21]. Therefore, it may not be applicable in some
scenarios. For example, when the range parameter is uniformly
distributed over[D1, D2], the BCRB does not exist.

The weighted CRB (WCRB)provides an alternative to the
BCRB and handles the existence problem. It is defined as [21]

ξ ≥ (E{q(x)})2

E{q2(x)JF(x)} + E

{

q2(x)
(

d log(w(x)q(x))
dx

)2
} (35)

where ξ is the MSE of any estimator,JF(x) is as in (25),
q(x) is a weighting function, and the expectations are with
respect tox. As in [21], the following weighting function can
be employed:

q(x) =

(

x−D1

D2 −D1

)ν (

1− x−D1

D2 −D1

)ν

(36)

for x ∈ [D1, D2] and q(x) = 0 otherwise, whereν is a
parameter used to enhance the bound. Namely, the value ofν
that maximizes the bound in (35) is employed to obtain the
tightest bound. For the uniform prior PDF,E{q(x)} in (35) is
calculated from (36) as follows:

E{q(x)} =
1

D2 −D1

∫ D2

D1

q(x)dx = β(ν + 1, ν + 1) (37)

where β(a, b) ,
∫ 1

0
xa−1(1 − x)b−1dx denotes the beta

function. In addition, the second term in the denominator of
(35) can be expressed for the uniform prior PDF as [22]

E

{

q2(x)

(

d log(w(x)q(x))

dx

)2
}

=
ν β(2ν + 1, 2ν − 1)

(D2 −D1)2
·

(38)

Also, the first term in the denominator of (35) can be calcu-
lated based on (26) and (36) as

E
{

q2(x)JF(x)
}

=
γ2R2

p/σ
2

(D2 −D1)4ν+1

×
(

(m+ 3)2Es

∫ D2

D1

(x −D1)
2ν(D2 − x)2ν

x2ν+8
dx

+
Ẽs

c2

∫ D2

D1

(x−D1)
2ν(D2 − x)2ν

x2m+6
dx

)

. (39)

Then, the WCRB in (35) can be evaluated via (37)–(39). In
order to obtain the tightest bound, the value ofν that yields
the maximum lower bound is obtained.

Remark 2: The theoretical limits obtained in this study
do not consider the effects of multipath (see (1)). In the
presence of multipath propagation, higher MSEs would be
observed in general; hence, the lower bounds for the LOS
scenario provided in this manuscript present lower limits for
the multipath scenario, as well. The tightness of the bounds
depends on the severity of multipath effects.
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Fig. 1. ZZB versus source optical power for various values ofthe Lambertian
order, whereS = 1 cm2.

VI. N UMERICAL RESULTS

In this section, numerical examples are provided to inves-
tigate the theoretical limits. In the examples,h in (4) is set
to 5m. and the prior PDF of the distance,x, is taken to be
uniform over the interval[D1, D2], whereD1 = 5m. and
D2 = 10m. (cf. (8) and (9)). As in [5], the responsivity of the
photo detector is taken asRp = 0.4mA/mW, and the spectral
density level of the noise is set toσ2 = 1.336× 10−22 W/Hz.
Also, signals(t) in (1) is modeled as [5]

s(t) = A (1− cos (2π t/Ts)) (1 + cos(2πfct)) (40)

for t ∈ [0, Ts], wherefc denotes the center frequency, and
A corresponds to the average emitted optical power; that is,
source optical power.

In the first example,Ts = 0.1ms., fc = 1MHz, and the
areaS of the photo detector at the VLC receiver is set to
1 cm2. In Fig. 1, the ZZBs in Section III are plotted versus
the source optical powerA in (40) for various values of the
Lambertian orderm. It is observed that the ranging accuracy
degrades asm increases for practical values of the source
optical power. Although the exact relation between the ZZB
and m can be deduced from (5), (9), and (24), an intuitive
explanation can also be provided as follows: Parameterm
determines the directionality of the LED transmitter, and a
large value ofm corresponds to a fast power decay as the
irradiation angle increases from zero (see (3)). Hence, lower
SNRs are expected at higher distances for larger values ofm,
which can lead to higher ZZBs, as observed in Fig. 1.

In Fig. 2, the ZZBs in Section III are presented versus the
source optical power for various values ofS, the area of the
photo detector at the VLC receiver, whereTs = 0.1ms.,fc =
1MHz, and m = 10 are employed. From the figure, it is
observed that the ZZB increases (i.e., the estimation accuracy
degrades) asS decreases. This observation can be explained
based on the ZZB expression in (9) and (24) as follows: From
(5), γ is proportional toS, and from eqn. (18) in [5],σ is
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Fig. 2. ZZB versus source optical power for various values ofthe area of the
photo detector, wherem = 10.
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Fig. 3. RMSE versus source optical power for the MAP estimator, the ZZB,
the ECRB, and the WCRB, whereTs = 0.1ms.,fc = 1MHz, S = 1 cm2,
andm = 1.

proportional to
√
S. Hence, theγ/σ term in (24) changes in

proportion to
√
S, which leads to lower ZZBs asS increases

due to the monotone decreasing nature of theQ-function. In
other words, as the area of the photo detector increases, higher
SNRs are obtained at the VLC receiver and lower ZZBs are
achieved.

Next, the ZZB in Section III, the ECRB in Section IV,
and the WCRB in Section V are investigated in Fig. 3,
together with the performance of the MAP estimator, where
Ts = 0.1ms., fc = 1MHz, S = 1 cm2, and m = 1. The
MAP estimator can be obtained based on the ML estimator
in [16, eqn. (18)] by confining the search space for the
distance parameterx to the interval[D1, D2] (since the prior
distribution of x is uniform over[D1, D2]) with D1 = 5m.
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Fig. 4. RMSE versus source optical power for the MAP estimator, the ZZB,
the ECRB, and the WCRB, whereTs = 0.1ms.,fc = 50MHz, S = 1 cm2,
andm = 1.

and D2 = 10m. Fig. 3 shows that the ECRB converges to
the ZZB at high source optical powers; i.e., at high SNRs,
since the prior information becomes less important as the SNR
increases. However, for lower optical powers, the ECRB gets
significantly higher than the ZZB since the ECRB calculations
do not effectively utilize the prior information, which becomes
significant in the low SNR regime.2 On the other hand, the
WCRB is close to the ZZB at low SNRs but it becomes looser
as the SNR increases. The main reason for this behavior is that
the WCRB (and the BCRB) may not provide a tight bound at
high SNRs when the conditional Fisher information depends
on the unknown parameter [21, p. 7], which is the case for
the considered VLP system (that is, the conditional Fisher
information in (26) depends on the unknown parameterx, the
distance between the LED transmitter and the VLC receiver).
In addition, it is observed from Fig. 3 that the ZZB provides
a reasonably tight bound for the performance of the MAP
estimator in all SNR regions. Furthermore, since the MAP
estimator utilizes the prior information, its performancecannot
be lower bounded by the ECRB in the low SNR regime, which
does not effectively utilize the prior information. Therefore,
the ECRB expression can provide useful lower bounds only
in the high SNR regime, where the prior information is not
crucial in the estimation process compared to the information
obtained from the received signal.

In the final example, the same parameters as in the previous
scenario are employed except that a larger value offc is
used, namely,fc = 50MHz. The results presented in Fig. 4
illustrate that the RMSEs are reduced (i.e., the ranging per-
formance is improved) in the medium and high SNR regimes
compared to the previous scenario, which can be explained
as follows: In a synchronous VLP system, in addition to

2In the ECRB calculations in (27), the prior information is used to
calculate the average of the conditional CRBs; however, each conditional
CRB expression is obtained without utilizing the prior information. Hence,
the ECRBs do not effectively utilize the prior information.

the prior information, information from both the time delay
parameter and the channel attenuation factor can be utilized
for range estimation. Since the information gathered from
the time delay parameter increases withfc [16], improved
estimation performance can be observed at sufficiently high
SNRs, where the prior information becomes less significant
than the information gathered from the time delay parameter
and the channel attenuation factor. However, in the low SNR
regime, the prior information becomes the most significant
source of information, which leads to similar performance for
the MAP estimators in Fig. 3 and Fig. 4. In addition, it is
noted from Fig. 4 that the MAP estimator cannot get very
close to the theoretical limits at high SNRs, which is due to
the finite sampling rate (namely,10−11 s.) employed in the
simulations. In particular, the finite resolution of the search
for the distance parameter can introduce additional errorsin
the high SNR regime where the theoretical accuracy limits are
quite low (see [16, eqn. (18)]). Please refer to Section IV in
[16] for a detailed discussion.

VII. C ONCLUDING REMARKS AND EXTENSIONS

In this study, the ZZB has been derived for range estimation
in synchronous VLP systems. The proposed ZZB exploits
ranging information from the prior information, the time delay
parameter, and the channel attenuation factor. In addition,
a closed-form ECRB expression has been obtained, and the
BCRB and the WCRB derivations have been presented for
synchronous VLP systems. Via the numerical examples, the
bounds have been compared against each other and against
the MAP estimator. The ZZB has been shown to provide
a reasonable lower bound for the MAP estimator. Hence, it
can provide important guidelines for design of practical VLP
systems. For example, based on the ZZB expression, effects
of various system parameters, such as the Lambertian order,
the area of the photo detector, and the source optical power,
on ranging accuracy can be analyzed. On the other hand, the
ECRB and the WCRB (BCRB) can provide useful bounds in
the high and low SNR regimes, respectively.

For the theoretical limits in Sections III–V, the generic
expressions have been presented first, and then the particular
expressions have been obtained for the special case of uniform
prior distribution for the distance parameterx. As another
special case with practical importance, the scenario in which
the VLC receiver is uniformly distributed on the floor (ground)
can be considered. In that case, a two dimensional uniform
distribution can be employed over the area where the VLC
receiver can communicate with the LED transmitter. LetAv

denote this area. Based on the minimum and the maximum
possible distances, which are denoted byD1 andD2, respec-
tively (see Section III) and the fact that the LED transmitter
and the VLC receiver are pointing in vertical directions, area
Av can be represented by a circle with a radius of

√

D2
2 −D2

1,
the center of which is located at the projection of the LED
transmitter to the floor (please see Fig. 5 for an illustration).3

The use of such a circular area can be justified by the field of
view of the VLC receiver, which imposes an upper limit on

3In this case,D1 corresponds to the height of the LED transmitter relative
to the VLC receiver, which is also denoted byh (see (4)).
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Fig. 5. The scenario in which the VLC receiver is located in the gray circular
area according to a uniform distribution.

the incidence angleθ (see (3)) for communication between the
LED transmitter and the VLC receiver [22]. When the position
of the VLC receiver is uniformly distributed over the circular
areaAv, it can be shown, via some manipulation of random
variables, that the distancex between the LED transmitter and
the VLC receiver is characterized by the following prior PDF:

w(x) =

{

2x/(D2
2 −D2

1) , if D1 ≤ x ≤ D2

0 , otherwise
. (41)

The ZZB bound can easily be evaluated for the prior PDF in
(41) by inserting it into (8), (17), (20), and (22). Similarly, the
ECRB expressions can be specified based on (27) and (41),
which leads to similar expressions to those in (28)–(30). (In
fact, the use of the prior PDF in (41) instead of the uniform
PDF mainly increases the degree ofx in the numerator of the
integral in (28); hence, the derivations stay almost the same.)
In a similar fashion, the BCRB and the WCRB in Section V
can also be evaluated for (8). Hence, specific expressions for
the bounds can be obtained for the prior PDF in (41), as well.

In practical systems, due to synchronization errors and finite
resolution of time delay estimates, the relation in (2) may not
hold exactly. In order to derive the ZZB in the presence of
such effects, (2) can be updated asτ = x/c+ε, whereε has a
PDF denoted bypε(·). Then, from (1), the likelihood function
can be obtained as (cf. (12))

p(r(t)|x) = ek
∫

pε(ǫ)e
− 1

2σ2

∫ T2
T1

(

r(t)− Rpγ

xm+3 s(t− x
c
−ǫ)
)2

dtdǫ.

(42)

Based on (42), the decision rule in (11) can be expressed, after
some manipulation, as follows:

log

(∫

pε(ǫ)e
RpγC̃rs(ϑ+δ,ǫ)

σ2(ϑ+δ)m+3 dǫ

)

− log

(∫

pε(ǫ)e
RpγC̃rs(ϑ,ǫ)

σ2ϑm+3 dǫ

)

H0

S
H1

R2
pγ

2Es

2σ2

(

1

(ϑ+ δ)2m+6
− 1

ϑ2m+6

)

+ log

(

w(ϑ)

w(ϑ + δ)

)

(43)

where C̃rs(x, ǫ) ,
∫ T2

T1
r(t)s(t − x/c − ǫ)dt. Since it is

difficult to specify the PDF of the decision statistics in (43), a
closed-form expression forPmin in (23) may not be obtained.
However, a Monte-Carlo approach can be adopted to evaluate
Pmin based on the decision rule in (43). Then, the ZZB can
be calculated numerically via (8).

As future work, theoretical limits for synchronous VLP
systems can be considered for three-dimensional scenarios
(i.e., when the height of the VLC receiver is unknown). In

that case, the extended ZZB for vector parameter estimation
[27] should be employed.
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