Joint Detection and Decoding in the Presence of
Prior Information with Uncertainty

Suat BayramMember, IEEE Berkan DulekMember, IEEE and Sinan GeziciSenior Member, IEEE

Abstract— An optimal decision framework is proposed for joint
detection and decoding when the prior information is availdle
with some uncertainty. The proposed framework provides trale-
offs between the average inclusive error probability (compted
using estimated prior probabilities) and the worst-case iglusive
error probability according to the amount of uncertainty while
satisfying constraints on the probability of false alarm ard the
maximum probability of miss-detection. Theoretical resuts that
characterize the structure of the optimal decision rule acording
to the proposed criterion are obtained. The proposed decish
rule reduces to some well-known detectors in the case of pedt
prior information or when the constraints on the probabilit ies of
miss-detection and false alarm are relaxed. Numerical exapies
are provided to illustrate the theoretical results.

Index Terms— Detection, decoding, Bayes, Neyman-Pearson.

|. INTRODUCTION

the actually transmitted symbol given that some message is
transmitted, which includes both events of erroneous dagod
and miss-detection. The optimum decision rule that mingsiz
the IE probability subject to constraints on the FA and the MD
probabilities was derived.

Within the context of communication theory, the prior
probabilities that are employed in the calculation of the IE
and MD probabilities are usually assumed to be equally
likely. However, in a more general decision theoretic agtti
distinct signals that need to be decoded may assume unequal
prior probabilities depending on the relative frequencythaf
events they symbolize. For example, in many practical image
and speech compression applications, it is more realistic t
model the output bit stream from the source encoder as an
independent and identically distribute@dnuniformBernoulli
process due to the suboptimality of the compression scheme

In most problems pertaining to hypothesis testing, one siedd]. Furthermore, the prior probabiliies may not even be
to perform a specific task depending on the chosen hypothekisown precisely. In such circumstances, a sensible choice
For example, in a sparse communication scenario, whereiarto estimate the prior probabilities with some uncergaint
asynchronous receiver frequently observes pure noisealueThis estimate can then be employed in order to specify the
a silent transmitter or the communication is jeopardised lawverage IE and MD probabilities but the uncertainty alsalsee
the presence of a jammer, it is required that the receivier be controlled by restricting the worst-case values fa th
should reliably detect the presence of a message signalebefmorresponding probabilities in an analogous manner to the R
attempting to decode it. In a wireless communications scstricted Bayesian framework [8], [9]. To address theseessu
nario, the channel characteristics may change abrupthjt@uefor the problem of joint detection and decoding, an optimal
blockage by a large obstacle or interference from othersysedecision framework that takes into account the uncertdimty
which in turn necessitates the detection of such changeséetfthe prior information is proposed for the first time in this
performing decoding. While the traditional approach hasnbeletter. Another advantage of the proposed framework isithat

to separately optimize for different tasks, joint optintiaa

facilitates tradeoffs among three well-known decisionecia:

often provides improved performance as demonstrated ®Bayesian, minimax, and Neyman-Pearson since all three can
various frameworks such as joint detection and estimafipn [ be obtained as special cases.

[3], joint detection and source coding [4], and most regentl

for joint detection and decoding [5], [6].

Il. PROBLEM FORMULATION AND THEORETICAL RESULTS

In this letter, we build upon the work conducted in [5] Following [5] and [6], we consider a hypothesis testing
for the problem of joint detection and decoding over sparggoblem in which the probability law for the observed random
communication channels. In that framework, the task was YariableY belongs to one of two disjoint sets. Only messages
detect whether a signal is emitted by the transmitter, atiuat belong to one of the sets are decoded whereas no decoding
if so, to decode the message. The authors considered thedes place if a decision is declared in favor of the other
figures of merit to measure performance: (1) the probabiliset. Such a scenario may arise in, for example, block coded
of false alarm (FA) - that is, the probability of deciding thacommunications, where in each block, the transmitter Iseeit
some symbol was transmitted when in fact, the transmittar wsilent or transmits a codeword from a given codebook. The
silent meaning that pure noise was received, (2) the prtiabitask of the detector is then to decide whether a codeword
of miss-detection (MD) - that is, the probability of decidin is transmitted (or pure noise is observed at the receiver),
that no transmission occurred when actually, the tranemiténd if so, to decode it (see [6] for various motivations). In
sent some message, and (3) the probability of inclusiver ertbis framework, the null and alternative hypotheses can be
(IE) - that is, the probability of not correctly deciding onrepresented, respectively, as
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Ho:Y ~poly), Hi:Y ~pi(y)fori=1,....,M, (1)

wherep;(y) denotes the probability density function (PDF) of

observationY” under hypothesig{; for i € {0,1,..., M}.1

1In an analogy with the block coded communications scenatig repre-

sents pure noise reception whil¢; indicates that a noise corrupted version
of the ith codeword is received.



It is assumed that there exists some prior information,ielba@ given decision region for the null hypothesis in Lemma 1.
uncertain, related to the alternative hypotheses. In qdati, (i) The form of the optimal detector is specified completely
given that the null hypothesis is false (e.g., a codeword iis Proposition 1 based on the result in Lemma 1.
transmitted), the probability that the alternative hygsils?#; Lemma 1: Consider the optimization problem {i®) when

is true (e.g., theth codeword is transmitted) is denoted/gs the decision regio’y for the null hypothesis is fixed (given)
such thatzf‘ilm- =landm > 0Vi e {1,...,M}. For and suppose that the miss-detection and false-alarm con-
example, in the case of block coded communications [5], &lraints in (6) are satisfied for the given sét,. Then, the
codewords are equiprobabe priori, i.e., m; = 1/M Vi € optimal decision region§T’;}}, corresponding to the solu-
{1,...,M?}, where M denotes the number of distinct codetion of (6) are obtained as

words in the codebook. Letr = (m1,mo,..., 7). The — s s .

observation set is denoted wiih and( the decision r)ule> is T, ={yeTo:nlpi(y) > miipr(y), Yk # i,k #0}  (7)

a partition of I into M + 1 regions, denoted byI';} M. If  ¢or all i e {1,..., M} with 7% = (l*, ... 7% denoting the

. . 1
y € T'; for somel < i < M, then theith message representedeast-favorable conditional prior distribution given by

by #, is decoded. Ify € I'y (i.e., therejection regiof), then

hypothesist, is identified and no decoding takes place. = Am 4 (1=t (8)
The probability of selecting; when#; is true is denoted wherew” = (i}, ..., n},) satisfies the following relatich
by P;(I';) and calculated a®;(I';) = [. p;(y)dy. Conse- M
quently, the IE probability can be written as [5] Zwl’.‘Pi(E) =max {P1(T1),...,Pu(Tar)}. (9
M i=1
Prg(¢,m) =Y m P(T), ) Proof: From (4)-(6), the FA probability
_ i=1 _ and the maximum MD  probabilty are ex-
wherel; denotes the complement of the dét i.e, I = pressed as Pra() — 1 — fFo po(y)dy and

I'\T';, and the probability of correct decision (CD) is given b){nax Prin (6, 7) - max ZM i [ pi(y)dy _
i V. I - pa =1 K3 FO K3 B -

M
Pep(¢, ) = Zm—pi(ri), ©) max{fFO p1(y)dy, ..., [ pm(y)dy}. Hence, when the
=1 decision regionI’y for the null hypothesis is given, the
which satisfy Py (6, %) + Pop (¢, ) = 1. In addition, the FA Probability and the maximum MD probability are fixed

robabilities of MD and FA are expressed, respectively, as SI"Ce they only depend ofi, and the PDFs under different
P P P y hypotheses, namelip;(y)},. Since the maximum MD and

M
Pu ) = L Pi(T), 4) the FA constraints in (6) are assumed to be satisfied for the
MD (), ) ;” (To) ( givenTy, the problem in (6) reduces to

Pra(¢) = Py(To). (5) minir{lwize A Pre(¢, ) + (1 — \) max Prg(é, 7). (10)
In practice, the conditional prior probabilities (i.e.,eth Tais, "
elements ofr) are known with some uncertainty (e.g., estsing (2), the optimization in (10) can be written as

timated). Letr®s* denote an estimate for the conditional prior M
probabilities. The proposed hypothesis testing framewsrk jinimize \S - 7wést Pi(T))
given below: e, =
mini(bmize A Pre(¢, ") + (1 — \) max Prg(¢,7) (6a) + (1 =N max{P(T1),...,Pu(Tar)}. (11)

(6b) The formulation in (11) is known as theestricted(-risk)
Bayesiarproblem [8], [10], which aims at finding the decision
Ppa(¢) < o, (6¢) regions{T;}M, that minimize the Bayes risk (computed using
where\ € [0,1] is a design parameter that is set accordiri§€ estimated/uncertain conditional prior probabilitissbject
to the degree of uncertainty in the knowledge mfst. In 10 a constraint, mdu_ced by, on the worst-case conqunal
particular, a larger value of\ is associated with less un-fisk (see Eq. (2.2) in [10]). The solution of the restricted
certainty in the conditional prior probabilities. Accondito Bayesian problem is given by the Bayes rule corresponding
this formulation, the objective function is a combinatioh ot0 the least-favorabledistribution, which is specified by a
the average IE probability (obtained based #fit) and the Mixture of thg_esumat_ed c_ondmo_nal prior distributionthvi
worst-case IE probability, and the worst-case (i.e., mamn another conditional prior distribution as in (8) [8], [10h
MD probability and the FA probability are not allowed toParticular, the Bayes rule correspondingrtts in (8) yields a
exceed predefined thresholds @nd 3, respectively). The solution of (11) if the condition in (9) holds [10, Theorem 1]
formulation proposed in (6) generalizes that given in [5,inally, since the solution of (11) (equivalently, (10)) tise
Eq. (10)] in the sense that the uncertainty in the conditionBayes rule corresponding to', it is given by the maximum
prior probabilities is also taken into account via (6a) aid)( & Posteriori probability (MAP) decision rule (under uniform
To characterize the optimal detector corresponding tog6)Cost assignment [11]), that is, a decision is declared inrfav
two-step approach is taken in the following: (i) The optima®f the ith hypothesis ifr*pi(y) is larger than or equal to

decision regions for the alternative hypotheses are abddior  7;°p;(y) for all j € {1,.... M}\{i}, wherei € {1,..., M}.
Hence, the optimal decision regions are obtained as in 7).
2For a givena, the minimum value of is set by the solution of the max-
min Neyman-Pearson problem [12]. Hence, for a giuerthe value of8 must 3The relation in (9) expresses the intrinsic equalizer maifr minimax
be selected to be greater than that minimum value. problems (see [8], [10]).

subject to max Py p (¢, m) < 3,



Lemma 1 states that ond® is determined, the remainingproposition, and the equality is due to (13). UsiRga(¢) <
decision regions{I';}2, are optimally specified via (7) in Pra(¢*) in conjunction with (17), the left-hand-side of
conjunction with (8) and (9). Therefore, we focus on obtaini (16) is seen to be nonpositive, from which it follows that
the optimal decision rule for the rejection regidhy in .. max  wep(y)dy < Ir, max 7 pr(y) dy.
the remainder of the manuscript. The following propositiog, . kel MY ke{l, M}

. . S ; . his relation implies that
characterizes the optimal rejection region corresponttiribe
null hypot_he_sis,.which in turn yields th_e form of the solutio /_ max %ffpk(y) dy > /_ max %ffpk(y) dy.
to the optimization problem proposed in (6). T ke{l,...M} T, kell,...,M}

Proposition 1: Consider a decision rule)* specified by (18)

a partition of the observation spade into M + 1 regions

denoted as(T*} M, such that The integral on the right-hand-side of (18) can be bounded

from below as follows:
M

M
I = {y el: azﬂ'zmdpi(y) + riljé( Tepk(y) < bPO(y)} / max }%ffpk(y) dy = Z/ max 7o pr(y) dy
i=1 /T

i=1 f(} kE{l ..... M kE{l ....,1\4}
(12) M M
for some nononegative thresholdsind b which are adjusted > Z/ Topi(y)dy =Y FEP(T). (19)
to satisfy the constraints i(6b) and (6¢) (see the discussions i=11 i=1

after the proof of Lemma 1 in [F]}ﬁﬁ‘ 12, are obtained from On the other hand, based on (7) in Lemma 1, the integral on
I'; as described in Lemma % is the corresponding least- the left-hand-side of (18) is recognized as the CD probigbili
favorable distribution as specified i(8) and (9), and =™¢ corresponding to observation sﬁﬁ; ie., 2?11%§SP1‘(F?)-

satisfie$ Hence, from (18) and (19), the following relation is obtaine
Pup(¢", 7" = max P(Ty).  (13) L5 ACRAT) = 50 AR, This inequality can also
e y  bestated adt” 7w (1 - Bi(Ty)) > X5, 7 (1 — Bi(T)),
Then, for any other decision rule represented bY{T';};Z,  \yhich leads to the following expression after substituiay
that satisfiesmax Pyyp(¢,w) < max Pyp(o*, ) and M M
Pra(¢) < Pra(¢*), the following inequality holds: )\waStPi(f:) +(1-=2N) Z%l’-‘Pi(f:)
APrp(¢", 7)) + (1 = \) max Prp(¢", ) . =
< A Prg(¢, 7" + (1 — N)max Prg(¢,m) . (14) SAY wP(T)+ (1 =AY FR(T). (20)
=1 =1

That is, the optimal solution t(6) is characterized by the rule
¢* with decision regiongT'; } .
Proof: From (12), it is seen that the following inequalityy" 7 p,(T;) = P;p(¢, #") < max Prg(¢, ) by defini-
holds for ally & I tion (see (2)), the relation in (20) implies (14). Overatl, |
(Z{y e T3} —Z{y € Tv}) is proved that any decision rule with FA and maximum MD
M probabilities not exceeding those of the proposed decisiten
X (bpo(y) — azﬁlmdpi(y) — max %ffpk(y)) >0, (15) ¢", respectively, cannot achieve a lower value for objective
izl k#0 function than the proposed one. Hence, the optimal solution
where Z{-} denotes the indicator functionSince the ex- to (6) is characterized by the rulg* with decision regions
pression in (15) is nonnegativéy < T, its integral over {I';}}, as specified in the proposition. |
the observation sdf is also nonnegative, which leads to the Proposition 1 states that the optimal decision rule corre-
following inequality: sponding to (6) has a rejection region specified by (12) and
. nd + _ma the decoding regions are obtained from (7). In order to solve
b(Pra(¢) = Pra(¢")) + a (Pup(¢,7™") — Pyp(¢”,7™%) (6), the decision regions specified in (7) and (12) are used in
< / max  #pi(y) dy — / max  Fpe(y) dy place of the decision rulg, and (9) and (13) are incorporated
= Jry ke{l...M} k ro ke{l,...M} k " into (6) as the additional constraints. As a result, we have
(16) an optimization problem with a finite number of unknowns
_ (which area, b, ©#, and %), In the simulations, we have
where Ppa(¢) = Po(I'o) = 1—Po(T'o) and Parp (4, 7™ = Used a global optimization tool in MATLAB (namely, the par-
>imy 7" P;(To) are substituted. Then, we get ticle swarm optimization algorithm) to solve this probleltris
md N worth mentioning that while the threshoddis mainly related
Prip (6, m™) < max Pyp (¢, ) < max Pyp (¢, ) to satisfying the maximum MD constraint (see footnote 6, th
= Pyp(o*, 7)), (17) threshold is primarily selected to satisfy the FA constraint. It
should be noted that for large valuesaqfthe problem under
%onsideration is essentially a Neyman-Pearson test batwee
po(y) and Zi]\il 7mp,(y), known as the max-min Neyman-
o _ S _ ~ Pearson problem, where the aim is to minimize the worst-
4The relation in (13) is due to the intrinsic equalizer natof¢he max-min - 5ca (i.e., maximum) miss-detection probability undefatee
Neyman-Pearson problem (see [12] and references therein). ! .
5This proof approach is similar to that of the Neyman-Peateama [11, alarm constraint) [12]. On the other h‘f’md’ for Sm‘?” values o
p. 24] and that in [5, Lemma 1]. a, the problem converges to the restricted Bayesian problem,

Since Zf\il 7P,(T;) = maxPrg(¢*,7) due to (9) and

K2

where the first inequality is by definition, the second indgu
ity max Pyp(¢,m) < max Py p(¢*, ) is assumed in the
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which covers both Bayesian and minimax frameworks as —— Gbjecive Funciion (509)
special cases, after proper normalization of the condition > || worst-case (=0.9)
prior probabilities along with a proper selection bf(i.e., 3 °f| ——Expected (1,209)
~ls . . . © - - - Objective Function (1t,=0.8)
b = 7;°) [10]. More explicitly, the decision rule treats the S | worscase (n0g)
null hypothesis as another message and decoding is pedorme  9°%| . _gpeceea (n=08)
among all hypotheses in the presence of prior uncertainty = 2 |- - Objective Function (m=0.7)
according toargmaxyc o1, ..} 7 pr(y). Furthermore, in Wl aa) - - Worst-Case (1,=0)
the case of perfect prior information, the formulation prsed O ks wi
in (6) reduces to that introduced in [5] when equal priors are ~ Jos
assumed and the maximum MD constraint is replaced with =
the average MD constraint. As a result, our formulation can R R T S RS T S St s
be considered as a generalization of Bayesian and Neyman- A W
Pearson frameworks in the presence of uncertainty. Fig. 1. Objective function in (6)P; s (¢*, 7, andmaxs Prs (¢, )

versusA for various values of the estimated conditional prior ptulitzes. A
IIl. NUMERICAL RESULTS Gaussian mixture withV,,, = 4 components is assumed, where the means

In this section, the theoretical results in Sec. Il are itives?® {~1.5,—0.5,0.5, 1.5} with corresponding weight$0.4,0.1,0.1,0.4}
- . . . . . and the standard deviations of all the mixture componergsrae 0.2. The

gated via simulations. Consider a sensor which intermtlften remaining parameters are setdo= 0.1, 3 = 0.22, and A = 1.3.
reports to a remote node about the temperature. There are
idle periods during which no transmission occurs, inditgti 5o
that the temperature is within acceptable limits. The senso
employs binary phase shift keying (BPSK) to signal when
the temperature gets too hot or too cold. Consequently, at
the receiver side, the following hypothesis testing proble
arises:Hy : Y = N, Hi : Y = A+ N, Hy : Y =
—A + N, where N represents additive noise amdl > 0
is a known signal level. Namely, when the transmitter is
silent, the receiver observes pure noise. Otherwise, a con-
stant signal level corrupted by additive noise is acquirkd.
symmetric Gaussian mixture noise with the following PDF
is assumed [9]pn(n) = S & pi(n — ), where N,
denotes the number of componentﬁ in the mixtyrels the Fig. 2. Expected IE probabilityP; (¢, w¢st) versus worst-case |E
mean value of théth component)";"1 & =1, & > 0, and  probability max Py (¢*, ) for the scenario in Fig. 1.
oi(n) = (V2m o)~ Lexp{—n?/(20?)} with o, representing , o
the standard deviation of théth mixture component for values of A place more emphasis on the minimization of
1€ {1,...,N,}. The mixture parameter§l7ul7al}ﬁ"{ are the vy(_)rst-cas_e IE probability, which is reallzed with e_qual
selected to make the resulting PDF symmetric. It is assumg@nditional priors for alh < Ao. The emphasis can be shifted
that the conditional prior probabilities of the hypothegeés towards the expected IE probability by considering higher
and?{, corresponding to hot and cold states, respectively, af@lues of A (i.e., decreasing the amount of uncertainty in
not necessarily equal (see [7] for other examples of uneqdf3@ Prior information), which in turn renders lower scores
priors), and they are estimated based on the past measife-the objective function possible. For > A, it is seen
ments. Due to suboptimality of the estimation procedur® Fig. 1 that the gap between the expected and the worst-
there exists some degree of uncertainty in the conditiorZ#S€ |E probabilities widens ak increases. In summary,
prior probabilities. Hence, employing the detection ciie  the minimum value formax, Prp(¢, ) is achieved when
introduced in (6) can be beneficial to compensate for the < Ao, Whereas the minimum value faP;p (¢, w°) is
undesired effects of uncertainty on the system performangbtained forA = 1. Therefore, the proposed formulation
as investigated below. in (6) provides the optimal t_radeoff between the expected

In Fig. 1, the objective function in (6) together with the2nd the worst-case IE probabilities (that iz (¢, ') and
expected and the worst-case IE probabiliti& g(¢*, west) MaXs Prg (¢, ), respectlvely) subject t_q _the const_ralnts on
and max, Pz (¢*, ), respectively) are plotted against théh_e FA an(_:i the maximum MD_probablhtles by a_djustu;\g
change in\ for various values of the estimated conditionaithin the interval[A, 1] according to the uncertainty level.
prior probabilities, wherex = 0.1, 3 = 0.22, and A = 1.3. Thisis illustrated in Fig. 2.
When X is less than or equal to a specific value (which is IV. CONCLUDING REMARKS
Xo = 0.55 for my = 0.9, A\ = 0.625 for m; = 0.8, and :
Ao = 0.714 for = = 0.7), the least-favorable conditional For the joint detection and decoding problem, an optimal
prior distribution is realized as'® = (0.5,0.5) along with decision framework that takes into account the uncertainty

7™ = (0.5,0.5), resulting in equal conditional IE proba-in the prior information has been proposed. The proposed
bilities (i.e., P(T1) = P»(T'»)) and equal conditional MD framework faqhtates tradeoffs betwgen the average mm
probabilities (i.e.,P1(T'y) = P»(T'y)). This, in turn, results error probability and the worst-case inclusive error pulis

in equal expected and the worst-case IE probabilities {that according to the amount of uncertainty while satisfying-con
Prp(¢*, 7°") = max, Prp(¢*,m)), as observed in Fig. 1. straints on the probability of false alarm and the maximum

Such behaviour can partly be attributed to the fact that sm@robability of miss-detection.

A< Ao
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