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Joint Detection and Decoding in the Presence of
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Abstract— An optimal decision framework is proposed for joint
detection and decoding when the prior information is available
with some uncertainty. The proposed framework provides trade-
offs between the average inclusive error probability (computed
using estimated prior probabilities) and the worst-case inclusive
error probability according to the amount of uncertainty wh ile
satisfying constraints on the probability of false alarm and the
maximum probability of miss-detection. Theoretical results that
characterize the structure of the optimal decision rule according
to the proposed criterion are obtained. The proposed decision
rule reduces to some well-known detectors in the case of perfect
prior information or when the constraints on the probabilit ies of
miss-detection and false alarm are relaxed. Numerical examples
are provided to illustrate the theoretical results.

Index Terms– Detection, decoding, Bayes, Neyman-Pearson.

I. I NTRODUCTION

In most problems pertaining to hypothesis testing, one needs
to perform a specific task depending on the chosen hypothesis.
For example, in a sparse communication scenario, where an
asynchronous receiver frequently observes pure noise due to
a silent transmitter or the communication is jeopardised by
the presence of a jammer, it is required that the receiver
should reliably detect the presence of a message signal before
attempting to decode it. In a wireless communications sce-
nario, the channel characteristics may change abruptly dueto
blockage by a large obstacle or interference from other users,
which in turn necessitates the detection of such changes before
performing decoding. While the traditional approach has been
to separately optimize for different tasks, joint optimization
often provides improved performance as demonstrated for
various frameworks such as joint detection and estimation [1]–
[3], joint detection and source coding [4], and most recently,
for joint detection and decoding [5], [6].

In this letter, we build upon the work conducted in [5]
for the problem of joint detection and decoding over sparse
communication channels. In that framework, the task was to
detect whether a signal is emitted by the transmitter, and
if so, to decode the message. The authors considered three
figures of merit to measure performance: (1) the probability
of false alarm (FA) - that is, the probability of deciding that
some symbol was transmitted when in fact, the transmitter was
silent meaning that pure noise was received, (2) the probability
of miss-detection (MD) - that is, the probability of deciding
that no transmission occurred when actually, the transmitter
sent some message, and (3) the probability of inclusive error
(IE) - that is, the probability of not correctly deciding on
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the actually transmitted symbol given that some message is
transmitted, which includes both events of erroneous decoding
and miss-detection. The optimum decision rule that minimizes
the IE probability subject to constraints on the FA and the MD
probabilities was derived.

Within the context of communication theory, the prior
probabilities that are employed in the calculation of the IE
and MD probabilities are usually assumed to be equally
likely. However, in a more general decision theoretic setting,
distinct signals that need to be decoded may assume unequal
prior probabilities depending on the relative frequency ofthe
events they symbolize. For example, in many practical image
and speech compression applications, it is more realistic to
model the output bit stream from the source encoder as an
independent and identically distributednonuniformBernoulli
process due to the suboptimality of the compression scheme
[7]. Furthermore, the prior probabilities may not even be
known precisely. In such circumstances, a sensible choice
is to estimate the prior probabilities with some uncertainty.
This estimate can then be employed in order to specify the
average IE and MD probabilities but the uncertainty also needs
to be controlled by restricting the worst-case values for the
corresponding probabilities in an analogous manner to the Re-
stricted Bayesian framework [8], [9]. To address these issues
for the problem of joint detection and decoding, an optimal
decision framework that takes into account the uncertaintyin
the prior information is proposed for the first time in this
letter. Another advantage of the proposed framework is thatit
facilitates tradeoffs among three well-known decision criteria:
Bayesian, minimax, and Neyman-Pearson since all three can
be obtained as special cases.

II. PROBLEM FORMULATION AND THEORETICAL RESULTS

Following [5] and [6], we consider a hypothesis testing
problem in which the probability law for the observed random
variableY belongs to one of two disjoint sets. Only messages
that belong to one of the sets are decoded whereas no decoding
takes place if a decision is declared in favor of the other
set. Such a scenario may arise in, for example, block coded
communications, where in each block, the transmitter is either
silent or transmits a codeword from a given codebook. The
task of the detector is then to decide whether a codeword
is transmitted (or pure noise is observed at the receiver),
and if so, to decode it (see [6] for various motivations). In
this framework, the null and alternative hypotheses can be
represented, respectively, as

H0 : Y ∼ p0(y) , Hi : Y ∼ pi(y) for i = 1, . . . ,M , (1)

wherepi(y) denotes the probability density function (PDF) of
observationY under hypothesisHi for i ∈ {0, 1, . . . ,M}.1

1In an analogy with the block coded communications scenario,H0 repre-
sents pure noise reception whileHi indicates that a noise corrupted version
of the ith codeword is received.
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It is assumed that there exists some prior information, albeit
uncertain, related to the alternative hypotheses. In particular,
given that the null hypothesis is false (e.g., a codeword is
transmitted), the probability that the alternative hypothesisHi

is true (e.g., theith codeword is transmitted) is denoted asπi

such that
∑M

i=1
πi = 1 and πi ≥ 0 ∀i ∈ {1, . . . ,M}. For

example, in the case of block coded communications [5], all
codewords are equiprobablea priori, i.e., πi = 1/M ∀i ∈
{1, . . . ,M}, whereM denotes the number of distinct code-
words in the codebook. Letπ = (π1, π2, . . . , πM ). The
observation set is denoted withΓ and the decision ruleφ is
a partition ofΓ into M + 1 regions, denoted by{Γi}Mi=0

. If
y ∈ Γi for some1 ≤ i ≤ M , then theith message represented
by Hi is decoded. Ify ∈ Γ0 (i.e., therejection region), then
hypothesisH0 is identified and no decoding takes place.

The probability of selectingHi whenHj is true is denoted
by Pj(Γi) and calculated asPj(Γi) =

∫
Γi

pj(y) dy. Conse-
quently, the IE probability can be written as [5]

PIE(φ,π) =

M∑

i=1

πi Pi(Γi), (2)

whereΓi denotes the complement of the setΓi, i.e., Γi =
Γ\Γi, and the probability of correct decision (CD) is given by

PCD(φ,π) =
M∑

i=1

πi Pi(Γi), (3)

which satisfyPIE(φ,π) + PCD(φ,π) = 1. In addition, the
probabilities of MD and FA are expressed, respectively, as

PMD(φ,π) =

M∑

i=1

πi Pi(Γ0), (4)

PFA(φ) = P0(Γ0) . (5)

In practice, the conditional prior probabilities (i.e., the
elements ofπ) are known with some uncertainty (e.g., es-
timated). Letπest denote an estimate for the conditional prior
probabilities. The proposed hypothesis testing frameworkis
given below:

minimize
φ

λPIE(φ,π
est) + (1− λ)max

π

PIE(φ,π) (6a)

subject to max
π

PMD(φ,π) ≤ β , (6b)

PFA(φ) ≤ α , (6c)

whereλ ∈ [0, 1] is a design parameter that is set according
to the degree of uncertainty in the knowledge ofπ

est. In
particular, a larger value ofλ is associated with less un-
certainty in the conditional prior probabilities. According to
this formulation, the objective function is a combination of
the average IE probability (obtained based onπ

est) and the
worst-case IE probability, and the worst-case (i.e., maximum)
MD probability and the FA probability are not allowed to
exceed predefined thresholds (α and β, respectively)2. The
formulation proposed in (6) generalizes that given in [5,
Eq. (10)] in the sense that the uncertainty in the conditional
prior probabilities is also taken into account via (6a) and (6b).

To characterize the optimal detector corresponding to (6),a
two-step approach is taken in the following: (i) The optimal
decision regions for the alternative hypotheses are obtained for

2For a givenα, the minimum value ofβ is set by the solution of the max-
min Neyman-Pearson problem [12]. Hence, for a givenα, the value ofβ must
be selected to be greater than that minimum value.

a given decision region for the null hypothesis in Lemma 1.
(ii) The form of the optimal detector is specified completely
in Proposition 1 based on the result in Lemma 1.

Lemma 1: Consider the optimization problem in(6) when
the decision regionΓ0 for the null hypothesis is fixed (given)
and suppose that the miss-detection and false-alarm con-
straints in (6) are satisfied for the given setΓ0. Then, the
optimal decision regions{Γi}Mi=1

corresponding to the solu-
tion of (6) are obtained as

Γi =
{
y ∈ Γ0 : πls

i pi(y) ≥ πls
k pk(y), ∀k 6= i, k 6= 0

}
(7)

for all i ∈ {1, . . . ,M} with π
ls = (πls

1 , . . . , πls
M ) denoting the

least-favorable conditional prior distribution given by

π
ls = λπest + (1− λ)πµ , (8)

whereπµ = (πµ
1
, . . . , πµ

M ) satisfies the following relation3:
M∑

i=1

πµ
i Pi(Γi) = max

{
P1(Γ1), . . . , PM (ΓM )

}
. (9)

Proof: From (4)–(6), the FA probability
and the maximum MD probability are ex-
pressed as PFA(φ) = 1 −

∫
Γ0

p0(y)dy and

max
π

PMD(φ,π) = max
π

∑M
i=1

πi

∫
Γ0

pi(y)dy =

max
{ ∫

Γ0

p1(y)dy, . . . ,
∫
Γ0

pM (y)dy
}

. Hence, when the
decision regionΓ0 for the null hypothesis is given, the
FA probability and the maximum MD probability are fixed
since they only depend onΓ0 and the PDFs under different
hypotheses, namely{pi(y)}Mi=0

. Since the maximum MD and
the FA constraints in (6) are assumed to be satisfied for the
givenΓ0, the problem in (6) reduces to

minimize
{Γi}M

i=1

λPIE(φ,π
est) + (1− λ)max

π

PIE(φ,π). (10)

Using (2), the optimization in (10) can be written as

minimize
{Γi}M

i=1

λ

M∑

i=1

πest
i Pi(Γi)

+ (1− λ)max
{
P1(Γ1), . . . , PM (ΓM )

}
. (11)

The formulation in (11) is known as therestricted(-risk)
Bayesianproblem [8], [10], which aims at finding the decision
regions{Γi}Mi=1

that minimize the Bayes risk (computed using
the estimated/uncertain conditional prior probabilities) subject
to a constraint, induced byλ, on the worst-case conditional
risk (see Eq. (2.2) in [10]). The solution of the restricted
Bayesian problem is given by the Bayes rule corresponding
to the least-favorabledistribution, which is specified by a
mixture of the estimated conditional prior distribution with
another conditional prior distribution as in (8) [8], [10].In
particular, the Bayes rule corresponding toπ

ls in (8) yields a
solution of (11) if the condition in (9) holds [10, Theorem 1].
Finally, since the solution of (11) (equivalently, (10)) isthe
Bayes rule corresponding toπls, it is given by the maximum
a posteriori probability (MAP) decision rule (under uniform
cost assignment [11]), that is, a decision is declared in favor
of the ith hypothesis ifπls

i pi(y) is larger than or equal to
πls
j pj(y) for all j ∈ {1, . . . ,M} \ {i}, wherei ∈ {1, . . . ,M}.

Hence, the optimal decision regions are obtained as in (7).

3The relation in (9) expresses the intrinsic equalizer nature of minimax
problems (see [8], [10]).
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Lemma 1 states that onceΓ0 is determined, the remaining
decision regions{Γi}Mi=1

are optimally specified via (7) in
conjunction with (8) and (9). Therefore, we focus on obtaining
the optimal decision rule for the rejection regionΓ0 in
the remainder of the manuscript. The following proposition
characterizes the optimal rejection region correspondingto the
null hypothesis, which in turn yields the form of the solution
to the optimization problem proposed in (6).

Proposition 1: Consider a decision ruleφ∗ specified by
a partition of the observation spaceΓ into M + 1 regions
denoted as{Γ∗

i }Mi=0
such that

Γ∗
0 =

{
y ∈ Γ : a

M∑

i=1

πmd
i pi(y) + max

k 6=0

π̃ls
k pk(y) ≤ b p0(y)

}

(12)

for some nononegative thresholdsa and b which are adjusted
to satisfy the constraints in(6b) and (6c) (see the discussions
after the proof of Lemma 1 in [5]),{Γ∗

i }Mi=1
are obtained from

Γ∗
0

as described in Lemma 1,̃πls is the corresponding least-
favorable distribution as specified in(8) and (9), and π

md

satisfies4

PMD(φ∗,πmd) = max
i∈{1,...,M}

Pi(Γ
∗
0
) . (13)

Then, for any other decision ruleφ represented by{Γi}Mi=0

that satisfiesmax
π

PMD(φ,π) ≤ max
π

PMD(φ∗,π) and

PFA(φ) ≤ PFA(φ
∗), the following inequality holds:

λPIE(φ
∗,πest) + (1− λ)max

π

PIE(φ
∗,π)

≤ λPIE(φ,π
est) + (1− λ)max

π

PIE(φ,π) . (14)

That is, the optimal solution to(6) is characterized by the rule
φ∗ with decision regions{Γ∗

i }Mi=0
.

Proof: From (12), it is seen that the following inequality
holds for ally ∈ Γ:

(I{y ∈ Γ∗
0
} − I{y ∈ Γ0})

×
(
b p0(y)− a

M∑

i=1

πmd
i pi(y)−max

k 6=0

π̃ls
k pk(y)

)
≥ 0 , (15)

where I{·} denotes the indicator function.5 Since the ex-
pression in (15) is nonnegative∀y ∈ Γ, its integral over
the observation setΓ is also nonnegative, which leads to the
following inequality:

b (PFA(φ) − PFA(φ
∗)) + a

(
PMD(φ,πmd)− PMD(φ∗,πmd)

)

≥
∫

Γ∗

0

max
k∈{1,...,M}

π̃ls
k pk(y) dy −

∫

Γ0

max
k∈{1,...,M}

π̃ls
k pk(y) dy,

(16)

wherePFA(φ) = P0(Γ0) = 1−P0(Γ0) andPMD(φ,πmd) =∑M
i=1

πmd
i Pi(Γ0) are substituted. Then, we get

PMD(φ,πmd) ≤ max
π

PMD(φ,π) ≤ max
π

PMD(φ∗,π)

= PMD(φ∗,πmd) , (17)

where the first inequality is by definition, the second inequal-
ity max

π

PMD(φ,π) ≤ max
π

PMD(φ∗,π) is assumed in the

4The relation in (13) is due to the intrinsic equalizer natureof the max-min
Neyman-Pearson problem (see [12] and references therein).

5This proof approach is similar to that of the Neyman-Pearsonlemma [11,
p. 24] and that in [5, Lemma 1].

proposition, and the equality is due to (13). UsingPFA(φ) ≤
PFA(φ

∗) in conjunction with (17), the left-hand-side of
(16) is seen to be nonpositive, from which it follows that∫
Γ∗

0

max
k∈{1,...,M}

π̃ls
k pk(y) dy ≤

∫
Γ0

max
k∈{1,...,M}

π̃ls
k pk(y) dy.

This relation implies that∫

Γ
∗

0

max
k∈{1,...,M}

π̃ls
k pk(y) dy ≥

∫

Γ0

max
k∈{1,...,M}

π̃ls
k pk(y) dy.

(18)

The integral on the right-hand-side of (18) can be bounded
from below as follows:
∫

Γ0

max
k∈{1,...,M}

π̃ls
k pk(y) dy =

M∑

i=1

∫

Γi

max
k∈{1,...,M}

π̃ls
k pk(y) dy

≥
M∑

i=1

∫

Γi

π̃ls
i pi(y) dy =

M∑

i=1

π̃ls
i Pi(Γi). (19)

On the other hand, based on (7) in Lemma 1, the integral on
the left-hand-side of (18) is recognized as the CD probability
corresponding to observation setΓ

∗

0; i.e.,
∑M

i=1
π̃ls
i Pi(Γ

∗
i ).

Hence, from (18) and (19), the following relation is obtained:∑M
i=1

π̃ls
i Pi(Γ

∗
i ) ≥

∑M
i=1

π̃ls
i Pi(Γi). This inequality can also

be stated as
∑M

i=1
π̃ls
i (1 − Pi(Γ

∗

i )) ≥
∑M

i=1
π̃ls
i (1 − Pi(Γi)),

which leads to the following expression after substituting(8):

λ

M∑

i=1

πest
i Pi(Γ

∗

i ) + (1 − λ)

M∑

i=1

π̃µ
i Pi(Γ

∗

i )

≤ λ

M∑

i=1

πest
i Pi(Γi) + (1 − λ)

M∑

i=1

π̃µ
i Pi(Γi) . (20)

Since
∑M

i=1
π̃µ
i Pi(Γ

∗

i ) = max
π

PIE(φ
∗,π) due to (9) and

∑M
i=1

π̃µ
i Pi(Γi) = PIE(φ, π̃

µ) ≤ max
π

PIE(φ,π) by defini-
tion (see (2)), the relation in (20) implies (14). Overall, it
is proved that any decision rule with FA and maximum MD
probabilities not exceeding those of the proposed decisionrule
φ∗, respectively, cannot achieve a lower value for objective
function than the proposed one. Hence, the optimal solution
to (6) is characterized by the ruleφ∗ with decision regions
{Γ∗

i }Mi=0
as specified in the proposition.

Proposition 1 states that the optimal decision rule corre-
sponding to (6) has a rejection region specified by (12) and
the decoding regions are obtained from (7). In order to solve
(6), the decision regions specified in (7) and (12) are used in
place of the decision ruleφ, and (9) and (13) are incorporated
into (6) as the additional constraints. As a result, we have
an optimization problem with a finite number of unknowns
(which area, b, πµ, andπ

md). In the simulations, we have
used a global optimization tool in MATLAB (namely, the par-
ticle swarm optimization algorithm) to solve this problem.It is
worth mentioning that while the thresholda is mainly related
to satisfying the maximum MD constraint (see footnote 6), the
thresholdb is primarily selected to satisfy the FA constraint. It
should be noted that for large values ofa, the problem under
consideration is essentially a Neyman-Pearson test between
p0(y) and

∑M
i=1

πmd
i pi(y), known as the max-min Neyman-

Pearson problem, where the aim is to minimize the worst-
case (i.e., maximum) miss-detection probability under thefalse
alarm constraint) [12]. On the other hand, for small values of
a, the problem converges to the restricted Bayesian problem,
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which covers both Bayesian and minimax frameworks as
special cases, after proper normalization of the conditional
prior probabilities along with a proper selection ofb (i.e.,
b = π̃ls

0
) [10]. More explicitly, the decision rule treats the

null hypothesis as another message and decoding is performed
among all hypotheses in the presence of prior uncertainty
according toargmaxk∈{0,1,...,M} π̃ls

k pk(y). Furthermore, in
the case of perfect prior information, the formulation proposed
in (6) reduces to that introduced in [5] when equal priors are
assumed and the maximum MD constraint is replaced with
the average MD constraint. As a result, our formulation can
be considered as a generalization of Bayesian and Neyman-
Pearson frameworks in the presence of uncertainty.

III. N UMERICAL RESULTS

In this section, the theoretical results in Sec. II are investi-
gated via simulations. Consider a sensor which intermittently
reports to a remote node about the temperature. There are
idle periods during which no transmission occurs, indicating
that the temperature is within acceptable limits. The sensor
employs binary phase shift keying (BPSK) to signal when
the temperature gets too hot or too cold. Consequently, at
the receiver side, the following hypothesis testing problem
arises:H0 : Y = N, H1 : Y = A + N, H2 : Y =
−A + N , where N represents additive noise andA > 0
is a known signal level. Namely, when the transmitter is
silent, the receiver observes pure noise. Otherwise, a con-
stant signal level corrupted by additive noise is acquired.A
symmetric Gaussian mixture noise with the following PDF
is assumed [9]:pN (n) =

∑Nm

l=1
ξl ϕl(n − µl), whereNm

denotes the number of components in the mixture,µl is the
mean value of thelth component,

∑Nm

l=1
ξl = 1, ξl > 0, and

ϕl(n) = (
√
2π σl)

−1 exp{−n2/(2σ2

l )} with σl representing
the standard deviation of thelth mixture component for
l ∈ {1, . . . , Nm}. The mixture parameters{ξl, µl, σl}Nm

l=1
are

selected to make the resulting PDF symmetric. It is assumed
that the conditional prior probabilities of the hypothesesH1

andH2 corresponding to hot and cold states, respectively, are
not necessarily equal (see [7] for other examples of unequal
priors), and they are estimated based on the past measure-
ments. Due to suboptimality of the estimation procedure,
there exists some degree of uncertainty in the conditional
prior probabilities. Hence, employing the detection criterion
introduced in (6) can be beneficial to compensate for the
undesired effects of uncertainty on the system performance,
as investigated below.

In Fig. 1, the objective function in (6) together with the
expected and the worst-case IE probabilities (PIE(φ

∗,πest)
and maxπ PIE(φ

∗,π), respectively) are plotted against the
change inλ for various values of the estimated conditional
prior probabilities, whereα = 0.1, β = 0.22, andA = 1.3.
When λ is less than or equal to a specific value (which is
λ0 = 0.55 for π1 = 0.9, λ0 = 0.625 for π1 = 0.8, and
λ0 = 0.714 for π1 = 0.7), the least-favorable conditional
prior distribution is realized as̃πls = (0.5, 0.5) along with
π

md = (0.5, 0.5), resulting in equal conditional IE proba-
bilities (i.e., P1(Γ1) = P2(Γ2)) and equal conditional MD
probabilities (i.e.,P1(Γ0) = P2(Γ0)). This, in turn, results
in equal expected and the worst-case IE probabilities (thatis,
PIE(φ

∗,πest) = maxπ PIE(φ
∗,π)), as observed in Fig. 1.

Such behaviour can partly be attributed to the fact that small
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probability maxπPIE(φ∗,π) for the scenario in Fig. 1.

values of λ place more emphasis on the minimization of
the worst-case IE probability, which is realized with equal
conditional priors for allλ ≤ λ0. The emphasis can be shifted
towards the expected IE probability by considering higher
values of λ (i.e., decreasing the amount of uncertainty in
the prior information), which in turn renders lower scores
for the objective function possible. Forλ > λ0, it is seen
in Fig. 1 that the gap between the expected and the worst-
case IE probabilities widens asλ increases. In summary,
the minimum value formaxπ PIE(φ,π) is achieved when
λ ≤ λ0, whereas the minimum value forPIE(φ,π

est) is
obtained forλ = 1. Therefore, the proposed formulation
in (6) provides the optimal tradeoff between the expected
and the worst-case IE probabilities (that is,PIE(φ,π

est) and
maxπ PIE(φ,π), respectively) subject to the constraints on
the FA and the maximum MD probabilities by adjustingλ
within the interval[λ0, 1] according to the uncertainty level.
This is illustrated in Fig. 2.

IV. CONCLUDING REMARKS

For the joint detection and decoding problem, an optimal
decision framework that takes into account the uncertainty
in the prior information has been proposed. The proposed
framework facilitates tradeoffs between the average inclusive
error probability and the worst-case inclusive error probability
according to the amount of uncertainty while satisfying con-
straints on the probability of false alarm and the maximum
probability of miss-detection.
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