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Abstract—In this letter, optimal deterministic encoding of
a uniformly distributed scalar parameter is performed in th e
presence of an eavesdropper. The objective is to maximize the
worst-case Fisher information of the parameter at the intended
receiver while keeping the mean-squared error (MSE) at the
eavesdropper above a certain level. The eavesdropper is modeled
to employ the linear minimum mean-squared error estimator
based on the encoded version of the parameter. First, the
optimal encoding function is derived when there exist no secrecy
constraints. Next, to obtain the solution of the problem in the
presence of the secrecy constraint, the form of the encoding
function that maximizes the MSE at the eavesdropper is explicitly
derived for any given level of worst-case Fisher information.
Then, based on this result, a low-complexity algorithm is provided
to calculate the optimal encoding function for the given secrecy
constraint. Finally, illustrative numerical examples arepresented.

Index Terms—Fisher information, parameter estimation,
mean-squared error, secrecy, optimization.

I. I NTRODUCTION

Physical layer secrecy has gained a renewed interest with
the advances in wireless communication systems. The main
objective of physical layer secrecy is to ensure secret com-
munications between a transmitter and an intended receiverin
the presence of an eavesdropper by exploiting physical channel
characteristics. One common approach to quantify the amount
of achieved secrecy is to use information theoretic metricssuch
as the mutual information and secrecy rate, which have been
investigated in a multitude of studies in the literature forvari-
ous channels (e.g., fading, Gaussian broadcast or interference,
wiretap, etc. [1]–[7]) and transmission scenarios (e.g., with
user or jammer cooperation to facilitate security [8]–[10]).
Alternatively, quality-of-service (QoS) frameworks based on
signal-to-noise-ratio (SNR) [11]–[13] or estimation theoretic
tools such as mean-squared error (MSE) have recently been
used to measure the security performance of communication
systems. The latter framework is of particular interest to design
low-complexity practical secure systems and has been adopted
in various studies [14]–[18]. In [14], the secret communication
problem is investigated for Gaussian interference channels in
the presence of eavesdroppers. The problem is formulated
to minimize the total minimum mean-squared error (MMSE)
at the intended receivers while keeping the MMSE at the
eavesdroppers above a certain level, where joint artificialnoise
and linear precoding schemes are used to satisfy the secrecy
constraints. The estimation theoretic secrecy is also employed
in distributed inference networks, where the information com-
ing to a fusion center from various sensor nodes can also be
observed by eavesdroppers [15].

In estimation theoretic approaches, the Cramér-Rao bounds
(CRBs) provide useful fundamental limits for assessing per-
formance of estimators, hence they can be employed as a
performance metric for the intended receiver to optimize [16],
[19]. In this regard, the optimal parameter encoding for secret
communication is investigated based on the expectation of
conditional Cramér-Rao bound (ECRB) in [16]. In particular,
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the optimal encoding function is obtained to minimize the
ECRB at the intended receiver, while keeping the MSE at the
eavesdropper above a certain threshold. Instead of the ECRB
metric employed in [16], this letter focuses on the worst-
case CRB (equivalently, the worst-case Fisher information)
in order to develop a robust parameter encoding approach
that guarantees a certain level of estimation accuracy at the
intended receiver. The proposed problem requires different
solution approaches than that in [16] due to the minimax nature
of the worst-case optimization.

In this letter, we investigate the transmission of a uniformly
distributed scalar parameter to an intended receiver in the
presence of an eavesdropper. To facilitate secret communi-
cations, we utilize an encoding function (which is one-to-one
and continuous except at a finite number of points) applied on
the original parameter. The objective is to minimize the max-
imum CRB (equivalently, to maximize the minimum Fisher
information) at the intended receiver while ensuring a certain
MSE target at the eavesdropper. The eavesdropper is modeled
to employ the linear MMSE (LMMSE) estimator based on
the noisy observation of the encoded parameter without being
aware of encoding. An optimization problem is formulated
to obtain the optimal encoding function for a given target
MSE level at the eavesdropper. First, the secrecy constraint
is omitted and the optimization problem is solved under no
constraints, which yields a closed-form analytical solution.
Then, to solve the optimal encoding problem in the presence of
the MSE constraint on the eavesdropper, the optimal encoding
function that maximizes the MSE at the eavesdropper is
derived analytically for any given level of minimum Fisher
information at the intended receiver. Based on this analytical
result, a low-complexity algorithm is proposed to obtain the
solution of the proposed problem. Finally, numerical examples
are provided to illustrate the theoretical results.

II. PROBLEM FORMULATION

A scalar parameterθ ∈ Λ is to be transmitted to an intended
receiver over a noisy channel, where the channel noise is
represented byNr and the instantaneous fading coefficient
of the channel is denoted by constanthr. In addition, there
exists an eavesdropper that tries to estimate the parameter,
θ [16]. The objective is to perform accurate estimation of
the parameter at the intended receiver while keeping the
estimation error at the eavesdropper above a certain level.
Therefore, the parameter is encoded by a continuous (exceptat
a finite number of points), real valued, and one-to-one function
f : Λ → Γ. Then, the received signal at the intended receiver
is expressed as

Y = hrf(θ) +Nr (1)

whereNr is modeled as a zero-mean Gaussian random vari-
able with a variance ofσ2

r and is independent ofθ. Also, it is
assumed thatθ has uniform distribution overΛ. On the other
hand, the eavesdropper observes

Z = hef(θ) +Ne (2)

whereNe is zero-mean Gaussian noise with a variance ofσ2
e ,

which is independent ofθ, and he is the fading coefficient
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for the eavesdropper [2], [3]. The intended receiver tries to
estimate parameterθ by using observationY whereas the
eavesdropper employs observationZ for estimatingθ (see
Fig. 1 in [16] for the system model).

A robust approach is proposed in this letter for the optimal
parameter encoding design and the worst-case (maximum)
CRB is used for quantifying the estimation accuracy at the
intended receiver. Namely, the aim is to minimize the max-
imum CRB over the parameter set via an encoding function
while keeping the MSE at the eavesdropper (which employs
the LMMSE estimator) above a certain target value. Hence,
the following problem formulation is proposed:

fopt = argmin
f

max
θ

(

I(θ)
)−1

s.t. E
(∣

∣β̂(Z)− θ
∣

∣

2) ≥ η (3)

whereβ̂(Z) is the LMMSE estimator employed at the eaves-
dropper,η is the MSE target for the eavesdropper,(I(θ))−1

represents the CRB, andI(θ) denotes the Fisher information,
which is given by

I(θ) =

∫
(

∂ log pY |θ(y)

∂θ

)2

pY |θ(y)dy (4)

with pY |θ(y) representing the conditional probability density
function (PDF) ofY for a given value ofθ [19]. The problem
in (3) can also be stated as

fopt = argmax
f

min
θ

I(θ) s.t. E
(∣

∣β̂(Z)− θ
∣

∣

2) ≥ η (5)

which means that the aim is to maximize the minimum
(worst-case) Fisher information at the intended receiver.It is
noted that the distribution ofθ does not affect the objective
function in (5) since the worst-case parameter value is the
main concern.

As motivated in [16], the parameter space and the intrinsic
constraints on the encoding functionf are specified as follows:

• θ ∈ Λ = [a, b].
• f(θ) ∈ [a, b].
• f is a continuous (except at a finite number of points)

and one-to-one function.

III. O PTIMAL ENCODING FUNCTION

In this section, the solution of the proposed problem in (5)
(equivalently, in (3)) is investigated in the absence and inthe
presence of the secrecy constraint. To that end, the Fisher
information for parameterθ can be obtained from (1) and (4)
as follows [16]:

I(θ) = h2
r f

′(θ)2/σ2
r (6)

wheref ′(θ) denotes the derivative off(θ).

A. Optimization without Secrecy Constraint

Consider the optimization problem in (5) without the se-
crecy constraint; i.e., in the absence of the eavesdropper.From
(6), the problem in (5) can be expressed by removing the
constant terms as

fopt(θ) = argmax
f

min
θ

f ′(θ)2 . (7)

The following proposition is presented related to the solutions
of (7).

Proposition 1: The optimal continuous encoding functions
in the absence of an eavesdropper are

f(θ) = a+ b− θ and f(θ) = θ . (8)

Proof : Let T denote an operator onf(θ) such that
T (f) = minθ f

′(θ)2. It is given that f is one-to-one but
not necessarily a monotone function over[a, b] due to the
possibility of discontinuous points. However,f has to be

monotone over the interval between any two consecutive
discontinuous points as it is one-to-one. Thus, for any one-
to-one functionf , there exists a monotone functionfm such
that T (f) = T (fm), which can be generated by adjusting
the signs of the derivatives without changing their absolute
values. Hence, it can be assumed without loss of generality
that f is a monotone function. Furthermore, it is noted that
sincef is not differentiable at discontinuous points andT (f)
is the pointwise minimum off ′(θ)2, the points at which
the jumps occur cannot be the optimal points. Therefore,
one can remove the jumps at the discontinuities to obtain a
continuous version, denoted byfc. Thus, for any one-to-one
function f , there exists a continuous functionfc such that
T (f) = T (fc); hence, it can also be assumed thatf is a
continuous function without any loss. First, consider the case
of f ′(θ) > 0, ∀θ ∈ [a, b]. Then, based on the properties of
the encoding functionf ,

∫ b

a

df
dθ
dθ = f(b)− f(a) ≤ b− a. Let

g(θ) be defined asg(θ) , f ′(θ). Then, the problem in (7)
becomesmaxg minθ g(θ)

2 subject to
∫ b

a
g(θ)dθ ≤ b − a and

g(θ) > 0. Consider the functiong∗(θ) = 1, ∀θ ∈ [a, b], which
satisfies both of the constraints. Next, suppose that there exists
a functionh with minθ h(θ) > 1. Then,

∫ b

a
h(θ)dθ > b − a,

leading to a violation of the constraint. Hence, for any given
functiong, there is an upper bound specified asminθ g(θ) ≤ 1.
Since the constant function satisfies this upper bound, it isthe
maximizer over all possible functions. Sinceg(θ) = 1 for
θ ∈ [a, b], it is obtained thatf(θ) = θ is an optimal solution.
For the case off ′(θ) < 0, let g(θ) , −f ′(θ). Then, based on
similar arguments,g(θ) = 1 can be obtained, resulting in an
optimal solution off(θ) = a+ b− θ.1 �

Proposition 1 reveals that if there exist no secrecy con-
straints, parameter encoding does not provide any benefits in
terms of the worst-case Fisher information asf(θ) = θ is an
optimal solution.

B. Optimization with Secrecy Constraint

To obtain the optimal encoding function in the presence of
the secrecy constraint, the problem in (5) can be rewritten,
based on (6), as

fopt(θ) = argmax
f

min
θ

f ′(θ)2 s.t. E
(∣

∣β̂(Z)− θ
∣

∣

2) ≥ η (9)

where the additional constraints on the parameter domain and
the encoding function are as stated at the end of Section II.
Since the eavesdropper employs the LMMSE estimator, the
MSE at the eavesdropper can be expressed as [16]

E
(∣

∣β̂(Z)− θ
∣

∣

2)
=

h2V (V − 2C)

h2V + 1
+ (E(X)− E(θ))2 +Var(θ)

(10)

where X = f(θ), V = Var(X), C = Cov(X, θ), and
h = he/σe.2 From (9), it is noted that the optimal encoding
function should satisfy the MMSE constraint by making the
smallest slope in[a, b] as large as possible. It is known that

1The solution set for (7) also contains the set of all one-to-one functions on
[a, b] with f(θ) ∈ [a, b] and with finitely many discontinuous points, where
between any two consecutive discontinuities,|f ′(θ)| = 1. Hence, there exist
infinitely many encoding functions that solve (7). The encoding functions in
(8) correspond to the optimal continuous solutions.

2It is noted from (9) and (10) that the transmitter requires the knowledge
of the channel quality parameter for the eavesdropper,h, which can be
challenging to obtain accurately. Based on imperfect knowledge ofh, the
parameter encoding design can be performed, for example, byconsidering
the minimum possible value of the MSE at the eavesdropper according to the
uncertainty in the parameter (Remark 3 in [16]).



3

when the secrecy constraint is not effective (or, removed),the
linear encoding function is optimal according to Proposition 1,
and |f ′

opt(θ)| = 1. Therefore, for a given target levelη
in (9), one strategy to find the optimal encoding function
is to search among eligible encoding functions that satisfy
minθ∈[a,b] |f ′(θ)| = k and to check if any of them satisfies
the target secrecy level, wherek is set to1 initially. If there
exist no solutions for a givenk, then k is decreased and
the procedure is repeated, until a feasible function satisfying
the secrecy constraint is found. LetFk denote the family
of one-to-one and continuous (except at a finite number of
points) functions with the domain and codomain being given
by [a, b], andminθ |f ′(θ)| = k. Then, a sufficient condition
for optimality of f ∈ Fk is that it should satisfy the secrecy
constraint and there should be no elements inFm that satisfy
the secrecy constraint form > k. To determine whether
the secrecy constraint can be satisfied for a givenk, the
highest MMSE at the eavesdropper has to be calculated for
that specific value ofk. Hence, the solution of the following
optimization problem should be performed in the first step:

f̂opt = argmax
f̂

E
(∣

∣β̂(Z)− θ
∣

∣

2)
s.t. k ≤

∣

∣f̂ ′(θ)
∣

∣, ∀θ ∈ [a, b]

(11)
where0 ≤ k ≤ 1 is a given parameter.

Remark 1: The domain of the parameter is taken to beΛ =
[a, b] in the general case. However, due to Proposition 2 in [8],
it can be assumed thatΛ = [0, γ] and f̂(θ) : [0, γ] → [0, γ],
whereγ = b−a, without loss of generality. Hence, in the rest
of the manuscript,θ is assumed to be distributed uniformly in
[0, γ].

The following result characterizes the solution of (11).
Proposition 2: For a given k, the form of the solution of

(11) is given by

f̂opt(θ) =

{

γ − θk, if 0 ≤ θ ≤ α

γk − θk, if α < θ ≤ γ
. (12)

Furthermore, if

2− h2γ2

12
(2k − k2) ≥ (k + 1)(h2Vmin + 1)(h2Vmax + 1)

(13)
where h is the channel quality for the eavesdropper,

Vmin =
k2γ2

12
and Vmax =

k2γ2

12
+

(1− k)γ2

4
, (14)

then, both α = 0 and α = γ are optimal α values. Otherwise,
α = γ/2 is optimal.

Proof : The first step in the proof is to specify the
characteristics of the encoding function that maximizes the
LMMSE. Note thatf(θ) = X results in a random variable
with V = Var(X), C = Cov(X, θ) and µ = E(X), and
the value ofE(|β̂(Z)− θ|2) depends on these values. Hence,
the LMMSE value is to be maximized over the possible
values ofV , C, andµ. It is noted that the slope constraint
induces limitations on the possible values ofµ, V , and C.
Let Sk denote the feasible set ofµ, V , andC values in the
presence of the constraintk ≤ |f ′(θ)|. As parameterθ is
distributed uniformly on the interval[0, γ], E(θ) = γ/2 and
Var(θ) = γ2/12. Then, the optimization problem in (11) can
be expressed as

max
µ,V,C

h2V (V − 2C)

h2V + 1
+
(

µ− γ

2

)2

+
γ2

12
, (µ, V, C) ∈ Sk

(15)
After some manipulation, the objective function in (15) canbe
stated asλ(V )E(|X−θ|2)+(1−λ(V ))(µ2−γµ+γ2/3), where
λ(V ) , h2V /(h2V + 1). Note that for a givenµ, E(|X −

θ|2) can be maximized, which would yield an upper bound
on the objective function. It can be found by inspection that
when the slope constraint is taken into account,E(|X − θ|2)
is maximized for

X̂α =

{

γ − θk, if 0 ≤ θ ≤ α

γk − θk, if α < θ ≤ γ
(16)

where (1 − k)α = µ − kγ/2 and kγ/2 ≤ µ ≤ γ − kγ/2.
Hence, the following the relationship is obtained:

E
(
∣

∣β̂(Z)− θ
∣

∣

2) ≤ λ(V )β1(α, k) + (1 − λ(V ))β2(α, k)

= λ(V )(β1(α, k)− β2(α, k)) + β2(α, k)
(17)

with β1(α, k) , (k2 − 1)(α2 − γα) + (k2 − k + 1)γ2/3 and
β2(α, k) , (k − 1)2(α2 − γα) + (3k2/4 − 3k/2 + 1)γ2/3.
Now, notice that for a fixedk, the following equality holds:

β1(α, k)− β2(α, k) = (α2 − γα)(2k − 2) +

(

k2

4
+

k

2

)

γ2

3

Sinceβ1(α, k) is a concave function ofα andβ2(α, k) is a
convex function ofα for 0 ≤ k ≤ 1, β1(α, k)− β2(α, k) is a
concave function ofα; hence, it attains its minimum atα = 0
andα = γ. Therefore, the following inequality is obtained:
β1(α, k)− β2(α, k) ≥ (k2/4 + k/2)γ2/3 ≥ 0, which implies
that for a given value ofµ, the right-hand-side of (17) is an
increasing function ofλ(V ). Hence, a further upper bound
can be obtained for (17) by using the sameX̂α defined above
since it maximizes the variance under the slope constraint.For
this function, the variance is given byV (α, k) = (k−1)(α2−
αγ) + k2γ2/12. It is noted thatλ(V (α, k)) and the resulting
upper bound are functions ofα for fixed k andh. Hence, the
upper bound can be maximized overα as follows:

E
(∣

∣β̂(Z)− θ
∣

∣

2)

≤ λ(V (α, k))β1(α, k) + (1− λ(V (α, k)))β2(α, k)

= λ(V (α, k))(β1(α, k)− β2(α, k)) + β2(α, k)

, g(α, k) ≤ max
α∈[0,γ]

g(α, k) (18)

If α̂ = argmaxα∈[0,γ] g(α, k), thenE(|β̂(Z)− θ|2) achieves
this upper bound by employinĝα at the encoding function.
Therefore, the optimal encoding function iŝX α̂, whereα̂ =
argmaxα∈[0,γ] g(α, k).

To conclude the proof,̂α should be characterized for given
k andh. Overall, the optimization problem can be written as

max
α∈[0,γ]

h2V (α, k)

h2V (α, k) + 1
(β1(α, k)− β2(α, k)) + β2(α, k) (19)

where h, γ > 0 and k ∈ [0, 1]. Instead of optimizing
over α, the optimization can be performed overV based
on a change of variables by noting that forα ∈ [0, γ],
V (α, k) ∈ [Vmin, Vmax], whereVmin = k2γ2/12 andVmax =
k2γ2/12 + (1− k)γ2/4. Then, (19) is rewritten as

max
V ∈[Vmin,Vmax]

z(V ) =
h2(k + 1)V 2 +HV + F

h2V + 1
(20)

where H = (h2γ2/12)(4 − 4k + 3k2 − k3) + k − 1 and
F = (γ2/12)(4 − 6k + 4k2 − k3). Then, according to the
Weierstrass theorem, the global maximum exists for (20), and
the solution can be found by applying Fermat’s rule. Namely,
the optimal solution either satisfiesz′(V ) = 0 or is at the
boundary, i.e.,V = Vmin or V = Vmax. For z′(V ) = 0,
V 2 + 2V/h2 + d/h4 = 0, whered = (H − Fh2)/(k + 1).
Then, V̂ = −h−2 + h−2

√
1− d is a candidate solution.

However, V̂ should belong to[Vmin, Vmax]. To guarantee
this condition,h2Vmax ≥

√
1− d − 1 ≥ h2Vmin should be
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satisfied. Therefore,h2Vmin +1 ≤
√
1− d. If this holds, then

sgn(limV→V
+

min

z′(V ) = sgn(V 2
min+2h−2Vmin+h−4d) ≤ 0.

In conclusion, it is possible that a candidate solution is inside
the feasible interval[Vmin, Vmax]; however, there is only one
such solution andV is decreasing at the beginning of the in-
terval. Due to continuity, it is noted that if̂V ∈ (Vmin, Vmax),
then it is in fact the global minimum. Hence, it is concluded
that the solution of (20) is eitherVmin or Vmax, excluding the
possibility of the other case. Finally, the regions in whicha
certain end point is optimal are characterized. The condition
of z(Vmin) ≥ z(Vmax) occurs ifh andk satisfy

2− h2γ2

12
(2k − k2) ≥ (k + 1)(h2Vmin + 1)(h2Vmax + 1)

and z(Vmin) < z(Vmax) holds otherwise. Note that if the
optimal solution isVmax, thenα̂ = γ/2. If the optimal solution
is Vmin, both α̂ = 0 and α̂ = γ are the optimal solutions.�

As the form of the optimal encoding function that max-
imizes the LMMSE at the eavesdropper is derived for any
value of the minimum slope constraint (k) via Proposition 2,
the optimal encoding function based on the worst-case Fisher
information metric can be obtained by finding the maximum
of such constraints. Hence, the problem reduces to the de-
termination of the best (maximum) value ofk ∈ (0, 1] such
that ∃f ∈ Fk in the form specified by (12) that satisfies
the secrecy constraint. This approach can be implemented by
using the procedure shown in Algorithm 1. It is noted that
E(|β̂(X̂α) − θ|2 in Algorithm 1 can be calculated explicitly
via (10) and (12).

Algorithm 1: fopt = ENCODER(η)

% ∆ is the decrement of slope at each iteration.
k ← 1
while k > 0 do

Pick α = 0 or α = γ, if (13) holds. Else,α = γ/2.
X̂α = f̂opt(θ) as given in (12)
MSE← E(|β̂(X̂α)− θ|2

if MSE ≥ η then
fopt = X̂α

break
else

k ← k −∆
end

end
if k < 0 then

Problem is infeasible
else

return fopt
end

IV. N UMERICAL RESULTS AND CONCLUSIONS

In this section, a numerical example is provided based on the
theoretical results and the proposed algorithm in Section III.
The channel parameters are selected ashr = σr = 1 for the
intended receiver andh = 0.5 andh = 1.5 for the eavesdrop-
per. The parameterθ is assumed to be uniformly distributed
in the interval of[0, 2]; i.e., γ = 2. The eavesdropper employs
the LMMSE estimator by using the observations based on the
encoded parameterX = f(θ). Also, ∆ is set to 0.001 in
the proposed algorithm for calculating the optimal encoding
functions. In Fig. 1, the worst-case Fisher information values
achieved by the proposed algorithm are presented with respect
to the target secrecy level forh = 0.5 and h = 1.5. For
comparison purposes, the worst-case Fisher information values
corresponding to the ECRB based encoding algorithm in [16]
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Fig. 1: Worst-case Fisher information versusη.
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Fig. 2: fopt(θ) versusθ for h = 0.5.

are also provided in the same figure. (The proposed scheme
provides higher worst-case Fisher information than the ECRB
based scheme since the latter aims to optimize the average
CRB.) In Fig. 2, the optimal encoding functions based on the
worst-case Fisher information metric are provided for various
η values forh = 0.5. As justified in Proposition 2, the optimal
encoding function is either linear with a certain slope between
0 and 1, or piecewise linear with a single discontinuity at
θ = γ/2 depending on the target secrecy levelη.

In Fig. 1, it is observed that as the target secrecy level
increases, the worst-case Fisher information achieved by the
proposed algorithm decreases, as expected. In addition, itis
possible to obtain higher worst-case Fisher information values
whenh = 1.5 for the same MSE target compared to the case of
h = 0.5 since the distortion due to the encoding is transmitted
to the eavesdropper more effectively under better channel
conditions. Note that whenh = 0.5, the three different regions
are observable in the performance figure. Whenη ≤ η1 =
16/39 = 0.4101, employingk = 1, that is,fopt(θ) = γ−θ, is
sufficient to attain the target secrecy levels. In general,η1 can
be found asη1 = 0.25γ2

(

h2γ2/(h2γ2 + 12) + 1/3
)

. When
η1 < η ≤ η2 with η2 = 0.4708, it is observed that the
optimalα value becomesγ/2. It is noted thatη2 can be found
by determining the point at which (13) becomes an equality
in general. Therefore, in this region, the optimal encoding
function has a single discontinuity atθ = γ/2. Finally, when
η2 < η ≤ 4/3, the optimalα is 0; hence, the optimal encoding
function is linear with no discontinuities. It is interesting to
note that the worst-case Fisher information decreases faster in
the second region, and it decays to zero in the third region
more slowly as compared to the second region. On the other
hand, whenh = 1.5, only two of such regions are observed
in Fig. 1.
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